
VISIBLE: Video-Assisted Keystroke Inference from
Tablet Backside Motion

Jingchao Sun∗, Xiaocong Jin∗, Yimin Chen∗, Jinxue Zhang∗, Rui Zhang†, and Yanchao Zhang∗
∗ Arizona State University

{jcsun, xcjin, ymchen, jxzhang, yczhang}@asu.edu
† University of Hawaii
ruizhang@hawaii.edu

Abstract—The deep penetration of tablets in daily life has
made them attractive targets for keystroke inference attacks that
aim to infer a tablet user’s typed inputs. This paper presents
VISIBLE, a novel video-assisted keystroke inference framework
to infer a tablet user’s typed inputs from surreptitious video
recordings of tablet backside motion. VISIBLE is built upon
the observation that the keystrokes on different positions of
the tablet’s soft keyboard cause its backside to exhibit different
motion patterns. VISIBLE uses complex steerable pyramid de-
composition to detect and quantify the subtle motion patterns of
the tablet backside induced by a user’s keystrokes, differentiates
different motion patterns using a multi-class Support Vector
Machine, and refines the inference results using a dictionary
and linguistic relationship. Extensive experiments demonstrate
the high efficacy of VISIBLE for inferring single keys, words,
and sentences. In contrast to previous keystroke inference attacks,
VISIBLE does not require the attacker to visually see the tablet
user’s input process or install any malware on the tablet.

I. INTRODUCTION

The past few years have witnessed the proliferation of
tablets in everyday life. According to a Gartner report [1],
global tablet shipments will reach 321 million and surpass
PC shipments in 2015. Being lighter than laptops and having
larger touchscreens than smartphones, tablets perfectly fill the
gap between laptops and smartphones and have become an
indispensable category of mobile computing devices. People
are increasingly using tablets in every aspect of life, including
voice/video communications, Internet browsing, web transac-
tions, online banking, reading, multimedia playing, etc.

The deep penetration of tablets in people’s daily life
has made them attractive targets for various keystroke in-
ference attacks that aim to infer a user’s typed inputs (such
as usernames, passwords, SSNs, and emails) on the tablet
touchscreen. Although existing authentication schemes [2]–[5]
can prevent unauthorized access to mobile devices, prior work
has shown that an attacker can successfully infer the PIN or
even the words entered on the soft (tablet) keyboard by sur-
reptitiously video-recording a target user’s input process and

then analyzing the reflection of the touchscreen, spatial hand
dynamics, or the relative finger positions on the touchscreen
[6]–[13]. These studies commonly assume that the attacker can
capture a user’s interaction with the touchscreen with little or
no visual obstruction, which greatly limits the applicability of
these attacks.

In this paper, we propose VISIBLE, a novel video-assisted
keystroke inference framework that allows an attacker to infer
a tablet user’s typed inputs on the touchscreen by recording
and analyzing the video of the tablet backside during the
user’s input process. VISIBLE is motivated by our observation
that the keystrokes on different positions of the tablet’s soft
keyboard cause its backside to exhibit different motion pat-
terns. In contrast to previous keystroke inference techniques
[6]–[13], VISIBLE does not require the attacker to visually
see the victim’s input process and thus enables much more
surreptitious keystroke inference from a distance.

The design of VISIBLE faces two major challenges. First,
the backside motion caused by user keystrokes is very subtle
and requires effective methods to detect and quantify. Second,
since the soft keyboard on the tablet is much smaller than
a normal keyboard, the motion patterns caused by tapping
adjacent keys are close, making accurate differentiation partic-
ularly challenging. To tackle these two challenges, VISIBLE
uses complex steerable pyramid decomposition to detect and
quantify the subtle keystroke-induced motion patterns of the
tablet backside, differentiates different motion patterns using a
multi-class Support Vector Machine, and refines the inference
results using a dictionary and linguistic models.

