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Abstract—Modern smartphones contain motion sensors, such
as accelerometers and gyroscopes. These sensors have many
useful applications; however, they can also be used to uniquely
identify a phone by measuring anomalies in the signals, which
are a result of manufacturing imperfections. Such measurements
can be conducted surreptitiously by web page publishers or ad-
vertisers and can thus be used to track users across applications,
websites, and visits.

We analyze how well sensor fingerprinting works under real-
world constraints. We first develop a highly accurate finger-
printing mechanism that combines multiple motion sensors and
makes use of inaudible audio stimulation to improve detection.
We evaluate this mechanism using measurements from a large
collection of smartphones, in both lab and public conditions. We
then analyze techniques to mitigate sensor fingerprinting either
by calibrating the sensors to eliminate the signal anomalies, or
by adding noise that obfuscates the anomalies. We evaluate the
impact of calibration and obfuscation techniques on the classifier
accuracy; we also look at how such mitigation techniques impact
the utility of the motion sensors.

I. INTRODUCTION

Smartphones are equipped with motion sensors, such as
accelerometers and gyroscopes, that are available to applica-
tions and websites, and enable a variety of novel uses. These
same sensors, however, can threaten user privacy by enabling
sensor fingerprinting. Manufacturing imperfections result in
each sensor having unique characteristics in their produced
signal. These characteristics can be captured in the form of a
fingerprint and be used to track users across repeated visits.
The sensor fingerprint can be used to supplement other privacy-
invasive tracking technologies, such as cookies, or canvas
fingerprinting [1]. Since the fingerprint relies on the physical
characteristics of a particular device, it is immune to defenses
such as clearing cookies and private browsing modes.

We carry out a detailed investigation into the feasibility
of fingerprinting motion sensors in smartphones. Practical
fingerprinting faces several challenges. During a typical web
browsing session, a smartphone is either held in a user’s
hand, resulting in noisy motion inputs, or is resting on a flat
surface, minimizing the amount of sensor input. Additionally,

web APIs for accessing motion sensor data have significantly
lower resolution than is available to the operating systems and
applications. We show that, using machine learning techniques,
it is possible to combine a large number of features from
both the accelerometer and gyroscope sensor streams and
produce highly accurate classification despite these challenges.
In some cases, we can improve the classifier accuracy by
using an inaudible sound, played through the speakers, to
stimulate the motion sensors. We evaluate our techniques in
a variety of lab settings; additionally, we collected data from
volunteer participants over the web, capturing a wide variety of
smartphone models and operating systems. In our experiments,
a web browsing session lasting in the orders of 30–40 seconds
is sufficient to generate a fingerprint that can be used to
recognize the phone in the future with only 5–8 seconds worth
of web browsing session.

We next investigate two potential countermeasures to sen-
sor fingerprinting. First, we consider the use of calibration
to eliminate some of the errors that result from manufactur-
ing imperfections. Promisingly, we find that calibrating the
accelerometer is easy and has a significant impact on clas-
sification accuracy. Gyroscope calibration, however, is more
challenging without specialized equipment, and attempts to
calibrate the gyroscope by hand do not result in an effective
countermeasure.

An alternative countermeasure is obfuscation, which intro-
duces additional noise to the sensor readings in the hopes of
hiding the natural errors. Obfuscation has the advantage of
not requiring a calibration step; we find that by adding noise
that is similar in magnitude to the natural errors that result
from manufacturing imperfection, we can reduce the accuracy
of fingerprinting more effectively than by calibration. We also
investigate the possibility of using higher magnitude noise, as
well as adding temporal disturbances to obfuscate frequency
domain features. At high levels of noise, fingerprinting accu-
racy is greatly reduced, though such noise is likely to impair
the utility of motion sensors.

Roadmap. The remainder of this paper is organized as
follows. We present background information and related work
in Section II. In Section III, we briefly discuss why ac-
celerometers and gyroscopes can be used to generate unique
fingerprints. In Section IV, we describe the different temporal
and spectral features considered in our experiments, along
with the classification algorithms and metrics used in our
evaluations. We present our fingerprinting results in Section
V. Section VI describes our countermeasure techniques to
sensor fingerprinting. Section VII discusses some limitations
of our approach. Finally, we conclude in Section VIII.
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II. FINGERPRINTING BACKGROUND

Human fingerprints, due to their unique nature, are a very
popular tool used to identify people in forensic and biometric
applications [4], [5]. Researchers have long sought to find
an equivalent of fingerprints in computer systems by finding
characteristics that can help identify an individual device.
Such fingerprints exploit variations in both the hardware and
software of devices to aid in identification.

As early as 1960, the US government used unique transmis-
sion characteristics to track mobile transmitters [6]. Later, with
the introduction of cellular network researchers were able to
successfully distinguish transmitters by analyzing the spectral
characteristics of the transmitted radio signal [7]. Researchers
have suggested using radio-frequency fingerprints to enhance
wireless authentication [8], [9], as well as localization [10].
Others have leveraged the minute manufacturing imperfections
in network interface cards (NICs) by analyzing the radio-
frequency of the emitted signals [11], [12]. Computer clocks
have also been used for fingerprinting: Moon et al. showed
that network devices tend to have a unique and constant clock
skews [13]; Kohno et al. exploited this to distinguish network
devices through TCP and ICMP timestamps [14].

Software can also serve as a distinguishing feature, as
different devices have a different installed software base.
Researchers have long been exploiting the difference in the
protocol stack installed on IEEE 802.11 compliant devices.
Desmond et al. [15] have looked at distinguishing unique
devices over Wireless Local Area Networks (WLANs) simply
by performing timing analysis on the 802.11 probe request
packets. Others have investigated subtle differences in the
firmware and device drivers running on IEEE 802.11 compliant
devices [16]. 802.11 MAC headers have also been used to
uniquely track devices [17]. Moreover, there are well-known
open source toolkits like Nmap [18] and Xprobe [19] that can
remotely fingerprint an operating system by analyzing unique
responses from the TCP/IP networking stack.

a) Browser Fingerprinting: A common application of
fingerprinting is to track a user across multiple visits to a web-
site, or a collection of sites. Traditionally, this was done with
the aid of cookies explicitly stored by the browser. However,
privacy concerns have prompted web browsers to implement
features that clear the cookie store, as well as private browsing
modes that do not store cookies long-term. This has prompted
site operators to develop other means of uniquely identifying
and tracking users. Eckersley’s Panopticon project showed that
many browsers can be uniquely identified by enumerating

installed fonts and other browser characteristics, easily ac-
cessible via JavaScript [20]. A more advanced technique uses
HTML5 canvas elements to fingerprint the fonts and rendering
engines used by the browser [1]. Others have proposed the
use of performance benchmarks for differentiating between
JavaScript engines [21]. Lastly, browsing history can to used
to profile and track online users [22]. Numerous studies have
found evidence of these and other techniques being used in
the wild [23]–[25]. A number of countermeasures to these
techniques exist; typically they disable or restrict the ability
of a website to probe the characteristics of a webbrowser.
Nikiforakis et al. propose using random noise to make fin-
gerprints non-deterministic which essentially breaks linkability
across multiple visits [26]. We expect that smartphones are less
susceptible to browser fingerprinting due to a more integrated
hardware and software base resulting in less variability, though
we are unaware of an exploration of smartphone browser
fingerprinting.

