
Accurate and Provably Secure Latency Estimation with Treeple

Eric Chan-Tin and Nicholas Hopper

University of Minnesota

Minneapolis, MN

{dchantin, hopper}@cs.umn.edu

Abstract

A network latency estimation scheme associates a short

“position string” to each peer in a distributed system

so that the latency between any two peers can be esti-

mated given only their positions. Proposed applications

for these schemes have included efficient overlay construc-

tion, compact routing, anonymous route selection, and effi-

cient byzantine agreement. This paper introduces Treeple,

a new scheme for latency estimation, that differs from pre-

vious schemes in several respects. First, Treeple is provably

secure in a strong sense, rather than being designed only

to resist known attacks. Second, Treeple “positions” are

not based on Euclidean coordinates, but reflect the under-

lying network topology. Third, Treeple positions are highly

stable, allowing peers to retain the same position informa-

tion for long periods with no maintenance. Finally, Treeple

positions can be assigned to peers that do not participate

directly in the scheme. We evaluate Treeple on a large in-

ternet dataset (with over 200,000 measurements) and find

that on average, its latency estimates are within 26% of the

true round-trip time. By comparison, Vivaldi, a popular but

insecure scheme, has a median relative error of 25% on the

same dataset.

1. Introduction

Network coordinate systems [7, 23, 24, 5, 25, 30] as-

sign a coordinate to each node in a distributed system such

that the distance between two nodes’ coordinates provides

a good estimate of the internet round-trip time between the

nodes. The ability to estimate the network distance between

arbitrary peers is useful in many cases: for example, find-

ing the closest node to download content from in a content

distribution network or file-sharing system [32]; reducing

inter-ISP communication [20, 4]; reducing state in internet

routers [1, 12, 16]; detecting Sybil attacks [8, 2]; and con-

ducting byzantine leader elections [6]. Early network co-

ordinate systems were shown to have reasonable accuracy

and fast convergence, while later schemes added features

such as coordinate stability under churn and measurement

uncertainty [18, 17, 7].

Unfortunately, Kaafar et al. [15, 13] demonstrated that

these early network coordinate systems were vulnerable to

very simple attacks, in which adversarial nodes disrupt the

coordinate system by claiming to have randomly chosen po-

sitions and adding random delays to their outgoing mes-

sages. In response, several schemes to mitigate these at-

tacks have been proposed [35, 14, 31, 29, 33]. None of these

schemes seems to have an explicit security goal, and at least

one of the schemes [35] has already been shown to be inse-

cure against more subtle attacks [3], potentially leading to a

“penetrate and patch” cycle of schemes and attacks.

In this paper, we introduce a strong definition of secu-

rity for latency estimation schemes that is robust to new at-

tack types. Informally, our condition states that an adver-

sary should be unable to influence the estimated distance

between two honest nodes, and additionally, should only be

able to increase the distance between pairs of nodes involv-

ing at least one adversarial node. We then consider whether

previous secure network coordinate systems meet our defi-

nition. We demonstrate by simulation that several “secure”

schemes are vulnerable to a variant of the “Frog-Boiling”

attack [3], where an attacker injects a sequence of small

inaccuracies – each of which appear plausible – that cu-

mulatively result in the partitioning of the whole network

into two independent clusters. We additionally show that

even schemes that rely on trusted “landmark nodes” [23]

can fail by allowing adversarial nodes to reduce their co-

ordinate distance to targeted victim nodes in the network.

The common fault underlying both of these vulnerabilities

is that current network coordinate systems ignore the un-

derlying network topology, and thus cannot distinguish be-

tween anomalous round-trip times due to adversarial ma-

nipulation and anomalies due to the topology and changing

conditions in the network. We describe the common faults

of current systems in more details in Section 2.3.

After defining security, we describe Treeple, our scheme

for secure network latency estimation. Node positions in

Figure 1. A tree built from one source to three destina-

tions with link latency in milliseconds.

Treeple are not abstract coordinates but instead represent

their position in the network graph in a way that allows ef-

ficient computation of the estimated latency between a pair

of nodes. Assuming a small collection of trusted “vantage

points”, we prove that Treeple meets our security definition

even in the presence of an arbitrary number of adversarial

nodes.

To illustrate the idea behind Treeple, suppose we have

a system with trusted vantage point A and peers X , Y ,

and Z. Using techniques similar to traceroute, A can dis-

cover the network paths from itself to each of the peers,

constructing a tree with routers at the internal nodes and

link latencies along the edges. A could then use this tree

to compute an upper bound on the latency between X and

Y as follows: first identify C, the least common ancestor

of X and Y – lca(X,Y) – in the tree. Then compute the

sum of the latency between C and X and the latency be-

tween C and Y . Since there exists a path of this latency

between X and Y , it represents an upper bound on the la-

tency of the actual network path between the nodes. 1 For

example, suppose that the tree is built as shown in Figure 1,

and A is estimating the distance between nodes Y and Z.

In this case, lca(Y,Z) = B and the estimated distance is

35 + 15 + 20 = 70 ms.

Notice that this approach does not suffer from the same

issues as network coordinate systems. Amalicious node can

only affect the distance (real or estimated) between itself

and another node, but not between two honest nodes. For

example, if node Y from Figure 1 was malicious, it could

affect the distance estimation between Y and Z. How-

1We note that due to the Internet’s policy-based routing: (a) the RTTs

measured to the intermediate nodes of the traceroutes will not typically

reflect the link latencies exactly due to asymmetric return paths, and (b)

“triangle inequality violations” [36, 19] can occur, in which case the path

X-C-Y is shorter than the actual network path. However, in practice these

measurements still provide a good approximation, as we show in Section 4

ever, node Y cannot affect the distance estimation between

nodes X and Z because it will not be on the same net-

work path. Furthermore, using basic techniques like unpre-

dictable nonces when measuring the RTT from A to Y can

prevent Y from decreasing the distance estimation to other

nodes. We describe the full scheme based on this idea in

Section 3.

We evaluate Treeple on a large, real-world dataset in

Section 4. For this dataset, Treeple has a median relative

error of 0.26; This means that on average, half of the es-

timated latencies are within 26% of the true latency. For

comparison, we simulated Vivaldi [7], a popular but inse-

cure network coordinate system, on the same data set and

the resulting coordinate scheme has a median relative error

of 0.25. We note that the choice of Vivaldi is not arbitrary:

all of the recently proposed “secure” or “stable” network

coordinate schemes [35, 14, 31, 29, 33, 18] work by adding

additional measures to Vivaldi coordinate calculations that

attempt to discard anomalous inputs, and thus would have

the same accuracy in the absence of an attacker. This shows

that Treeple has accuracy comparable to network coordinate

systems while providing provable security.

We additionally demonstrate that Treeple positions are

highly stable: positions calculated on the first day of our

dataset provide nearly the same accuracy nearly three weeks

later. This has several important implications. First, be-

cause peers do not need to recalculate their positions the

bandwidth overhead is significantly reduced compared to

network coordinate schemes. Second, for the same reason,

the “centralized” vantage points do not present a signifi-

cant scaling challenge for Treeple. Finally, trusted vantage

points do not present a central point of failure: the system

can continue to function with high accuracy even if all van-

tage points are unavailable for an extended period.