We thoroughly evaluate the performance of VISIBLE via
comprehensive experiments on an Apple iPad 2 tablet and
a Google Nexus 7 tablet. Our experiment results show that
VISIBLE can infer a single key entered on the alphabetical
soft keyboard with an average accuracy of 36.2% and that the
correct key is within the inferred key’s one-hop and two-hop
neighbors with probabilities 83.6% and 97.9%, respectively.
Similarly, VISIBLE achieves an accuracy of 38% for single-
key inference on the PIN soft keyboard, and the correct key is
within the inferred key’s one-hop neighbors with probability
68%. For word inference, VISIBLE can produce a list of
candidate words, and the correct word is in the top-5, top-
10, top-25, and top-50 candidate words with probabilities
48.0%, 63.0%, 77.8%, and 92.6%, respectively. We also show
that the attacker can successfully infer typed sentences based
on the linguistic relationship between adjacent words. These
experiment results confirm the high efficacy of VISIBLE.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23060

The rest of this paper is organized as follows. Section II
presents the related work. Section III introduces some back-
ground knowledge for video processing. Section IV describes
the adversary model. Section V details the design of VISIBLE.
Section VI evaluates VISIBLE through extensive experiments.
Section VII concludes this paper and discusses possible coun-
termeasures and future work.

II. RELATED WORK

In this section, we briefly introduce the prior work most
related to VISIBLE. Prior keystroke inference attacks can be
broadly classified into two categories: video-based attacks and
sensor-based attacks.

a) Video-based Attacks: In this category, the adversary
uses video-based side channels in combination with computer
vision techniques to infer a user’s typed inputs. Early work
along this line focuses on physical keyboards. Backes et al.
[6], [7] exploited the reflections of screens on glasses, tea
pots, spoons, plastic bottles, eyes of the user, walls, and even
the user’s clothes to recover the content displayed on the
computer monitor. Balzarotti et al. [8] introduced an attack
that automatically recovers the typed text solely from a video
of the user typings by analyzing the light diffusion surrounding
the key change. This attack requires a camera to directly record
the finger typings on the physical keyboard.

There have also been some video-based attacks on the soft
keyboards of touchscreen mobile devices. In [9], Maggi et al.
presented an attack that automatically recognizes typed inputs
from the key magnifications of touchscreen mobile devices.
Raguram et al. [10] showed how to automatically reconstruct
the text input on a soft keyboard from the reflection of the
device’s screen on the victim’s sunglasses. Xu et al. [11]
introduced an attack to accurately reconstruct the text input
on a mobile device by tracking the positions of the victim’s
fingers as they move across the soft keyboard. In [12], Yue
et al. showed how to infer the user input even if neither text
nor popup can be seen from the video of user typings. This
attack exploits the homographic relationship between touching
images and a reference image showing a soft keyboard. All
these attacks require the attacker to acquire a video capturing
the victim’s typings on the touchscreen or the touchscreen
reflection.

Our work is most related to [13], in which Shukla et al.
introduced a video-based attack on the PIN-entry process of
a smartphone that decodes the typed PIN by exploiting the
spatiotemporal dynamics of the hands during typing. Both
VISIBLE and the attack proposed in [13] only require the
attacker to video-record the backside of a smartphone, which
was considered safe previously. VISIBLE, however, has much
wider applicability than [13]. In particular, the attack intro-
duced in [13] requires the attacker to record the victim’s hand
movements during the PIN-entry process, which is not always
possible. For example, the victim’s hand movements are very
likely to be obscured by the tablet itself. In contrast, VISIBLE
works even if the victim’s hand movements are not visible
from the video of the device backside.

b) Sensor-based Attacks: Tremendous efforts have been
made on inferring user inputs on mobile devices from the data
generated by various on-board sensors. It has been shown in

[14] and [15] that the user’s password can be inferred from
the smartphone’s accelerometer data. Moreover, some recent
work [16], [17] demonstrated a similar attack that exploits the
data from both accelerometer and gyroscope. Other on-board
sensors that have been exploited include microphones and front
cameras [18], [19]. All these work require the attacker to obtain
sensor data via either malicious applications (e.g., malicious
Apps or web scripts) or unprotected network transmissions,
which limit their applicability. In contrast, VISIBLE only
requires the attacker to record the video of the tablet backside
during the victim’s typing process, which is both easier to
launch and more difficult to detect.

Also related is the work on using on-board sensors to
infer the keystrokes of nearby physical keyboards. In [20],
Zhuang et al. showed how to recover typed keys from sound
recordings of a user’s typings on a physical keyboard. Berger
et al. [21] presented another attack that infers the user input
from the acoustic emanations of the physical keyboard with
the assistance of a dictionary. A similar attack was presented
in [22], which also uses acoustic emanations of the physical
keyboard but does not need a language model or dictionary. In
[23], the authors demonstrated an attack that infers the typed
keys of a physical keyboard from the vibration caused by each
keystroke detected by a nearby smartphone’s accelerometer.
Such attacks, although effective, can only be used when the
attacker is near the victim due to the short transmission range
of acoustic and vibration signals. In contrast, VISIBLE can be
launched from a much larger distance.