Alternative to cookies people have also looked at leverag-
ing device IDs such as Unique Device Identifier (UDID) for
Apple products and International Mobile Station Equipment
Identity (IMEI) for general mobile phones, to track devices
across multiple visits. However, these device IDs are not
always accessible (Apple ceased the use of UDID since iOS
6 [27]) and even if it is accessible, in most cases it requires
explicit permission to access such device ID (on Android
accessing IMEI requires a special permission [28]).

b) Sensor Fingerprinting: Smartphones do, however,
possess an array of sensors that can be used to fingerprint
them. Two studies have looked at fingerprinting smartphone
microphones and speakers [29], [30]. These techniques, how-
ever, require access to the microphone, which is typically
controlled with a separate permission due to the obvious
privacy concerns with the ability to capture audio. Bojinov
et al. [3] consider using accelerometers, which are not con-
sidered sensitive and do not require a separate permission.
Their techniques, however, rely on having the user perform
a calibration of the accelerometer (see Section VI-A), the
parameters of which are used to distinguish phones. Dey
et al. [2] apply machine learning techniques to create an
accelerometer fingerprint; most of their analysis focuses on
using the vibration motor to stimulate the accelerometer, but
they perform an experiment with 25 stationary phones and on
average they achieve approximately 88% precision and recall.

In contrast, our work studies phones that are in a natural
web-browsing setting, either in a user’s hand or resting on
a flat surface. Additionally, we consider the simultaneous

TABLE I: Comparison with other works
Work Sensorsa Settings Stimulation Features Explored Features Used # of Devices Results (≈)

[2] A Lab Vibration 80 36 107b 99% Accuracy
[2] A Lab None 80 36 25 88% F-score
[3] A Lab Flip phone 2 2 33 100% Accuracy
[3] A Public Flip phone 2 2 3583c 15.1% Accuracy

Our Work A,G Lab None 100 70 30 99% F-score
Our Work A,G Public None 100 70 63 95% F-score
Our Work A,G Lab+Public None 100 70 93 96% F-score
Our Work A,G Lab Phone in hand 100 70 30 93% F-score
Our Work A,G Lab Phone in hand+Audio 100 70 30 98% F-score

ahere ‘A’ means accelerometer and ‘G’ refers to gyroscope
b80 external chips, 25 phones and 2 tablets
cconsidering only devices with two submissions
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use of both accelerometer and gyroscope to produce a more
accurate fingerprint. Inspired by prior work that uses the
gyroscope to recover audio signals [31], we also stimulate
the gyroscope with an inaudible tone. Finally, we propose
and evaluate several countermeasures to reduce fingerprint-
ing accuracy without entirely blocking access to the motion
sensors. Table I highlights some comparisons with related
works. Recently, Song et al. [32] have proposed reducing
accelerometer accuracy as a means of defense against tap
inference on smartphones. Their approach involves hiding
small changes in accelerometer reading by reporting a constant
accelerometer value of 1g. We propose one similar technique
where we calibrate motion sensors so that they report similar
constant readings. However, as we will later on show that
such an approach is not sufficient to hide uniqueness among
gyroscope sensors. We, therefore, explore several obfuscation
techniques in this paper.

III. A CLOSER LOOK AT MOTION SENSORS

In this section we briefly take a closer look at motion
sensors like accelerometer and gyroscope that are embedded
in today’s smartphones. This will provide an understanding
of how they can be used to uniquely fingerprint smartphones.
Accelerometer and gyroscope sensors in modern smartphones
are based on Micro Electro Mechanical Systems (MEMS).
STMicroelectronics [33] and InvenSense [34] are among the
top vendors supplying MEMS-based accelerometer and gy-
roscope sensor to different smartphone manufacturers [35].
Traditionally, Apple [36], [37]1 and Samsung [39], [40] favor
using STMicroelectronics motion sensors, while Google [41],
[42] tends to use InvenSense sensors.

A. Accelerometer

Accelerometer is a device that measures proper acceler-
ation. Proper acceleration is different from coordinate accel-
eration (linear acceleration) as it measures the g-force. For
example, an accelerometer at rest on a surface will measure
an acceleration of g = 9.81ms−2 straight upwards, while
for a free falling object it will measure an acceleration of
zero. MEMS-based accelerometers are based on differential
capacitors [43]. Figure 1 shows the internal architecture of a
MEMS-based accelerometer. As we can see there are several
pairs of fixed electrodes and a movable seismic mass. Under
zero force the distances d1 and d2 are equal and as a result
the two capacitors are equal, but a change in force will cause
the movable seismic mass to shift closer to one of the fixed
electrodes (i.e., d1 6= d2) causing a change in the generated
capacitance. This difference in capacitance is detected and
amplified to produce a voltage proportional to the acceleration.
The slightest gap difference between the structural electrodes,
introduced during the manufacturing process, can cause a
change in the generated capacitance. Also the flexibility of the
seismic mass can be slightly different from one chip to another.
These form of minute imprecisions in the electro-mechanical
structure induce subtle imperfections in accelerometer chips.

B. Gyroscope

Gyroscope measures the rate of rotation (in rads−1) along
the device’s three axes. MEMS-based gyroscopes use the

1iPhone 6 has been reported to use sensors made by InvenSense [38]
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Fig. 1: Internal architecture of a MEMS accelerometer. Differential
capacitance is proportional to the applied acceleration.

Coriolis effect to measure the angular rate. Whenever an
angular velocity of ω̂ is exerted on a moving mass of weight
m, and velocity v̂, the object experiences a Coriolis force in a
direction perpendicular to the rotation axis and to the velocity
of the moving object (as shown in figure 2). The Coriolis
force is calculated by the following equation F̂ = −2mω̂× v̂.
Generally, the angular rate (ω̂) is measured by sensing the
magnitude of the Coriolis force exerted on a vibrating proof-
mass within the gyro [44]–[46]. The Coriolis force is sensed by
a capacitive sensing structure where a change in the vibration
of the proof-mass causes a change in capacitance which is then
converted into a voltage signal by the internal circuitry. Again
the slightest imperfection in the electro-mechanical structure
will introduce idiosyncrasies across chips.
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Fig. 2: MEMS-based gyros use Coriolis force to compute angular
velocity. The Coriolis force induces change in capacitance which is
proportional to the angular velocity.

IV. FEATURES AND CLASSIFICATION ALGORITHMS

Here, we describe the data preprocessing step and the
features used in generating the sensor fingerprint. We also
discuss the classification algorithms and metrics used in our
evaluation.