2. Security

2.1. Threat Model

We model a network as a collection of N end-hosts con-

nected by M routers, forming together a set of N + M
nodes. At any time t (we assume synchrony for simplic-

ity only) there is a network condition χ(t) which assigns

a route routeχ(n1, n2), a return route rrouteχ(n1, n2) =
routeχ(n2, n1) and a resulting round-trip time rtt(n1, n2)
to every pair of nodes (n1, n2). We allow each end-host

n to measure both rtt(n, n′) and route(n, n′) for arbitrary
hosts n′. We may extend our model to allow χ(t) to assign

other conditions to peers and routers as well (for example,

to model peer churn or packet loss), but we omit these de-

tails for clarity of presentation.

We allow an adversary to control an arbitrary number of

end-hosts, but no routers. Thus an adversary can send mes-

sages to arbitrary hosts, with arbitrary apparent origination,

deviate from protocols in arbitrary collusive fashion, and ar-

bitrarily inflate the measurement of rtt(n,m)whenm is ad-

versarially controlled; however the adversary cannot effect

the measurement of rtt between honest end-hosts, and can-
not intercept, drop, or delay communication between honest

end-hosts.

It may seem at first that excluding routers from adver-

sarial control is a strong assumption. We argue, however,

that excluding routers from adversarial control is reason-

able in this setting; if an adversary could arbitrarily delay or

redirect packets between any pair of peers (and thus affect

the round-trip time between honest nodes) then a scheme

to estimate network latency cannot succeed, since any la-

tency estimate can be invalidated by the adversary. We

note that under the current Internet architecture, an adver-

sary that controls a single BGP speaker can exploit longest-

prefix matching to receive traffic directed to arbitrary hosts.

Furthermore, as recently shown by Goldberg, et al. [11], the

Internet’s policy-based routing is such that there exist single

attackers that can intercept over 90% of all routes even when

constrained by SBGP to use only existing routes. Goldberg

et al. showed that their strategy was suboptimal, meaning

the actual fraction of routes that a single attacker can inter-

cept under SBGP may be even higher. Since we seek to pro-

vide provable security for the current Internet architecture,

we must therefore assume that any attacker that controls a

router is the worst-case attacker and can intercept and delay

every message sent between peers.

We note additionally, that while the most desirable situ-

ation would be to resist such attacks, both the attacks in the

current literature, and the attacks on existing schemes that

we describe, fit within our threat model (and in fact, do not

fully exploit the abilities we ascribe to an adversary.) Thus

our threat model is strictly stronger than that considered in

every previous work on the topic, and a scheme that prov-

ably resists our threat model will already rule out all of the

known methods of attack.

2.2. Definitions

2.2.1 Latency Estimation Scheme

A latency estimation scheme for a set Peers of end-hosts

consists of four distributed protocols:

• A global initiation protocol GlobalInit that initializes

the global parameters of the scheme.

• An interactive protocol LocalInit which initializes the

state of a peer.

• An interactive protocol Update(P) in which the peer

P uses its local state and global parameters to com-

pute a new value for its position ρ(P), possibly after

interacting with other peers.

• An algorithm Distance(ρ1, ρ2)which computes an es-

timated latency between positions ρ1 and ρ2.

Peer P runs LocalInit on joining the system, and then at

regular time intervals τ , it calls Update(P) to update its

position. The most important functional goals for a latency

estimation scheme are:

Accuracy. Informally, a scheme is accurate if two nodes

that compute positions ρ1 and ρ2 have network latency that

is close to Distance(ρ1, ρ2). The typical measure of a

scheme’s accuracy used in the literature is the median rela-

tive error of peer P,

median
P ′∈Peers

|Distance(ρ(P), ρ(P ′)) − rtt(P, P ′)|

rtt(P, P ′)
.

We note that this measure inherently compares a scheme’s

accuracy to the “ground truth:” stating that a scheme has

median relative error c is stating that on average, 50% of the

estimates are within a factor c of the true latency, while 50%
are not. Thus, lower values for median relative error equate

to better estimates. Ideally, a scheme would achieve relative

error of 0 on all estimates. However, it is not hard (logically)

to construct a network that has incompressible latencies, so

that any scheme to represent positions by strings of length

o(N) must be incorrect on at least a constant fraction of the

estimates.

Stability. A latency estimation scheme is stable if positions

computed at time t still provide good accuracy at time steps

t′ > t. This can be computed by computing the distance in

coordinates at time t and comparing it to the latency at time

t′, in the calculation of median relative error.

Efficiency. A latency estimation scheme is not very useful

if the bandwidth required to transmit positions exceeds the

O(N2) bandwidth required to simply have all nodes mea-

sure pairwise RTTs, and similarly if the distance computa-

tions from positions is inefficient. Ideally, the size of posi-

tions and the time required to compute distances should be

essentially independent of the number of peers.

We note that all of these aspects of a scheme may depend

to a large extent on the topology of the underlying network.

In Section 4, we use a large set of Internet measurements to

compare the predictions of Treeple to measured latencies,

measure the stability of Treeple positions, and evaluate the

size of Treeple positions, along with the average computa-

tional load.

Triangle Inequality Violations. We note that several mea-

surement studies [36, 19] have reported that as many as 5%

of all node “triangles” (N1, N2, N3) violate the triangle in-
equality, that is, rtt(N1, N3) > rtt(N1, N2)+rtt(N2, N3);

we call these triangles “triangle inequality violations” or

TIVs. These occur due to the fact that Internet routing is

policy-based, rather than distance-based: each autonomous

system chooses among possible routes to a given destination

based primarily on the cost it will incur by sending packets

along the various routes. Thus any system for estimating la-

tencies that satisfies the triangle inequality – including Eu-

clidian distances as in Vivaldi and GNP, and tree distance as

in Treeple – must be inaccurate on at least one pair of nodes

in each TIV. However, this does not preclude having accept-

able accuracy on the remaining 95% of node pairs; indeed,

previous studies have shown that in the absence of attacks,

Vivaldi achieves low median and 90th percentile relative er-

rors, while we show in Section 4 that the same is true of

Treeple.

2.2.2 Security Goal

To motivate our Security definition, we consider an hypo-

thetical (“ideal”) system in which we can instantaneously

ask any node to measure its RTT to another node. In this

setting, an adversary is unable to alter the RTT between any

pair of honest nodes. On the other hand, any measurement

in which at least one of the nodes is an adversary can be

increased, but if the query includes some challenge value,

it cannot be decreased below the actual network latency.

Since an adversary can always increase apparent RTTs in-

volving an adversarial node by delaying responses, this hy-

pothetical scheme would provide the best security we could

hope to provide without complete knowledge of the under-

lying topology. However, since an explicit goal of Treeple

is to have short position strings, we will relax this notion

slightly to only consider how the adversary can influence

Treeple’s latency estimates. We will consider a latency esti-

mation scheme to be secure if an adversary cannot influence

the estimated latency between honest nodes, and by deviat-

ing from the protocol, can only increase the estimated la-

tency between a pair involving at least one malicious node.