III. VIDEO PROCESSING BASICS

In this section, we introduce two computer vision tech-
niques, phase-based optical flow estimation and complex steer-
able pyramid decomposition, underlying VISIBLE.

A. Phase-based Optical Flow Estimation

An optical flow refers to apparent motion patterns of
image objects between two consecutive frames caused by the
object or camera movement. Optical flow estimation is the
process of characterizing and quantifying the object motions
in a video stream, often for motion-based object detection
and tracking systems. Phase-based optical flow is a popular
optical flow estimation technique which estimates the motion
field using phase information. For example, constant phase
contours are tracked by computing the phase gradient of
spatiotemporally bandpassed images, which provides a good
approximation to the motion in [24]. As another example,
Gautama et al. [25] proposed to estimate motion by computing
the temporal gradient of the phases of a partially bandpassed
video. In comparison with other flow estimation techniques,
phased-based estimation methods are more robust to smooth
shading, lighting variations, and small deviations from image
translations.

B. Complex Steerable Pyramid Decomposition

Steerable pyramid decomposition [26] is a standard tech-
nique that decomposes an image according to spatial scale,
orientation, and position to capture the variance of a texture in
both intensity and orientation, which has been widely used in
image processing and motion detection. Since an image may

2

(a) An iPad and a holder. (b) Attack scenario. (c) The same attack scenario from a different angle.

Fig. 1. Examples of a tablet holder and an attack scenario.

(a) Alphabetical keyboard. (b) PIN keyboard.

Fig. 2. Alphabetical and PIN soft keyboard illustrations.

contain multiple objects of different sizes, and these objects
may contain features of different sizes and be at different
distances from the viewer, any analysis procedure that is only
applied at a single scale may lose information at other scales.
To simultaneously detect multiple objects’ motion patterns,
analysis need be carried out at different scales simultaneously
[27]. In addition, the same object may also exhibit totally
different features in different orientations. To comprehensively
analyze the features of an object and detect its motion pattern,
it is necessary to decompose it in different orientations.

Complex steerable pyramid decomposition [28] extends the
original steerable pyramid decomposition by representing an
image in a complex form comprising real and imaginary parts.
In comparison with steerable pyramid decomposition, complex
steerable pyramid decomposition additionally measures local
phase and energy in some texture descriptors. Such measures
have proved important throughout computer vision. Using
complex steerable pyramid decomposition, we can obtain the
phase and amplitude of each pixel of an image at each spatial
scale and orientation over time.

IV. ADVERSARY MODEL

We consider a victim user with a tablet such as iPad 2 or
Nexus 7. We assume that the victim places the tablet on a tablet
holder (e.g., the one shown in Fig. 1(a)) on a desk and types on
a soft keyboard. Such scenarios are very common in daily life,
e.g., in conferences or seminars where researchers take notes
or write emails. We focus on two types of soft keyboards in
this paper, the alphabetical and PIN keyboards, as shown in
Fig. 2. The extension of VISIBLE to the alphanumeric soft
keyboard is left as future work.

We assume that an attacker intends to infer any typed input
on the victim’s tablet, which can be single keys, words, or

sentences. This enables VISIBLE to infer any sensitive typed
input on the tablet, such as usernames, passwords, and emails.
The victim is alert to shoulder-surfing attacks in the sense
that the attacker cannot get too close to the victim during his
typing process. In addition, the attacker is unable to see the
tablet touchscreen or the victim’s hand movement during his
typing process from any direction. Moreover, we assume that
the attacker cannot obtain the sensor data by running malware
such as Trojans or malicious web scripts on the victim’s tablet.
These assumptions make previous video-based attacks [6]–[13]
and sensor-based attacks [14]–[23] inapplicable.

We assume that the attacker has the following capabilities.
First, the attacker can use camcorders with advanced lens to
record the backside of the victim’s tablet during his input
process, possibly from a long distance. Second, the attacker
can record the attack scenario and reconstruct it afterwards.
Specifically, the attacker can measure the angle between the
victim’s tablet and the desk, the angle between the tablet and
the camcorder, and the distance between the tablet and the
camcorder by analyzing multiple images taken from different
angles and positions using distance and angle estimation
algorithms [29]. Finally, the attacker has the same holder and
the tablet with the same soft keyboard layouts as the victim’s.