A. Data Preprocessing

Data from motion sensors can be thought of as a stream
of timestamped real values. For both accelerometer and gy-
roscope we obtain values along three axes. So, for a given
timestamp, t, we have two vectors of the following form:
~a(t) = (ax, ay, az) and ~ω(t) = (ωx, ωy, ωz). The accelerom-
eter values include gravity, i.e., when the device is stationary
lying flat on top of a surface we get a value of 9.81ms−2 along
the z-axis. We convert the acceleration vector into a scalar by
taking its magnitude: |~a(t)| =

√
a2x + a2y + a2z . This technique
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TABLE II: Explored temporal and spectral features
# Domain Feature Description
1

Time

Mean The arithmetic mean of the signal strength at different timestamps
2 Standard Deviation Standard deviation of the signal strength
3 Average Deviation Average deviation from mean
4 Skewness Measure of asymmetry about mean
5 Kurtosis Measure of the flatness or spikiness of a distribution
6 RMS Square root of the arithmetic mean of the squares of the signal strength at various timestamps
7 Max Maximum signal strength
8 Min Minimum signal strength
9 ZCR The rate at which the signal changes sign from positive to negative or back
10 Non-Negative count Number of non-negative values
11

Frequency

Spectral Centroid Represents the center of mass of a spectral power distribution
12 Spectral Spread Defines the dispersion of the spectrum around its centroid
13 Spectral Skewness Represents the coefficient of skewness of a spectrum
14 Spectral Kurtosis Measure of the flatness or spikiness of a distribution relative to a normal distribution
15 Spectral Entropy Captures the peaks of a spectrum and their locations
16 Spectral Flatness Measures how energy is spread across the spectrum
17 Spectral Brightness Amount of spectral energy corresponding to frequencies higher than a given cut-off threshold
18 Spectral Rolloff Defines the frequency below which 85% of the distribution magnitude is concentrated
19 Spectral Roughness Average of all the dissonance between all possible pairs of peaks in a spectrum
20 Spectral Irregularity Measures the degree of variation of the successive peaks of a spectrum
21 Spectral RMS Square root of the arithmetic mean of the squares of the signal strength at various frequencies
22 Low-Energy-Rate The percentage of frames with RMS power less than the average RMS power for the whole signal
23 Spectral flux Measure of how quickly the power spectrum of a signal changes
24 Spectral Attack Time Average rise time to spectral peaks
25 Spectral Attack Slope Average slope to spectral peaks

discards some information, but has the advantage of making
the accelerometer data independent of device orientation; e.g.,
if the device is stationary the acceleration magnitude will
always be around 9.81ms−2, whereas the reading on each
individual axis will vary greatly (by +/- 1g) depending on how
the device is held. For the gyroscope we consider data from
each axis as a separate stream, since there is no corresponding
baseline rotational acceleration. In other words, if the device
is stationary the rotation rate across all three axes should be
close to 0 rads−1, irrespective of the orientation of the device.
Thus, our model considers four streams of sensor data in the
form of {|~a(t)|, ωx(t), ωy(t), ωz(t)}.

For all data streams, we also look at frequency domain
characteristics. But since the browser, running as one of many
applications inside the phone, makes API calls to collect sensor
data the OS might not necessarily respond in a synchro-
nized manner2. This results in non-equally spaced data points.
We, therefore, use cubic-spline interpolation [47] to construct
new data points such that {|~a(t)|, ωx(t), ωy(t), ωz(t)} become
equally-spaced.

B. Temporal and Spectral Features

To summarize the characteristics of a sensor data stream,
we explore a total of 25 features consisting of 10 temporal and
15 spectral features (listed in Table II). All of these features
have been well documented by researchers in the past. A
detailed description of each feature is available in our technical
report [48].

C. Classification Algorithms and Metrics

Classification Algorithms: Once we have features extracted
from the sensor data, we use supervised learning to identify

2Depending on the load and other applications running, OS might
prioritize such API calls differently.

the source sensor. Any supervised learning classifier has two
main phases: training phase and testing phase. During training,
features from all smartphones (i.e., labeled data) are used to
train the classifier. In the test phase, the classifier predicts
the most probable class for a given (unseen) feature vector.
We evaluate the performance of the following classifiers —
Support Vector Machine (SVM), Naive-Bayes classifier, Mul-
ticlass Decision Tree, k-Nearest Neighbor (k-NN), Quadratic
Discriminant Analysis classifier and Bagged Decision Trees
(Matlab’s Treebagger model) [49]. We found that in gen-
eral ensemble based approaches like Bagged Decision Trees
outperform the other classifiers. We report the maximum
achievable accuracies from these classifiers in the evaluation
Section V.

Evaluation metrics: For evaluation metric we use standard
multi-class classification metrics like—precision, recall, and F-
score [50]—in our evaluation. Assuming there are n classes,
we first compute the true positive (TP ) rate for each class,
i.e., the number of traces from the class that are classified
correctly. Similarly, we compute the false positive (FP ) and
false negative (FN ) as the number of wrongly accepted and
wrongly rejected traces, respectively, for each class i (1 ≤ i ≤
n). We then compute precision, recall, and the F-score for each
class using the following equations:

Precision, Pri = TPi/(TPi + FPi) (1)
Recall, Rei = TPi/(TPi + FNi) (2)
F-Score, Fi = (2× Pri ×Rei)/(Pri +Rei) (3)

The F-score is the harmonic mean of precision and recall; it
provides a good measure of overall classification performance,
since precision and recall represent a trade-off: a more con-
servative classifier that rejects more instances will have higher
precision but lower recall, and vice-versa. To obtain the overall
performance of the system we compute average values in the
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following way:

Avg. Precision, AvgPr =

∑n
i=1 Pri
n

(4)

Avg. Recall, AvgRe =

∑n
i=1Rei
n

(5)

Avg. F-Score, AvgF =
2×AvgPr ×AvgRe
AvgPr +AvgRe

(6)

V. FINGERPRINTING EVALUATION

In this section we first describe our experimental setup
(Section V-A). We then explore features to determine the
minimal subset of features required to obtain high classification
accuracy (Section V-B). Lastly, we evaluate our fingerprinting
approach under a controlled lab setting (Section V-C), an un-
controlled real-world setting (Section V-D) and a combination
of both settings (Section V-E).

A. Experimental Setup

Given that mobile accounts for a third of all global web
pages served [51], our experimental setup consists of develop-
ing our own web page to collect sensor data3. We use a simple
Javascript (code snippet available in Appendix A) to access
accelerometer and gyroscope data. However, since we collect
data through the browser the maximum obtainable sampling
frequency is lower than the available hardware sampling fre-
quency (restricted by the underlying OS). Table III summarizes
the sampling frequencies obtained from the top 5 mobile
browsers [52]4. We use a Samsung Galaxy S3 and iPhone
5 to test the sampling frequency of the different browsers.
Table III also highlights the motion sensors that are accessible
from the different browsers. We see that Chrome provides the
best sampling frequency while the default Android browser
is the most restrictive browser in terms of not only sampling
frequency but also access to different motion sensors. However,
Chrome being the most popular mobile browser [53], we
collect data using the Chrome browser.