Formally, we define security as follows. Let Π be a la-

tency estimation scheme. Fix a network, a sequence of net-

work conditions, and a set A of adversarial nodes. We will

compare random variables H and M, where H is an ex-

ecution trace of Π in which all peers behave according to

Π at all time steps; whereas in the execution trace M the

nodes in A behave arbitrarily, subject to computational re-

strictions. Each execution trace consists of the set of all

messages sent, rtt and route measurements taken, and po-

sitions ρi,t computed by a peer. We note that in the adver-

sarial trace, misbehaving nodes are not constrained to use a

new position at each time step. We compare the sequence

of positions H.ρi,t and M.ρi,t held by each peer i at each
timestep t in the traces H and M. We say that Π is se-

cure if the following properties hold with all but negligible

probability:

1. For all times t, for all i, j ∈ Peers \ A,

Distance(H.ρi,t,H.ρj,t) = Distance(M.ρi,t,M.ρj,t) .

2. For all times t, for all i, j such that i ∈
Peers and j ∈ A, there exists time t′ ∈
(t − τ, t] such that Distance(M.ρi,t,M.ρj,t) ≥
Distance(H.ρi,t,H.ρj,t′).

Informally, condition 2 relaxes our intuitive notion so an

adversary can use positions computed at a different time

within the update period, since there is no way to prevent

an adversary from choosing when it updates its position.

Relationship between security and accuracy. We note

that under our definition, security and accuracy are orthog-

onal. In particular, a scheme may be accurate but not se-

cure: schemes like Vivaldi, GNP, Big Bang, and so on can

produce latency estimates that are within 10%-20% of the

actual latency, depending on the evaluation, but fall to triv-

ial attacks. On the other hand, it is trivial to produce a

scheme that is secure but not accurate: if we assign each

node a distinct position and then predict that the latency be-

tween any pair of distinct nodes is 100ms, then the adver-

sary clearly cannot influence latency estimates between any

pair of nodes, trivially satisfying our definition. Of course

this scheme will be highly inaccurate; the challenge lies in

simultaneously achieving security and acceptable accuracy.

We note that once a scheme is both secure, and accurate

with no attackers, then it will continue to accurately esti-

mate pairwise latencies between honest nodes when under

attack. This definition therefore allows us to evaluate secu-

rity and functionality in a modular way: given a proof that

a scheme is secure, it is sufficient to evaluate its accuracy

with no adversarial nodes.

2.3. Failures of Previous Network Coordinate Sys
tems

Network coordinate systems can be categorized into cen-

tralized schemes with trusted nodes [24, 23] and decen-

tralized schemes [7, 30]. Centralized network coordinate

systems consist of some trusted nodes which communicate

with each other to compute their coordinates; other nodes

can contact a subset of those trusted nodes to obtain their

coordinates. In a decentralized scheme, each node contacts

a different set of peers to compute and update its coordi-

nates. Here we briefly demonstrate that (1) having trusted

nodes does not ensure that a scheme meets our security def-

inition, and (2) previous decentralized schemes designed to

withstand attacks are vulnerable to a variant of the “frog-

boiling” attack [3].

 0

 50

 100

 150

 200

 250

 50 100 150 200 250

E
s
ti
m

a
te

d
 N

e
tw

o
rk

 D
is

ta
n
c
e
 (

m
s
)

Real Network Distance (ms)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 10 20 30 40 50 60

D
is

ta
n
c
e
 t
o
 c

e
n
tr

o
id

Time (ticks)

Network1
Network2

(a) (b)

Figure 2. (a) Results of the targeted close node attack on GNP. Each point represents one simulated attack, and compares the

resulting coordinate distance to the underlying network distance between the attacker and the targeted node. (b) The Network-

Partition attack on Veracity showing that the network is being divided into two subnetworks.

2.3.1 Manipulating coordinates in GNP

GNP [23] is a landmark-based network coordinate scheme;

the authors do not claim security against attacks but it might

seem intuitively appealing that if landmarks’ coordinates

are digitally signed, and nodes obtain a digitally signed

messages from each landmark attesting to RTT measure-

ments, the scheme could be secure. Although this would

seem to prevent an adversary from influencing the estimated

distance between honest nodes, however, we show that it is

possible for an adversary to influence the protocol to artifi-

cially decrease the estimated distance between an adversar-

ial node and a targeted honest node.

We implemented a very simple attack that demonstrates

the feasibility of this goal. In our attack, the adversar-

ial node A knows the coordinates of the node T it wants

to target, so A can compute the distance between T and

each landmark node. Then when a given landmark Λi mea-

sures rtt(Λi, A), A attempts to make the result as close to

rtt(Λi, T) as possible, subject to the constraint that the ad-

versary cannot cause the measurement to be smaller than

the underlying network distance. We repeatedly simulated

this process using the code and matrix topology from [10].

For each simulation run, we randomly picked one victim

node and one attacker node from a set of 101 nodes with 10

of these nodes as landmarks, subject to the constraint that

the victim was not already “close” to the attacker (RTT less

than 30ms). Figure 2(a) shows that this simple attack is very

successful: in nearly all cases, A receives a coordinate that

is closer to T than the underlying network distance.

2.3.2 Partitioning a Veracity network

Decentralized network coordinate systems use a fully dis-

tributed algorithm to compute the optimal coordinates of the

nodes in the network. Several secure mechanisms have been

proposed. Broadly speaking, they fall into anomaly/outlier

detection systems [35, 14], reputation system [29], and dis-

tributed reputation systems [31, 33]. It was shown in [3]

that an outlier detection mechanism using the Mahalanobis

distance [35] can be defeated using the “Frog-Boiling” at-

tack. The Frog-Boiling attack is analogous to the popular

account that if a frog is put in hot boiling water, it will jump

out, but if it is put in cold water, and the temperature of the

water slowly increased to boiling, the frog will stay in the

water and boil. We show that other secure mechanisms can

be defeated in a similar fashion. Figure 2(b) shows the net-

work partition variant of the attack on a Veracity [31] sim-

ulation. Veracity is a distributed reputation system which

verifies the self-reported coordinates of nodes and prevents

nodes from artificially delaying their RTT by too much. The

figure shows that the Frog-Boiling attack is effective in par-

titioning a Veracity-secured network coordinate system –

10% of the network were attackers.