TABLE III: Sampling frequency from different browsers

OS Browser Sampling Accessible
Frequency (∼Hz) Sensorsa

Android 4.4

Chrome 100 A,G
Android 20 A
Opera 40 A,G

UC Browser 20 A,G
Standalone App [54] 200 A,G

iOS 8.1.3 Safari 40 A,G
Standalone App [55] 100 A,G

ahere ‘A’ means accelerometer and ‘G’ refers to gyroscope

We start off our data collection from 30 lab-smartphones.
Table IV lists the distribution of the different smartphones
from which we collect sensor data. Now, as gyroscopes react
to audio stimulation we collect data under three different
background audio settings: no audio, an inaudible 20 kHz
sine wave, or a popular song. In the latter two scenarios,
the corresponding audio file plays in the background of the
browser while data is being collected. Under each setting we
collect 10 samples where each sample is about 5 to 8 seconds

3http://datarepo.cs.illinois.edu/DataCollectionHowPlaced.html
4Computed the avg. time to obtain 100 samples. http://datarepo.cs.illinois.

edu/SamplingFreq.html

worth of data. Now, since our fingerprinting approach aims to
capture the inherent imperfections of motion sensors, we need
to keep the sensors stationary while collecting data. Therefore,
by default, we have the phone placed flat on a surface while
data is being collected, unless explicitly stated otherwise. We,
however, do test our approach for the scenario where the user
is holding the smartphone in his/her hand while sitting down.

For training and testing the classifiers we randomly split
the dataset in such a way that 50% of data from each device
goes to the training set while the remaining 50% goes to the
test set. To prevent any bias in the selection of the training
and testing set, we randomize the training and testing set 10
times and report the average F-score. We also compute the
95% confidence interval, but we found it to be less than 1%
in most cases and hence do not report them in such cases. For
analyzing and matching fingerprints we use a desktop machine
with an Intel i7-2600 3.4GHz processor with 12GiB RAM. We
found that the average time required to match a new fingerprint
was around 10–100 ms.

TABLE IV: Types of phones used
Maker Model Quantity

Apple iPhone 5 4
iPhone 5s 3

Samsung
Nexus S 14

Galaxy S3 4
Galaxy S4 5

Total 30

B. Feature Exploration and Selection

At first glance, it might seem that using all features to
identify the device is the optimal strategy. However, including
too many features can worsen performance in practice, due to
their varying accuracies and potentially-conflicting signatures.
We, therefore, explore all the features and determine the
subset of features that optimize our fingerprinting accuracy.
For temporal features, no transformation of the data stream
is required, but for spectral features we first convert the non-
equally spaced data stream into a fixed-spaced data stream
using cubic spline interpolation. We interpolate at a sampling
rate of 8kHz5. Then, we use the following signal analytic tools
and modules: MIRtoolbox [56] and Libxtract [57] to extract
spectral features. We next look at feature selection where we
explore different combinations of features to maximize our
fingerprinting accuracy. We use the FEAST toolbox [58] and
utilize the Joint Mutual Information criterion (JMI criterion
is known to provide the best tradeoff in terms of accuracy,
stability, and flexibility with small data samples [59]) for
ranking the features.

Figure 3 shows the results of our feature exploration for the
30 lab-smartphones. We see that when using only accelerome-
ter data the F-score seems to flatten after considering the top 10
features. For gyroscope data we see that using all 75 features
(25 per data stream) achieves the best result. And finally when
we combine both accelerometer and gyroscope features, the

5Although up-sampling the signal from ∼100 Hz to 8 kHz does not
increase the accuracy of the signal, it does make direct application of standard
signal processing tools more convenient.
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Fig. 3: Exploring the number optimal features for different sensors. a) For accelerometer using more than top 10 features leads to diminished
returns, b) For gyroscope all 75 features contribute to obtaining improved accuracy, c) For the combined sensor data using more than 70
features leads to diminished returns.

top 70 features (from a total of 100 features) seems to provide
the best fingerprinting accuracy. Among these top 70 features
we found that 21 of them came from accelerometer features
and the remaining 49 came from gyroscope features. In terms
of the distribution between temporal and spectral features, we
found that spectral features dominated with 44 of the top 70
features being spectral features. We use these subset of features
in all our later evaluations.

C. Results From Lab Setting

First, we look at fingerprinting smartphones under lab
setting to demonstrate the basic viability of the attack. For
this purpose we keep smartphones stationary on top of a
flat surface. Table V summarizes our results. We see that
we can almost correctly identify all 30 smartphones for all
three scenarios by combining the accelerometer and gyroscope
features. Even when devices are kept in the hand of the
user we can successfully identify devices with an F-score
of greater than 93%. While the benefit of the background
audio stimulation is not clear from the table, we will later on
show that audio stimulation do in fact enhance fingerprinting
accuracy in the presence of countermeasure techniques like
sensor calibration and data obfuscation (more in Section VI).
Overall these results indicate that it is indeed possible to
fingerprint smartphones through motion sensors.

TABLE V: Average F-score under lab setting
Device Stimulation Avg. F-score (%)
Placed Accelerometer Gyroscope Accelerometer+Gyroscope

On Desk
No-audio 96 95 99

Sine 98 99 100
Song 93 98 100

In Hand
No-audio 88 83 93

Sine 88 94 98
Song 84 89 95

D. Results From Public Setting

After gaining promising results from our relatively small-
scale lab setting, we set out to expand our data collection
process to real-world public setting. We invited people to
voluntarily participate in our study by visiting our web page6

and following a few simple steps to provide us with sensor

6Screenshots of the data collection page is available in Appendix B. We
obtained approval from our Institutional Research Board (IRB) to perform the
data collection.
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Fig. 4: Distribution of participant device model.

data. We recruited participants through email and online social
networks. We asked participants to provide data under two
settings: no-audio setting and the inaudible sine-wave setting
(we avoid the background song to make the experience less
bothersome for the user). Each setting collected sensor data
for about one minute, requiring a total of two minutes of
participation. On average, we had around 10 samples per
setting per device. Our data-gathering web page plants a cookie
in the form of a large random number (acting as a unique ID)
in the user’s browser, which makes it possible to correlate data
points coming from the same device. Over the course of two
weeks, we received data from a total of 76 devices. However,
some participants did not follow all the steps and as a result
we were able to use only 63 of the 76 submissions. Figure 4
shows the distribution of the different devices that participated
in our study.

Next, we apply our fingerprinting approach on the public
data set. Table VI shows our findings. Compared to the results
from our lab setting, we see a slight decrease in F-score but
even then we were able to obtain an F-score of 95%. Again,
the benefit of the audio stimulation is not evident from these
results, however, their benefits will become more visible in the
later sections when we discuss countermeasure techniques.

E. Results From Combined Setting

Finally, we combine our lab data with the publicly collected
data to give us a combined dataset containing 93 different
smartphones. We apply the same set of evaluations on this
combined dataset. Table VII highlights our findings. Again,
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TABLE VI: Average F-score under public setting where smartphones
were kept on top of a desk

Stimulation Avg. F-score (%)
Accelerometer Gyroscope Accelerometer+Gyroscope

No-audio 86 87 95
Sine 85 87 92

we see that combining features from both sensors provides
the best result. In this case we obtained an F-score of 96%.
All these results suggest that smartphones can be successfully
fingerprinted through motion sensors.

TABLE VII: Average F-score under both lab and public setting where
smartphones were kept on top of a desk

Stimulation Avg. F-score (%)
Accelerometer Gyroscope Accelerometer+Gyroscope

No-audio 85 89 96
Sine 89 89 95

F. Sensitivity Analysis

1) Varying the Number of Devices: We evaluate the ac-
curacy of our classifier while varying the number of devices.
We pick a subset of n devices in our dataset and perform
the training and testing steps for this subset. For each value
of n, we repeat the experiment 10 times, using a different
random subset of n devices each time. In this experiment we
only consider the use of both accelerometer and gyroscope
features, since those produce the best performance (as evident
from our previous results), and focus on the no-audio and sine
wave background scenarios. Figure 5 shows that the F-score
generally decreases with large number of devices, which is
expected as an increased number of labels makes classification
more difficult. But even then scaling from 10 devices to 93
devices the F-score decreases by only 4%. Extrapolating from
the graph, we expect classification to remain accurate even for
significantly larger datasets.

2) Varying Training Set Size: We also consider how varying
the training set size impacts the fingerprinting accuracy. For
this experiment we vary the ratio of training and testing set
size. For this experiment we only look at data from our lab
setting as some of the devices from our public setting did
not have exactly 10 samples. We also consider the setting
where there is no background audio stimulation and use the
combined features of accelerometer and gyroscope. Figure 6
shows our findings. While an increased training size improves
classification accuracy, even with mere two training samples
(of 5–8 seconds each) we can achieve an F-score of 98%, with
increased training set sizes producing an F-score of over 99%.

3) Varying Temperature: Here we analyze how temperature
impacts the fingerprint of smartphone sensors. For this purpose
we collect sensor data under different temperatures. We took
one set of readings outside our office building on September
03, 2015 (with temperatures in the range of 91◦F to 93◦F )
while we took another set of readings on October 9, 2015
(with temperatures in the range of 61◦F to 63◦F ). In both
cases we also took readings inside the office where temperature
was set to around 74◦F on the thermostat. As these set of
experiments were conducted at a later time compared to our
other experiments, we were only able to collect data from

 95

 96

 97

 98

 99

 100

 5  10  15  20  25  30
A

v
g

. 
F

-s
co

re
 (

%
)

Number of devices

Lab setting
No-audio
Sine

 86
 88
 90
 92
 94
 96
 98

 100

 5  10  15  20  25  30  35  40  45  50  55  60  65

A
v

g
. 

F
-s

co
re

 (
%

)

Number of devices

Public settingNo-audio
Sine

 86
 88
 90
 92
 94
 96
 98

 100

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95

A
v

g
. 

F
-s

co
re

 (
%

)

Number of devices

Combined settingNo-audio
Sine

Fig. 5: Average F-score for different numbers of smartphones. F-score
generally tends to decrease slightly as more devices are considered.
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Fig. 6: Average F-score for different ratio of training and testing data.
With only two training data we achieved an F-score of 98%.

17 smartphones (as described in Table VIII)7. Therefore, the
following results for this section are described in the context
of only the smartphones specified in Table VIII.

Table IX summarizes our findings. We refer to September
03, 2015 as a hot day and October 09, 2015 as a cold day.
From Table IX we see that temperatures do lower F-score
where warmer temperatures cause more discrepancies in the
generated fingerprints compared to colder temperatures (as
indicated by the red and blue blocks in the table).

7We only had access to these 17 smartphones at that time.
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TABLE VIII: Types of phones used for analyzing temperature effect
Maker Model Quantity

Apple iPhone 5 4
iPhone 5s 3

Samsung
Nexus S 3

Galaxy S3 2
Galaxy S4 5

Total 17

TABLE IX: Impact of temperature on sensor fingerprinting
Test (Avg. F-score in %)No-audio Inside (hot) Outside (hot) Inside (cold) Outside (cold)

Inside (hot) 100a 89 90 92
Outside (hot) 90 100a 81 75
Inside (cold) 89 77 100a 97Train

Outside (cold) 86 82 99 100a

Test (Avg. F-score in %)Sine wave Inside (hot) Outside (hot) Inside (cold) Outside (cold)
Inside (hot) 100a 80 92 91

Outside (hot) 83 99a 82 72
Inside (cold) 88 72 100a 90Train

Outside(cold) 85 69 92 100a

a50% of the data set was used for training and remaining 50% for testing

4) Temporal Stability: We now take a closer look at how
the fingerprints evolve over time. For this purpose we reuse
data collected from the previous section (Section V-F3). As
we collected data inside our lab in two different dates (one on
September 03, 2015 and the other on October 09, 2015) we
can analyze how sensor fingerprints change over time and how
they impact our F-score. Table X summarizes our findings. We
see that over time fingerprints do change to some extent, but
even then we can achieve an F-score of approximately 90%.

TABLE X: Fingerprinting sensors at different dates
Test (Avg. F-score in %)No-audio Sept. 03, 2015 Oct. 09,2015

Sept. 03, 2015 100a 90Train Oct. 09,2015 89 100a

Test (Avg. F-score in %)Sine wave Sept. 03, 2015 Oct. 09,2015
Sept. 03, 2015 100a 92Train Oct. 09,2015 88 100a

a50% of the data set was used for training and remaining 50% for testing

VI. COUNTERMEASURES

So far we have focused on showing how easy it is to finger-
print smartphones through motion sensors. We now shift our
focus on providing a systematic approach to defending against
such fingerprinting techniques. We propose two approaches:
sensor calibration and data obfuscation.

A. Calibration

Bojinov et al. [3] observe that their phones have calibration
errors, and use these calibration differences as a mechanism to
distinguish between them. In particular, they consider an affine
error model: aM = g · a+ o, where a is the true acceleration
along an axis and aM is the measured value of the sensor. The
two error parameters are the offset o (bias away from 0) and the
gain g which magnifies or diminishes the acceleration value.
Our classification uses many features, but we find that the

mean signal value is the most discriminating feature for each
of the sensor streams, which is closely related to the offset.
We therefore explore whether calibrating the sensors will make
them more difficult to fingerprint. We note that calibration has
a side effect of improving the accuracy of sensor readings and
is therefore of independent value. We perform the calibration
only on the sensors in our 30 lab smartphones because we
felt that calibration is too time consuming for the volunteers8.
Moreover, we could better control the quality of the calibration
process when carried out in the lab.

First, let us briefly describe the sensor coordinate system
where the sensor framework uses a standard 3-axis coordinate
system to express data values. For most sensors, the coordinate
system is defined relative to the device’s screen when the
device is held in its default orientation (shown in figure 7).
When the device is held in its default orientation, the positive
x-axis is horizontal and points to the right, the positive y-axis
is vertical and points up, and the positive z-axis points toward
the outside of the screen face9. We compute offset and gain
error in all three axes.