The main problem with current network coordinate sys-

tems is that they have to work under dynamic network con-

ditions. Thus, secure network coordinate systems have to

accept changes in RTT and link conditions. The Frog-

Boiling attacker produces small and consistent lies so that

its updates are accepted since they are mistaken for the nor-

mal fluctuations in RTT. Current secure schemes thus can-

not differentiate between a malicious update and a normal

update due to changing link conditions. Therefore, some

sort of attack (Frog-Boiling or other) will still be possi-

ble to disrupt the network coordinates, rendering the esti-

mated network distance to be useless since it will be greatly

different from the real network distance. This problem is

inherent in both centralized and decentralized network co-

ordinate systems. An attacker can lie in small but consis-

tent ways to disrupt a decentralized network coordinate sys-

tem, as shown by partitioning the network using the Frog-

Boiling attack. In centralized network coordinate systems,

a node, knowing the coordinates of its target node, can lie

in such a way that its coordinates, as computed by the land-

marks, are close to the coordinates of the target node. Al-

though the attacker is not directly lying to the target node

by changing its RTT, and only lying to the landmarks, the

attacker’s estimated distance to the target victim will be af-

fected, which contradicts our definition of a secure latency

estimation system. We note that neither of these attacks

requires an overwhelming fraction of malicious peers, and

both attacks work even in the presence of trusted routers.

3. Treeple

Suppose that we have a single trusted vantage point and

wish to build a secure network latency estimation scheme

for the current Internet. A very simple way to incorpo-

rate network topology into Treeple positions is to have the

trusted node measure the network path to each peer, for ex-

ample using repeated calls to traceroute, and measure the

RTT to each router along the path. The position that the

vantage point assigns to each peer would then be the signed

path from the trusted node to the peer, including the RTTs to

each node along the path. To compute the distance between

two peers A and B given their positions, we could find the

last “common ancestor” C on each of the paths and then

estimate that the distance between the peers is the distance

between A and C plus the distance between C and B, since

a path of this distance exists between A and B.2 It is easy

to see that while it may be inaccurate, this scheme meets

our stated security goal, assuming that malicious peers can-

not interfere with the routing infrastructure: in this case the

paths from the trusted node to any two honest nodes would

not involve malicious nodes, and only the final hops to ma-

licious nodes could be impacted, by delaying responses to

the trusted node’s traceroute request.

An alternate view of this system is that the trusted node is

computing the tree of shortest paths between itself and other

peers, and “embedding” the network into this tree metric. It

is clear that for some pairs of nodes the tree distance could

be larger than the actual network distance, because many

2Due to the complexities of Internet routing this path is unlikely to be

used, but it may still represent a good approximation.

network links will not be included in the trusted node’s

shortest path tree.

To address this, we choose k topologically distinct van-

tage points to repeat this process: a peer’s coordinate be-

comes an ordered k-tuple of signed routes (one from each

trusted vantage points), and the distance between A and B
becomes the minimum of the distances computed from each

of the k trees. Again, it is easy to see that the security of

the scheme holds for this variant: no adversarial node can

interfere with the route and RTT measurements involved

in computing honest nodes’ positions; so all honest node

coordinates will be the same regardless of adversarial be-

havior. And since adversarial nodes can only increase RTT

measurements they cannot appear closer to other nodes by

deviating from the protocol. Intuitively, adding the extra

vantage points increases the probability of discovering the

network links used by the actual route between two nodes,

thus improving the accuracy of latency estimates.

3.1. Complete Description

For completeness, pseudocode for the component algo-

rithms of Treeple is shown in Figure 3. Treeple assumes the

existence of a signature scheme (Gen, Sign, Verify) that

is existentially unforgeable against chosen message attack:

any efficient program given access to a verification key vk
and a signing oracle for the corresponding signing key sk
cannot produce a correct (message, signature) pair with a

message that was not a previous signing oracle query, ex-

cept with negligible probability in the security parameter.

Additionally we assume that each end-host h has access to

two functions: h.route(g) returns a list of routers along

the path from h to g; and h.rtt(g) returns the round-trip

time between h and g. For clarity, the “system parame-

ters” generated in GlobalInit are passed as implicit argu-

ments to other procedures. Finally, we assume a fixed set

of k trusted vantage points whose addresses are included in

the global parameters, but are not chosen by the protocols.

These nodes serve as a “root of trust” in the scheme. We

briefly discuss algorithms for choosing from among several

possible vantage points in Section 4.

3.2. Security

Theorem 1. Assuming the set {T1, . . . , Tk} of vantage

points are honest, Treeple is a secure network latency esti-

mation scheme.

Proof. Fix a network graph and condition sequence χ,
along with a set of adversarial peers A such that A ∩
{T1, . . . , Tk} = ∅. Suppose that there exists a pair of peers
(A,B) that violate the security condition of section 2; we

will show that, except with negligible probability, the ex-

istence of this pair must imply a signature forgery. We let

Define Treeple.GlobalInit:

For each trusted Ti ∈ {T1, . . . , Tk} :
Ti: choose (vki, ski)← Gen(λ).
Ti: send (i, vki) to {T1, . . . , Tk}.
Output: 〈vk1, . . . , vkk〉.

Define Treeple.LocalInit(N):

set posN ← getPosition(N, time()).
Define Treeple.Udpate(N, t):

if length(posN) < k

or posN is stale:

set posN ← getPosition(N, t).

Define Treeple.getPosition(N, t):

N: choose ridt ←R {0, 1}λ. Set posN.rid = ridt.

Foreach Ti ∈ {T1, . . . , Tk} do:

N: choose ridi ←R {0, 1}λ.
N: send pos-request(ridt, ridi, t) to Ti

Ti: on pos-request(ridt, ridi, t) from N:

Ti: set rt← 〈〉
Ti: rt.rid← ridi.

Ti: rt.t← t.

Ti: if |t− time()| > τ : abort.

Ti: compute 〈r1, . . . rℓ〉 = Ti.route(N).
Ti: for each rj ∈ 〈r1, . . . , rℓ = N〉:
Ti: rt.hostj ← rj .

Ti: rt.rttj ← Ti.rtt(rj)
Ti: rt.sig← Signski

(rt.host, rt.rtt, ridt, ridi, t).

Ti send route-reply(rt) to N.
N: on route-reply(rt) from Ti:

N: if Verifyvki
((rt.host, rt.rtt, ridi, ridt, t), sig):

N: set posN.routei = rti.

N: else, set posN.routei = ⊥.
Output: posN.

Define Treeple.Distance(posA, posB):
set dist←∞.

if (|posA.t− posB .t| ≤ τ):

For each Ti ∈ {T1, . . . , Tk} do:
if (verify(i, posA) and verify(i, posB)):
set lca← find-lca(posA.routei, posB .routei).
set di ←(posA.routei.rttA − posA.routei.rttlca)+

(posB .routei.rttB − posB .routei.rttlca).
Update dist← min(dist, di).

Output: dist

Define find-lca(rt1, rt2):
Output: max{j|rt1.hostj = rt2.hostj}.

Define verify(i, ρ):
if ρ.routei =⊥: output False
else:

set mi ← 〈ρ.routei.host, ρ.routei.rtt, ρ.routei.rid, ρ.rid, ρ.t〉.
output Verifyvki

(mi, ρ.routei.sig).

Figure 3. Treeple algorithms, assuming the existence of a digital signature scheme (Gen, Sign, Verify)
and a preselected set of trusted vantage points {T1, . . . , Tk}. Here a position consists of a time t,
a global random identifer rid, plus an indexed array route, where each entry routei is either ⊥ or a

record consisting of indexed arrays host and rtt along with a signature field and a local identifier.