Calibrating the Accelerometer: Considering both offset and
gain error, the measured output of the accelerometer (aM =
[aMx , a

M
y , a

M
z ]) can be expressed as: aMx
aMy
aMz

 =

[
Ox
Oy
Oz

]
+

[
Sx 0 0
0 Sy 0
0 0 Sz

][
ax
ay
az

]
(7)

where S = [Sx, Sy, Sz] and O = [Ox, Oy, Oz] respectively
represents the gain and offset errors along all three axes (a =
[ax, ay, az] refers to the actual acceleration). In the ideal world
[Sx, Sy, Sz] = [1, 1, 1] and [Ox, Oy, Oz] = [0, 0, 0], but in re-
ality they differ from the desired values. To compute the offset
and gain error of an axis, we need data along both the positive
and negative direction of that axis (one measures positive +g
while the other measures negative −g). In other words, six
different static positions are used where in each position one of
the axes is aligned either along or opposite to earth’s gravity.
This causes the a = [ax, ay, az] vector to take one of the
following six possible values {[±g, 0, 0], [0,±g, 0], [0, 0,±g]}.
For example, if aMz+ and aMz− are two values of accelerometer
reading along the positive and negative z-axis, then we can
compute the offset (Oz) and gain (Sz) error using the following
equation:

Sz =
aMz+ − aMz−

2g
, Oz =

aMz+ + aMz−
2

(8)

We take 10 measurements along all six directions
(±x,±y,±z) from all our lab devices as shown in Figure 7.
From these measurements we compute the average offset
and gain error along all three axes using equation (8).
Figure 8 shows a scatter-plot of the errors along z− axis
for 30 smartphones (each color code represents a certain
make-and-model). We can see that the devices are scattered
around all over the plot which signifies that different devices
have different amount of offset and gain error. Such unique
distinction makes fingerprinting feasible.

8Requiring around 12 minutes in total for calibrating both the accelerom-
eter and gyroscope.

9Android and iOS consider the positive and negative direction along an
axis differently.
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Fig. 7: Calibrating accelerometer along three axes. We collect measurements along all 6 directions (±x,±y,±z).
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Fig. 8: Accelerometer offset and gain error from 30 smartphones.

Calibrating the Gyroscope: Calibrating gyroscope is a harder
problem as we need to induce a fixed angular change to
determine the gain error even though the offset error can be
computed while keeping the device stationary10. Similar to
accelerometer we can also represent the measured output of
the gyroscope (ωM = [ωMx , ω

M
y , ω

M
z ]) using the following

equation: ωMx
ωMy
ωMz

 =

[
Ox
Oy
Oz

]
+

[
Sx 0 0
0 Sy 0
0 0 Sz

][
ωx
ωy
ωz

]
(9)

where again S = [Sx, Sy, Sz] and O = [Ox, Oy, Oz] respec-
tively represents the gain and offset errors along all three
axes. Here, ω = [ωx, ωy, ωz] represents the ideal/actual angular
velocity. Ideally all gain and offset errors should be equal to
1 and 0 respectively. But in the real world when the device
is rotated by a fixed amount of angle, the measured angle
tends to deviate from the actual angular displacement (shown
in figure 9(a)). This impacts any system that uses gyroscope
for angular-displacement measurements.

To calibrate gyroscope we again need to collect data along
all six different directions (±x,±y,±z) individually, but this
time instead of keeping the device stationary we need to rotate
the device by a fixed amount of angle (θ). In our setting, we
set θ = 180◦ (or π rad). For example, Figure 9(b) shows how
we rotate the smartphone by 180◦ around the positive x-axis.

10However, we found that a gyroscope’s offset was impacted by orientation.

α

α

Smartphone
α

Actual rotation = α

Measured rotation =

(a)

Smartphone

180
o

(b)
Fig. 9: a) Offset and gain error in gyroscope impact systems that
use them for angular-displacement measurements. b) Calibrating the
gyroscope by rotating the device 180◦ in the positive x-axis direction.

The angular displacement along any direction can be computed
from gyroscopic data in the following manner:

ωMi = Oi + Siω, i ∈ {±x,±y,±z}∫ t

0

ωMi dt =

∫ t

0

Oi dt+ Si

∫ t

0

ω dt

θMi = Oit+ Siθ (10)

where t refers to the time it took to rotate the device by θ
angle with a fixed angular velocity of ω. Now, for any two
measurements along the opposite directions of an axis we can
compute the offset and gain error using the following equation:

Oi =
θMi+ + θMi−
t1 + t2

, Si =
θMi+ − θMi− −Oi(t1 − t2)

2π
(11)

where i ∈ {x, y, z} and t1 and t2 represents the timespan
of the positive and negative measurement respectively. We
take 10 measurements along all six directions (±x,±y,±z)
and compute the average offset and gain error along all three
axes. However, since it is practically impossible to manually
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rotate the device at a fixed angular velocity, the integration in
equation (10) will introduce noise and therefore, the calculated
errors will at best be approximations of the real errors. We
also approximate the integral using trapezoidal rule which will
introduce more error.

We next visualize the offset and gain error obtained from
the gyroscopes of 30 smartphones (only showing for z− axis
where each color code represents a certain make-and-model).
Figure 10 shows our findings. We see similar result compared
to accelerometers where devices are scattered around at differ-
ent regions of the plot. This suggests that gyroscopes exhibit
different range of offset and gain error across different units.
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Fig. 10: Gyroscope offset and gain error from 30 smartphones.

Fingerprinting Calibrated Data: In this section we look at
how calibrating sensors impact fingerprinting accuracy. For this
setting, we first correct the raw values by removing the offset
and gain errors before extracting features from them. That is,
the calibrated value aC = (aM − o)/g. We then generate
fingerprints on the corrected data and train the classifiers on
the new fingerprints. Table XI shows the average F-score for
calibrated data under three scenarios, considering both cases
where the devices were kept on top of a desk and in the hand
of a user. When we compare the results from uncalibrated data
(Table V) to those from calibrated data, we see that the F-score
reduces by approximately 16–25% for accelerometer data but
not as much for the gyroscope data. This suggests that we were
able to calibrate the accelerometer much more precisely than
the gyroscope, as expected given the more complex and error-
prone manual calibration procedure for the gyroscope. Another
interesting observation is that audio stimulation provides small
improvement in classifier accuracy. This suggests that audio
stimulation does not influence the dominant features removed
by the calibration, but does significantly impact secondary
features that come into play once calibration is carried out.
Overall, our results demonstrate that calibration is a promising
technique, especially if more precise measurements can be
made. Manufacturers should be encouraged to perform better
calibration to both improve the accuracy of their sensors and
to help protect users’ privacy.