α denote the total number of messages sent by adversarial

nodes in the adversarial trace.

First, notice that for any honest peer h, at any time t,
posh must be identical in both the adversarial and non-

adversarial execution traces, except with negligible proba-

bility. This is because the “request identifier” ridi generated

in getPosition(h), combined with signature verification on

received route messages, ensures that h only updates its

coordinates when it receives authentic responses to its own

requests, from trusted nodes. Since calls to getPosition(h)
and are only initiated by h and our adversarial model ex-

cludes dropping and interception of honest messages, it fol-

lows that in any pair of execution traces with identical net-

work conditions, an honest node will have equivalent posi-

tions.

Specifically, an honest node only changes its position

when it receives a message that is signed and contains its

most recent, randomly chosen identifier. Since adversarial

nodes do not see the requests generated by honest nodes, the

probability of correctly guessing a request identifier in α at-

tempts is at most ℓnα
2λ (where ℓ is the length of the trace,

n is the number of peers, and λ is the length of request

identifiers). Given that the adversary does not correctly

guess request identifiers, it can only cause an honest node

to accept a position that is different than the non-adversarial

trace by generating a response message route
′ that is appar-

ently signed by one of the trusted vantage points. Notice

that given the sequence of network conditions and a signing

oracle, it is easy to generate all the messages a set of adver-

sarial nodes would see in the adversarial execution (because

the honest nodes follow the protocol), and thus it follows

that this route
′ and its signature would constitute a forgery.

If we denote the (negligible) probability of a forgery with

nℓ + α signature queries by ǫ, then the probability of this

event is at most kǫ by the standard reduction that guesses

which trusted party the adversary will forge against.

Thus, if the pair (A,B) is honest, the presence of ad-

versaries is irrelevant: Distance(posA, posB) will be the

same in both traces. On the other hand, consider the variable

posA assigned to an adversarial node A at time t. Since the
adversarial node initiates the same requests in both traces, it

can only manipulate its position by either manipulating the

measurement of Ti.rtt(A) for some Ti (by assumption the

measurement of route(Ti, A) and Ti.rtt(x) for x 6= A are

not vulnerable to manipulation) or by substituting a differ-

ent value for some routei. By assumption on the rtt func-
tionality, the first type of manipulation will only inflate the

distance between A and its “last hop”, which will inflate the

distance to other nodes (uniformly). So the only remaining

option to violate the security condition is to replace some

routei. The requirement that all route messages in a po-

sition have the same request identifier prevents “mix-and-

match” substitution of routes between requests. Dropping

any route message that does not give the minimal distance

to a particular position will not affect the distance calcula-

tion, while dropping the minimal distance route will only

increase the distance. Finally, producing a signed routei

with different rtt or host entries would constitute a forgery,

and thus an adversary would again successfully produce this

forgery with probability at most kǫ.

4. Evaluation

4.1. Experimental Setup

To evaluate our approach, we used the iPlane [21]

dataset. This data set contains the results of periodic tracer-

outes from 250 Planetlab [26] nodes to all other Planetlab

nodes and thousands of other IP addresses. We note that

the iPlane dataset is “live”; every day, each of the Planet-

Lab nodes performs multiple traceroutes to over 100,000

IP addresses and publishes the results. We downloaded the

traceroute datasets from Dec 1st, 2009 to Dec 22nd, 2009.

The dataset presented 250 possible trusted nodes to choose

from; each trusted node contacted more than 130, 000 IP

addresses on average, and each tree constructed from the

traceroutes contained on average 200, 000 unique nodes (in-
cluding intermediate nodes). In constructing the paths from

trusted nodes to peers, we always used the minimum RTT

measured at each hop, and when repeated traceroutes re-

sulted in different routes, we selected the shorter route.

To determine the accuracy of a given set T of vantage

points, we considered all pairs of nodes (A,B) such that (i)
all vantage points in the set had successfully completed a

traceroute to both A and B, allowing us to compute posi-

tions posA, posB ; and (ii) we had measured the RTT be-

tween A and B. For each such pair, we computed the rela-

tive error,

|Distance(posA, posB) − RTTA,B|

RTTA,B ,

to measure the accuracy in estimating the latency between

A and B using T ; lower relative error indicates a better esti-

mate of the latency. Because the iPlane measurement apara-

tus does not retry traceroutes that fail, the size of the evalua-

tion set will vary across sets T ; in all cases the size was over

200,000. In order to compare between these evaluation sets,

we used the median relative error for each. Additionally, for

our “best choice” of 20 vantage points T , we also measured

the size of the coordinates posA and posB and the number

of node comparisons required to estimate the distance.

4.2. Selecting a set of vantage points

Determining the accuracy of Treeple is not as straight-

forward as for a network coordinate system. The relative

error is still used to determine whether an estimated net-

work distance is accurate – the lower the error, the more

accurate the estimation. However, using the iPlane dataset,

there are 250 possible vantage points. It is clear that, in

general, different vantage point sets will produce different

accuracy. An important question, both for evaluation and

eventual deployment, is how to select a good set of vantage

points.

Determining the “best possible” single vantage point is

relatively straightforward – compute the median relative er-

ror for each pair of end hosts’ network distance estimation,

for each of the 250 vantage points, and the one with the low-
est median relative error is the most accurate. When k = 2,
we could pick the very best combination of any two vantage

points such that the combination would result in the lowest

median relative error among all the possible combinations

(total of 250×249 = 62, 250 combinations). However, this

approach is not scalable, as when k = 3, there are a possi-
ble 250×249×248 = 15, 438, 000 combinations to choose

from. Although this approach provides the very best combi-

nation of vantage points to produce the lowest median rela-

tive error, it does not scale past k = 3, and worse, would not
give confidence in the future performance of this set, due to

overfitting.

In this paper, we selected vantage sets of different sizes k
using a greedy sampling algorithm, which works as follows.

First, we chose at random a set S of 1, 000 pairs (A,B) be-
tween which we had measured latencies. We start by pick-

ing the best vantage point T1 for the pairs in S among the

250 possible choices. Then we pick the best second van-

tage point T2 that combined with T1 would produce the

lowest median relative error on S, and so on until k van-

tage points have been chosen. Using this algorithm to se-

lect k of n possible vantage points requires O(nk) steps,

as compared to nk for the previous approach. Furthermore,

because we evaluate only on a sample, we avoid overfitting

vantage points to our test set.

Although it is clear that the “greedy” approach is scal-

able for arbitrary k, it remains to be seen whether it pro-

duces a good result, that is, whether it can pick vantage

points that can accurately estimate network distances be-

tween any pair of nodes. Figure 4 shows the CDF for the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

Relative Error

t = 2
t = 3
G-2
G-3

Figure 4. The CDF for the relative error for the estima-

tions for the “best” (t = 2, 3) and “greedy” sets, with vary-

ing k.

relative error (amongst all pairs) using greedy sampling to

select vantage sets of size k ∈ {1, 2, 3}. For comparison,

the figure also includes the CDF of relative error for the k-
node vantage sets that achieve the best median relative error

on the iPlane data set from December 1, 2009. The labels

t = 2 and t = 3 represent the optimal result, that is, picking

the very best 2 and 3 vantage points respectively. The me-

dian relative error is similar for both algorithms for various

k. The primary difference in accuracy can be seen at the

90th percentiles. The 90th percentile relative error for the

optimal set for k = 2 is 1.7 compared to 2.3 for the greedy

approach – a difference of 35.2%. The 90th percentile rel-

ative error for k = 3 for the optimal set is 1.45, compared

to 2.15 for the greedy algorithm – a difference of 48.3%.

From Figure 4, it is clear that the greedy algorithm is

nearly as accurate as the optimal algorithm. In the remain-

der of this section, we use results from the greedy sampling

algorithm.

4.3. Baselines: Vivaldi, Star Topology, and Median

To establish a comparative baseline for the accuracy of

Treeple, we evaluated three “basic” schemes on the same

dataset used to evaluate the performance of Treeple.

Vivaldi [7] is a popular but insecure network coordi-

nate system that is implemented in the Vuze file-sharing

network [32] and used as the basis for computing coor-

dinates in the various “secure” network coordinate sys-

tems [31, 35, 14]. We evaluate Vivaldi’s performance on our

dataset via simulation. Figure 5 shows the median relative

error of all the nodes in our Vivaldi simulation over time.

To obtain a non-sparse matrix of RTTs, we only used the

250 trusted nodes as source and destination, thus obtained a

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0 10 20 30 40 50 60

R
e
la

ti
v
e
 E

rr
o
r

Time (ticks)

Figure 5. The Vivaldi simulation of 100 runs for our

250x250 dataset with error bars representing the standard

deviation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

C
D

F

Relative Error

1-node
5-node

15-node
20-node

Figure 6. Trivial secure schemes: CDF of relative error

for the “star topology” scheme

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 2

C
D

F

Relative Error

Figure 7. Trivial secure schemes: CDF of relative error

for the “always predict median RTT” scheme.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14 16 18 20

M
e
d
ia

n
 R

e
la

ti
v
e
 E

rr
o
r

of Trees

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Relative Error

G-5
G-10
G-15
G-20

(a) (b)

Figure 8. (a) The median relative error when varying k for the greedy approach, (b) The CDF for the relative error of the

estimations for k = 5, 10, 15, 20 when using the greedy approach

matrix of 250 × 250 entries. The median relative error for

Vivaldi was 25% at the end of the experiment. The figure

shows the error bars representing the standard deviation and

the mean over 100 runs.

As further point of comparison, we evaluated two sim-

pler, provably secure schemes. In the first scheme, which

we refer to as the “star topology,” we assume a set of trusted

vantage points (as in Treeple) but assign coordinates to

peer A based solely on the (signed) distance rtt between

the vantage point and A. When peer A wants to estimate

its distance to peer B using vantage point C, it calculates

rtt(C,A) + rtt(C,B). The scheme extends to multiple

vantage points in the same way as Treeple. The results

are shown in Figure 6: for our data set, regardless of the

number of vantage points used, the star topology yields a

median relative error of 0.68. The second trivial scheme we

evaluate is the “median” scheme, in which the predicted dis-

tance for every pair of distinct nodes is simply the median

observed RTT for the data set. The scheme is trivially se-

cure, but as shown in Figure 7, also provides poor accuracy,

acheiving a median relative error of 0.5.

4.4. Accuracy

Figure 8(a) shows the median relative error for vantage

sets of varying size k, computed as in the previous section.

As k is increased, the median relative error decreases from

0.29 to 0.26, which is comparable to the median relative

error obtained when using the Vivaldi network coordinate

system. Figure 8(b) shows the CDF for the relative error of

the estimations for varying number of vantage points. The

different lines indicate the number of vantage points used.

Using fewer than 5 vantage points produces the same accu-

racy. A gain in accuracy is obtained when k > 6. There is a

significant difference in the 90th percentile between k = 5
and k = 10. Increasing k > 10 provides minimal gain

in accuracy (either median relative error or 90th percentile

relative error). Figure 8 shows that increasing the number

of vantage points used for estimations also increases the ac-

curacy of the system. From our experiments, having only

20 trusted nodes perform network measurements is enough

to accurately estimate the network distance between two

nodes.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20

R
e

la
ti
v
e

 E
rr

o
r

Day

Median
90th Percentile

Figure 9. Median and 90th percentile relative error using

12/01/09 coordinates for estimation measurements through

12/21/09, by day.

4.5. Stability

If Treeple’s accuracy depends on frequent updates to

a node’s position, then the vantage points may become a

central point of failure, since they would need to be con-

stantly available. Thus it is important to know how the ac-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
D

F

of comparisons

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

C
D

F

Size of coordinate

(a) (b)

Figure 10. (a) The CDF for the number of comparisons required to estimate the network latency between two nodes. (b) The

CDF for the total number of nodes in each assigned coordinate.

curacy of Treeple positions changes over time. We used the

best 20 vantage points identified by the greedy method on

12/01/2009 to estimate the network distances for end hosts

from 12/01/2009 to 12/21/2009 (three weeks). Figure 9

shows the median and 90th percentile relative errors when

using the 12/01/2009 positions to estimate the network dis-

tances for other days. That figure shows that Treeple’s ac-

curacy remains nearly constant over time. Thus, a side ef-

fect of using Treeple is that frequent network measurements

are not needed – the same positions can be used for long

time periods τ . The spike in relative error on the 20th day

is attributed to some possible faulty network measurements

from the iPlane dataset.

4.6. Overhead

In order to show that Treeple imposes acceptable com-

munication and computational costs, we measure these

quantities across all nodes in our data set using the “greedy

20” set of vantage points. Figure 11 shows the Treeple po-

sitions of nodes X and Y . In this example, A is the vantage

point, andB,C ′, andC ′′ are the routers on the Internet. The

“size” of each position is the total number of routers along

the 20 paths from each Ti to X or Y . Computing the dis-

tance under a given trusted node Ti is straightforward: we

start at the first node of each Treeple position. They should

be the same since it would be the trusted node. From that

first node, we repeatedly advance to the next nodes until the

two corresponding nodes in X and Y ’s positions are differ-

ent. In the example shown, node C ′ is different from node

C ′′. The estimated distance between nodes X and Y can

Figure 11. An example showing the positions of two end

hosts X and Y

then be calculated as (rttA,X−rttA,B)+(rttA,Y −rttA,B).
To compute the distance in this case, we had to compare

three pairs of nodes.

Figure 10(a) shows the CDF for the number of com-

parisons required to compute a network latency estimate

among all eligible pairs. The median number of com-

parisons is 73, with 20 coordinates, this means that each

computation requires 3.65 comparisons on average. Fig-

ure 10(b) shows the CDF for the total number of nodes for

the 20 coordinates of each end-host. The median total coor-

dinate size for each end-host is 260. Each coordinate then

contains 260/20 = 13 hops. Each hop consists of an IP

address (32 bits) and a RTT in ms (12 bits). Each hop size

is then 44 bits. Each node’s total coordinate size is then

44 × 260 = 11, 440 bits or roughly 1.4 KB.