TABLE XI: Average F-score for calibrated data under lab setting
Device Stimulation Avg. F-score (%)
Placed Accelerometer Gyroscope Accelerometer+Gyroscope

On Desk
No-audio 71 97 97

Sine 75 98 98
Song 77 99 99

In Hand
No-audio 69 85 91

Sine 70 90 93
Song 69 89 93

B. Data Obfuscation

Rather than removing calibration errors, we can instead add
extra noise to hide the miscalibration. This approach has the
advantage of not requiring a calibration step, which requires
user intervention and is particularly difficult for the gyroscope
sensors. As such, the obfuscation technique could be deployed
with an operating system update. Obfuscation, however, adds
extra noise and can therefore negatively impact the utility of
the sensors (in contrast to calibration, which improves their
utility). In this section we will discuss the following techniques
for adding noise –

• Uniform noise: highest entropy while having a bound.
• Laplace noise: highest entropy which is inspired by

Differential Privacy.
• White noise: affecting all aspects of a signal.

1) Uniform Noise: In this section we randomly choose
offset and gain errors from a uniform range where we deduce
the base range from our lab phones.

Basic Obfuscation: First, we consider small obfuscation
values in the range that is similar to what we observed in the
calibration errors above. Adding noise in this range is roughly
equivalent to switching to a differently (mis)calibrated phone
and therefore should cause minimal impact to the user. To add
obfuscation noise, we compute aO = (aM−oO)/gO, where gO
and oO are the obfuscation gain and offset, respectively. Based
on Figures 8 and 10, we choose a range of [-0.5,0.5] for the
accelerometer offset, [-0.1,0.1] for the gyroscope offset, and
[0.95,1.05] for the gain. For each session, we pick uniformly
random obfuscation gain and offset values from the range;
by varying the obfuscation values we make it difficult to
fingerprint repeated visits. Table XII summarizes our findings
when we apply obfuscation to all the sensor data obtained from
our 30 lab smartphones. Compared to unaltered data (Table V),
data obfuscation seems to provide significant improvement
in terms of reducing the average F-score. Depending on the
type of audio stimulation, F-score reduces by almost 7–24%
when smartphones are kept stationary on the desk and by 23–
42% when smartphones are kept stationary in the hand of the
user. The impact of audio stimulation in fingerprinting motion
sensors is much more visible in these results. We see that
F-score increases by almost 18–21% when a song is being
played in the background (compared to the no-audio scenario);
again, we expect this to be a consequence of audio-stimulation
significantly impacting secondary features that come into play
once primary features are obfuscated.

Next, we apply similar techniques to the public and
combined dataset. We apply the same range of offset and
gain errors to the raw values before generating fingerprints.
Table XIII and Table XIV summarizes our results for both
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TABLE XII: Average F-score for obfuscated data under lab setting
Device Stimulation Avg. F-score (%)
Placed Accelerometer Gyroscope Accelerometer+Gyroscope

On Desk
No-audio 43 73 75

Sine 49 76 76
Song 71 88 93

In Hand
No-audio 46 46 51

Sine 42 49 57
Song 55 63 72

presence and absence of audio stimulation. We see that F-score
reduces by approximately 20–41% (compared to Table VI
and Table VII). We expect one of the reasons for the lower
accuracy is the usage of a larger dataset, suggesting that for
even larger sets the impact of obfuscation is likely to be even
more pronounced.

TABLE XIII: Average F-score for obfuscated data under public
setting where smartphones were kept on top of a desk

Stimulation Avg. F-score (%)
Accelerometer Gyroscope Accelerometer+Gyroscope

No-audio 27 52 57
Sine 40 65 66

TABLE XIV: Average F-score for obfuscated data under both lab
and public setting where smartphones were kept on top of a desk

Stimulation Avg. F-score (%)
Accelerometer Gyroscope Accelerometer+Gyroscope

No-audio 26 50 55
Sine 41 69 75

Increasing Obfuscation Range: We now look at how the fin-
gerprinting technique reacts to different ranges of obfuscation.
Starting with our base ranges of [−0.5, 0.5] and [−0.1, 0.1]
for the accelerometer and gyroscope offsets, respectively, and
[0.95, 1.05] for the gain, we linearly scale the ranges and
observe the impact on F-score. We scale all ranges by the same
amount, increasing the ranges symmetrically on both sides of
the interval midpoint.

For this experimental setup we only consider the com-
bined dataset as this contains the most number of devices
(93 in total). We also restrict ourselves to the setting where
we combine both the accelerometer and gyroscope features
because this provides the best result (as evident from all our
past results). Figure 11 highlights our findings. As we can see
increasing the obfuscation range does reduce F-score but it
has a diminishing return. For 10x increment, the F-score drops
down to approximately 40% and 55% for no-audio and audio
stimulation respectively. Beyond 10x increment (not shown)
the reduction in F-score is minimal (at most 10% reduction at
50x increment). This result suggests that simply obfuscating
the raw values is not sufficient to hide all unique characteristics
of the sensors. So far we have only manipulated the signal
value but did not alter any of the frequency features and as a
result the classifier is still able to utilize the spectral features
to uniquely distinguish individual devices.

Enhanced Obfuscation: Given that we know that the spectral
features are not impacted by our obfuscation techniques, we
now focus on adding noise to the frequency of the sensor sig-
nal. Our data injection procedure is described in Algorithm 1.
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The main idea is to probabilistically insert a modified version
of the current data point in between the past and current
timestamp where the timestamp itself is randomly selected.
Doing so will influence cubic interpolation of the data stream
which in turn will impact the spectral features extracted from
the data stream.

Algorithm 1 Obfuscated Data Injection

Input: Time series Data (D,T ), Probability Pr, Offset O,
Gain G, Offset Range Orange, Gain Range Grange

Output: Modified time series Data (MD,MT )
offset ← Null
gain← Null
# Random(range) : randomly selects a value in range
j ← 1
for i = 1 to length(D) do

#New data insertion
if i > 1 and Random([0, 1]) < Pr then

offset ← Random(Orange)
gain← Random(Grange)
MT [j]← Random([T [i],MT [j − 1])
MD[j]← (D[i]− offset)/gain
j ← j + 1

end if
#Original Data
MD[j]← (D[i]−O)/G
MT [j]← T [i]
j ← j + 1

end for
return (MD,MT )

To evaluate our approach we first fix an obfuscation range.
We choose 10x of the base range from the previous section
as our fixed obfuscation range. We then vary the probability
of data injection from [0,1]. Figure 12 shows our findings.
We can see that even with relatively small amount of data
injection (in the order of 20–40%) we can reduce the average
F-score to approximately 15–20% depending on the type of
input stimulation applied.

Impact of Uniform Noise on Utility: In this section we
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Fig. 12: Impact of randomly inserting new data points.

briefly analyze how uniform noise impact applications using
motion sensors. To evaluate this we prototype a Step Counter
application, a very popular smartphone application [60], that
uses accelerometer readings to determine the number of steps
taken by a user. We use the same procedure to collect sensor
data through a web page. In our experimental setting, we ask
the participant to take 20 steps while holding the phone in
his/her hand and this whole process in repeated 10 times.
We then calibrate11 and obfuscate12 the collected sensor data.
Table XV shows the step counts computed from the original
and modified sensor streams. Neither calibration nor basic
obfuscation have a significant effect on accuracy. We would
expect calibration to generally improve accuracy, but our cali-
bration process is imperfect and it is possible that it introduces
very minor errors. Basic obfuscation introduces errors that
are commensurate with calibration errors of actual devices
and thus also has minimal impact on accuracy. Increasing
the obfuscation range introduces errors that are still within
acceptable range. However, introducing new data points makes
the accelerometer readings significantly less reliable, and we
observe this effect in the step count. We next explore several
alternative ways to add noise and their impact on privacy and
utility.