We note that there is a substantial opportunity for reduc-

tion of coordinate size using compression. In particular, it is

not necessary to label the individual hops in a coordinate’s

path with globally unique names: as long as it is possible

to determine the position along the path at which two coor-

dinates diverge, the distance can be computed. By examin-

ing the distribution on node degrees in the trees within our

trusted vantage points, we found that on average each next

hop identifier can be encoded with only 2 bits. Similarly,

it is not necessary to encode the full RTT between the van-

tage point and each hop; using difference encoding on the

RTTs, we found that on average each hop’s RTT can be en-

coded with 6 bits. These techniques can reduce the size of

a coordinate to 260 bytes.

Although this reduced coordinate size is still substan-

tially larger than that of Vivaldi, Treeple requires only one

single interaction to compute a peer’s coordinate, which can

then be used for weeks. On the other hand, Vivaldi re-

quires the constant exchange of coordinates. Thus, over any

reasonable period of time, Treeple’s bandwidth overhead is

smaller than that of Vivaldi.

It can be argued that the cost of the vantage points to

perform traceroutes to other nodes on the Internet is very

high. However, the vantage points only need to performed

this measurement once every few weeks, as we showed in

Section 4.5. We also note that iPlane is performing these

measurements on a daily basis on the PlanetLab nodes.

4.7 Summary

On the large, real-world iPlane dataset, Treeple performs

essentially as well as the Vivaldi network coordinate sys-

tem. The median relative error when using 20 trusted nodes

(note that GNP, a centralized network coordinate system,

uses 20 trusted landmarks) is 0.26 for our system and 0.25
for Vivaldi. Thus, our system’s latency estimation performs

roughly as well as that of previous network coordinate sys-

tem, while being the first system to provide provable se-

curity, meeting our goal of simultaneously providing secu-

rity and accuracy. As expected, using more vantage points

improves accuracy, at the cost of relying on more trusted

nodes. The communication and processing overheads for

Treeple are also relatively small. Finally, Treeple positions

can be used to accurately predict network distances over

long periods of time, including the full 21-day period of

data used in our evaluation.

5. Other Related Work

We note that while there have been other systems pub-

lished [9, 34, 4, 28] that do not use network coordinates

and find close nodes, none of these systems can estimate

the distance between arbitrary nodes. Several other projects

have produced services that allow one peer to estimate its

latency to another. IDMaps [9] was one of the first sys-

tems to estimate the network latency between two hosts. In

IDMaps, hosts perform measurements to the central nodes

called tracers, and the hosts can then approximate their la-

tency to other hosts without having to contact those hosts

directly. IDMaps cannot be used by a third party to predict

the latency between pairs of hosts.

Sequoia [27] approximately represents Internet latencies

and bandwidth as a tree metric. The authors showed that,

for a small data set, using this metric allows accurate pre-

diction of latency as well as bandwidth, with latency pre-

diction comparable to Vivaldi. However, Sequioa relies on

a complete view of the reconstructed tree metric; every node

must know the complete tree, and in order to be assigned a

position in the tree a node must participate in the protocol.

iPlane [21] and iPlane Nano [22] attempt to map the

whole Internet to produce an atlas of link-to-link latency,

bandwidth, and loss rate. In iPlane, a central database server

uses the atlas to respond to path queries from Peers. In

iPlane Nano, the atlas is compressed to about 7MB and dis-

tributed to end hosts; end hosts then download about 1MB

of deltas produced each day. Hosts use this atlas to compute

predicted latencies using shortest-path algorithms. Thus the

computational and bandwidth overhead associated with us-

ing iPlane Nano are quite high.

We note that all of these systems essentially construct a

“global map” of the peer topology by relying on the peers to

report pairwise latency and traceroute measurements. None

of these systems considers security in any way; essentially

the measurements taken by all peers when constructing the

maps are trusted. In contrast, Treeple takes security as a

starting point and produces “local” positions for each peer,

while trusting only a small set of end-hosts.

6. Discussion & Conclusion

Traceroute Complications

It is well-known that several issues such as multiple inter-

faces, load balancers, multi-protocol label switching, and

non-responding hosts can interfere with the accuracy of

paths returned by traceroute; in our evaluation, we did not

use any special techniques to deal with these issues. We

note that none of these issues presents a security challenge

for Treeple, but that resolving them could well improve the

accuracy of Treeple: for example, consistently resolving

aliases would place the common ancestor later in a path and

thus decrease the estimated distance between two nodes.

Thus the performance evaluation in Section 4 can be seen as

conservative in this sense. We naturally expect such mea-

sures to improve the accuracy of Treeple.

Vantage Point Migration

Although we treat vantage points as fixed in our theoreti-

cal treatment of Treeple, we point out that in practice, the

set of vantage points {T1, . . . , Tk} is amenable to standard

mechanisms used to manage migration of trusted servers

for services such as DNS, DHTs, and Tor: it is straightfor-

ward to implement the Distance function so that it is robust

to additional or missing vantage points – identify vantage

points by verification key, and compute distances using only

the positions computed by vantage points in common – and

executables can eventually phase out support for discarded

vantage points when sufficiently old versions are not sup-

ported, while peers running older executables will continue

to function with slightly reduced accuracy.

Router Compromise

As we have discussed in section 2, under the current Inter-

net architecture compromise of even a single BGP router is

sufficient to render meaningless the measurements or es-

timates of any latency estimation scheme. Thus: on the

current Internet, network coordinate systems (and schemes

based on them [1, 12, 16, 20, 4, 2, 6]) are insecure against

compromised routers. However, since router compromises

are possible in practice, it would be desirable to consider

whether, in some future network that secures path discov-

ery and does not use policy-based routing, it is possible to

reason about the security Treeple (or any other latency esti-

mation scheme) can offer against router compromise.

To be concrete, we imagine a network (not the current

Internet) in which a corrupted router can only intercept or

delay traffic between a small fraction of the pairs of peers.

In this case, it might be possible to use the trusted vantage

points in Treeple to build a simple reputation system for

router edges: if a particular edge exhibits variable behavior,

as measured by a vantage point, then paths containing that

edge could be marked as untrustworthy. As long as some

paths remain, the influence of these adversarial edges would

be limited. Similarly, individual nodes can maintain a “lo-

cal” reputation which calculates whether a given path con-

sistently leads to poor performance and if so, drop the path

from their coordinates (replacing it with ⊥). Of course, the

exact nature of the security guarantees these mechanisms

can provide would clearly depend on the nature of the rout-

ing protocol in this hypothesized future network architec-

ture.

Conclusion

We propose Treeple, a provably secure network distance es-

timation service, where the estimated network distance dif-

fers from the real network distance by 26%. The accuracy

of the system is comparable to using a network coordinate

system, where the median relative error was 25%. In addi-

tion, Treeple is provably secure, whereas all previously pro-

posed schemes are vulnerable to attacks within the Treeple

threat model. Moreover, because Treeple positions are ex-

tremely stable, they can be maintained with very low over-

head compared to traditional network coordinate schemes.

Acknowledgments

We thank our Shepherd, Suman Banerjee, for his input on

improvements to this paper. We also thank Yongdae Kim,

Zhi-Li Zhang, Roger Dingledine, and Brighten Godfrey for

helpful comments and discussions about Treeple. This work

was supported by the National Science Foundation under

grant CNS-0716025.

References

[1] I. Abraham and D. Malkhi. Compact routing on euclidian

metrics. In PODC ’04: Proceedings of the twenty-third an-

nual ACM symposium on Principles of distributed comput-

ing, pages 141–149, New York, NY, USA, 2004. ACM.
[2] R. Bazzi and G. Konjevod. On the Establishment of Distinct

Identities in Overlay Networks. In ACM PODC, 2005.
[3] E. Chan-Tin, D. Feldman, Y. Kim, and N. Hopper. The Frog-

Boiling Attack: Limitations of Anomaly Detection for Se-

cure Network Coordinates. SecureComm, 2009.
[4] D. Choffnes and F. Bustamante. Taming the Torrent: A prac-

tical approach to reducing cross-ISP traffic in P2P systems.

ACM Special Interest Group on Data Communication (SIG-

COMM), 2008.
[5] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practi-

cal Internet Coordinates for Distance Estimation. Proceed-

ings of the IEEE International Conference on Distributed

Computing Systems (ICDCS), 2004.
[6] J. Cowling, D. Ports, B. Liskov, R. A. Popa, and A. Gaik-

wad. Census: Location-Aware Membership Management

for Large-Scale Distributed Systems. In the proceedings of

USENIX Annual Technical Conference, 2009.
[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A

Decentralized Network Coordinate System. In Proceedings

of ACM SIGCOMM, 2004.
[8] J. R. Douceur. The sybil attack. In Proc. of the International

Workshop on Peer-to-Peer Systems (IPTPS), 2002.
[9] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and

L. Zhang. IDMaps: A Global Internet Host Distance Es-

timation Service. IEEE/ACM Trans. Netw., 9(5):525–540,

2001.
[10] GNP Simulator. http://www.cs.rice.edu/

˜gw4314/ncs-configurable.tar.gz.
[11] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford. How

secure are secure interdomain routing protocols? In SIG-

COMM’10: Proceedings of the ACM SIGCOMM 2010 Con-

ference on Data Communication. ACM, 2010. to appear.
[12] R. Gummadi, R. Govindan, N. Kothari, B. Karp, Y. J. Kim,

, and S. Shenker. Reduced state routing in the internet. Hot-

Nets, 2004.
[13] M. Kaafar, L. Mathy, T. Turletti, and W. Dabbous. Vir-

tual Networks under Attack: Disrupting Internet Coordinate

Systems. ACM/e-NEXT International Conference on Future

Networking Technologies (CoNext), 2006.

[14] M. A. Kaafar, L. Mathy, C. Barakat, K. Salamatian,

T. Turletti, and W. Dabbous. Securing Internet Coordi-

nate Embedding Systems. Proceedings of ACM SIGCOMM,

2007.

[15] M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous. Real

attacks on virtual networks: Vivaldi out of tune. Proceedings

of the SIGCOMM workshop on Large-scale Attack Defense,

2006.

[16] J. Ledlie, M. Mitzenmacher, and M. Seltzer. Wired geomet-

ric routing. International Workshop on Peer-to-Peer Systems

(IPTPS), 2007.

[17] J. Ledlie, P. Pietzuch, and M. Seltzer. Stable and accurate

network coordinates. Proceedings of the IEEE International

Conference on Distributed Computing Systems (ICDCS),

2006.

[18] J. Ledlie, P. Pietzuch, and M. Seltzer. Network coordinates

in the wild. Proceedings of the USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), 2007.

[19] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee.

Triangle inequality variations in the internet. In IMC ’09:

Proceedings of the 9th ACM SIGCOMM conference on In-

ternet measurement conference, pages 177–183, New York,

NY, USA, 2009. ACM.

[20] C. Lumezanu, D. Levin, and N. Spring. Peer wise discovery

and negotiation of faster path. In Proceedings of HotNets-VI,

2007.

[21] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. An-

derson, A. Krishnamurthy, and A. Venkataramani. iPlane:

An Information Plane for Distributed Services. In Proceed-

ings of the USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI), 2006.

[22] H. V. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krish-

namurthy, and A. Venkataramani. iplane nano: path predic-

tion for peer-to-peer applications. In NSDI’09: Proceedings

of the 6th USENIX symposium on Networked systems design

and implementation, pages 137–152, Berkeley, CA, USA,

2009. USENIX Association.

[23] T. S. E. Ng and H. Zhang. Predicting Internet Network Dis-

tance with Coordinates-Based Approaches. Proceedings of

IEEE INFOCOM, 2002.

[24] T. S. E. Ng and H. Zhang. A network positioning system for

the internet. Proceedings of the USENIX annual technical

conference, 2004.

[25] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.

Lighthouses for Scalable Distributed Location. Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[26] PlanetLab. http://planet-lab.org.

[27] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan,

A. Gupta, and A. Akella. On the treeness of internet latency

and bandwidth. In SIGMETRICS ’09: Proceedings of the

eleventh international joint conference on Measurement and

modeling of computer systems, pages 61–72, New York, NY,

USA, 2009. ACM.

[28] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.

Topologically-Aware Overlay Construction and Server Se-

lection. In Proceedings of Infocom, 2002.

[29] D. Saucez, B. Donnet, and O. Bonaventure. A Reputation-

Based Approach for Securing Vivaldi Embedding System.

In EUNICEOpen European Summer School and IFIP TC6.6

Workshop on Dependable and Adaptable Networks and Ser-

vice, 2007.

[30] Y. Shavitt and T. Tankel. Big-Bang Simulation for embed-

ding network distances in Euclidean space. IEEE INFO-

COM, 2003.

[31] M. Sherr, M. Blaze, and B. T. Loo. Veracity: Practical Se-

cure Network Coordinates via Vote-based Agreements. In

USENIX Annual Technical Conference, 2009.

[32] Vuze. http://azureus.sourceforge.net.

[33] G. Wang and T. S. E. Ng. Distributed Algorithms for Stable

and Secure Network Coordinates. ACM/USENIX Internet

Measurement Conference (IMC), 2008.

[34] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A

Lightweight Network Location Service without Virtual Co-

ordinates. ACM Special Interest Group on Data Communi-

cation (SIGCOMM), 2005.

[35] D. Zage and C. Nita-Rotaru. On the accuracy of decentral-

ized virtual coordinate systems in adversarial networks. In

Proceedings of the 14th ACM conference on Computer and

communications security (CCS), 2007.

[36] H. Zheng, E. K. Lua, M. Pias, and T. Griffin. Internet Rout-

ing Policies and Round-trip Times. Passive and Active Mea-

surement Workshop, 2005.