TABLE XV: Impact of calibration and obfuscation

Stream Type Step Count
Mean Std dev

Original Stream 20 0
Calibrated Stream 20.1 0.32
Basic Obfuscation 20.1 0.32

Increased-Range Obfuscation 19.9 1.69
Enhanced Obfuscation 25.1 4.63

2) Laplace Noise: Next, we adopted an approach similar
to differential privacy where we randomly selected offset and
gain error from a Laplace distribution. From the definition of
differential privacy [61], we know that a randomized function
K gives ε-differential privacy if for all data sets D1 and D2

11Using a handset for which we have computed calibration errors.
12Using random offset and gain error for each session.

differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ eε Pr[K(D2) ∈ S] (12)

We can remap this setting into our own problem where
we can think of each device as a single data set, and K
as the process of selecting random offset and gain error.
S then becomes the outcome of applying random noise to
raw sensor data. By changing ε we can control to what
extent two device-output distributions are alike. In our setting
we have offset and gain errors along 6 axes (xyz -axes for
both accelerometer and gyroscope), giving us a total of 12
dimensions. We equally distribute our privacy budget ε along
all 12 dimensions and select noise along the i− th dimension
using the following Laplace distribution: Lap(0, βi) where
βi = Si/(ε/12) and Si = max(i-th Dimensional values) −
min(i-th Dimensional values), i ∈ {1, 2, ..., 12}. Figure 13
shows that as we increase ε (i.e., as we lower the scale
parameter of the Laplace distribution), F-score also increases.
But even with a relatively high privacy budget of ε = 10 we see
that F-score reduces from around 95% to 47–65% depending
on the type of background stimulation.
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Fig. 13: Randomly selecting offset/gain errors from a Laplace distri-
bution.

Impact of Laplace Noise on Utility: We rerun our step
counter application on sensor data where we select offset
and gain error from a Laplace distribution while varying
ε. Figure 14 shows how step count evolves for different
levels of privacy budget (ε). We see that as we increase ε,
step count converges to the expected value with negligible
deviation. For ε ≥ 6 the confidence interval is negligible,
i.e., for ε ≥ 6 the impact of noise is minimal. Notably, on
Figure 13, we can see that for ε = 6, we get significantly
lower classification accuracy than using low levels of uniform
noise (see Figure 11). This suggests that Laplace noise may
achieve a better tradeoff between privacy and utility; we plan
to investigate its impact on the utility of other applications in
the future.

3) White Noise: From figure 13 we see that even when
ε = 1 we can achieve an F-score of 26–41%. We then looked
at the dominant features and found that spectral features like
spectral irregularity, spectral attack slope and spectral entropy
are dominant. Changing the gain and offset have minimal
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Fig. 14: Impact of Laplace noise on utility.

impact on spectral features; therefore we next added Gaussian
white noise to the signal, after applying random offset and
gain error from a Laplace distribution. For this experimental
setup we fixed ε = 6 (because for ε = 6 we observed minimal
impact on utility in Figure 14) and varied the signal-to-noise
ratio (SNR). Figure 15 highlights F-score for different values
of SNR. We can see that F-score remains more or less steady
but increases slightly for higher SNRs. However, compared
to Laplace noise (Figure 13) we see that F-score decreases
significantly when white noise is added to the signal.
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Impact of White Noise on Utility: Given that we see adding
white noise provides low F-scores we wanted to see what kind
on impact it would have on sensor utility. To evaluate this we
rerun our step counter application on sensor data after applying
Gaussian white noise. Figure 16 highlights the computed step
counts for different SNRs. We see that adding white noise
has drastic consequences as it increases the number of steps
counted significantly, even at high signal-to-noise ratios.

C. Deployment Considerations

We envision our obfuscation technique as an update to the
mobile operating system. Under default setting, data is always
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Fig. 16: Impact of white noise on sensor utility.

obfuscated unless the user explicitly allows an application to
access unaltered sensor data. As we just observed for some
applications small amount of obfuscation does not impact
their utility, however, for others, e.g., a 3-D game might need
access to raw accelerometer and gyroscope data instead of the
obfuscated data to operate properly, in which case this will be
noticeable to the user who can then provide the appropriate
permission to the application. Our default obfuscated-setting
will ensure that users do not have to worry about applications
like browser accessing sensor data without their awareness.

VII. LIMITATIONS

Our approach has a few limitations. First, we experimented
with 93 devices; a larger target device pool could lower our
accuracy. However, we conducted our experiments in real-
world settings (i.e., users under natural web browsing settings),
collecting data from a wide variety of smartphones. We,
therefore, believe our results are representatives of real-world
scenarios. Secondly, our calibration process has some errors,
specially the manual calibration process for the gyroscope is
error-prone as it is impossible to manually rotate the device
at a fixed angular velocity. That being said one of our main
goals is to show that even simple calibration techniques can
reasonably reduce device fingerprinting.

VIII. CONCLUSION

In this paper, we show that motion sensors such as ac-
celerometers and gyroscopes can be used to uniquely identify
smartphones. The more concerning matter is that these sensors
can be surreptitiously accessed by a web page publisher
without users’ awareness. We also show that injecting audio
stimulation in the background improves detection rate as
sensors like gyroscopes react to acoustic stimulation uniquely.

Our countermeasure techniques, however, mitigate such
threats by obfuscating anomalies in sensor data. We were able
to significantly reduce fingerprinting accuracy by employing
simple, yet effective obfuscation techniques. As a general
conclusion, we suggest using our obfuscation techniques in
the absence of explicit user permission/awareness.
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APPENDIX A
ACCESSING MOTION SENSORS FROM BROWSER

To access motion sensors the DeviceMotion class needs to
be initialized. A sample JavaScript snippet is given below:

if(window.DeviceMotionEvent!=undefined){
window.addEventListener(’devicemotion’,

motionHandler);
window.ondevicemotion = motionHandler;

}

function motionHandler(event){
agx = event.accelerationIncludingGravity.x;
agy = event.accelerationIncludingGravity.y;
agz = event.accelerationIncludingGravity.z;
ai = event.interval;
rR = event.rotationRate;
if (rR != null) {

arAlpha = rR.alpha;
arBeta = rR.beta ;
arGamma = rR.gamma;

}
}

APPENDIX B
SCREENSHOT OF OUR DATA COLLECTION WEBPAGE

We provide screenshots (see Figure 17) of our data col-
lection website to give a better idea of how participants were
asked to participate.

Fig. 17: Screenshot of our data collection website.
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