V. VISIBLE FRAMEWORK

In this section, we give an overview of VISIBLE and then
detail each step of the attack.

A. VISIBLE Overview

VISIBLE infers the victim’s typed inputs from the video
of tablet backside motion. The high-level design of VISIBLE
is shown in Fig. 3, which consists of eight steps as follows.

1) Video Recording and Preprocessing: In this step, we
record a video capturing the motion of the tablet
backside during the victim’s typing process. We as-
sume neither the touchscreen nor the victim’s hand
movement can be seen from the video. We crop the
video clip to keep the text-input part only.

2) Areas of Interests (AOIs) Detection and Selection:
In this step, we detect all the areas with texture
information on the tablet backside and select a few
areas as AOIs for further processing. Exemplary AOIs
are the buttons, camera, loudspeaker, logo, and texts
on the tablet backside.

3

Fig. 3. The VISIBLE framework.

3) AOI Decomposition: In this step, we decompose each
selected AOI in each frame using complex steerable
pyramid decomposition.

4) Motion Detection via Phase Variances: In this step,
we analyze the phase variances of each AOI over time
and quantify the corresponding motion amplitude.

5) Feature Extraction. In this step, we extract features
in both temporal and spatial domains to represent the
motion patterns of each AOI.

6) Classifier Training. In this step, we let multiple
attackers mimic the victim’s typing process, record
videos of their tablet backsides, and process their
videos to train a classifier.

7) Keystroke Inference. In this step, we use a classifier
trained in Step 6) to test the collected data from the
victim’s typing process.

8) Text Inference. In this step, we infer the possible
words by considering meaningful alphabetical combi-
nations using a dictionary and exploit the relationship
between adjacent words to further infer sentences.

In what follows, we present each step in detail.

B. Video Recording and Preprocessing

One or more camcorders can be used to video-record the
tablet backside during the victim’s typing process. For more
accurate inference results, the video should capture the entire
backside of the tablet, and the image resolution should be
sufficiently high. In our experiments, we use two camcorders
that focus on the left-half and right-half of the tablet backside,
respectively. By doing so, each camcorder only needs to focus
on a relatively small area with sufficiently high resolution to
capture the detailed texture information on the tablet backside.

In our study, we find that the following four factors affect
subsequent motion detection.

• Image resolution and frame rate. The image resolution
determines the amount of detailed textural information
that can be obtained from the image and should be
as high as possible. The frame rate is the number
of frames taken within one second, and a higher
frame rate could help capture more detailed motion

information. We recommend 1080p601 HD or higher
resolutions and frame rates.

• Zoom setting. The zoom setting of the camcorder
is jointly determined by the distance between the
camcorder and the tablet and the lens properties. We
recommend zooming in as much as possible while
capturing the entire tablet backside.

• Light condition. The bright light condition can result
in better motion detection, as the imaging component
of camcorders generates larger random noise in low-
light condition that pollutes the motion signal.

• Recording angle. The angle between the camcorder
and tablet need be adjusted to capture the entire tablet
backside, which can be easily satisfied in practice.

We also video-record the attack scenario layout to measure
the distances and angles between the camcorders and the target
tablet as well as the angle between the tablet and the desk.
This is important for reconstructing the attack scenario later.
In practice, the attacker can take multiple images of the attack
scenario from different angles and estimate the distances and
angles of interest using standard distance and angle estimation
algorithms such as [29].

After obtaining the video of the tablet backside, we man-
ually crop the unwanted part such that the remaining video
contains only the typing process of interest that is easily iden-
tifiable in practice. In practice, for the PIN keyboard, since the
user usually needs to press power or home button first, the keys
entered subsequently are very likely to be PINs. Similarly, for
the alphabetical keyboard, the typing process can be identified
by continuous typings (e.g., small arm movements). Finally,
we decompose the cropped video into a series of frames. Note
that video croppings can be automated after more sophisticated
and extensive programming effort.

C. AOIs Detection and Selection

After obtaining a series of frames, we proceed to identify
all the Areas of Interests (AOIs) on the tablet backside,
where each AOI refers to an area containing unique texture

11080p60 denotes that the camcorder can take 1920x1080 videos at a rate
of 60 frames per second.

4

(a) Possible AOIs. (b) Selected AOIs.

Fig. 4. Possible and selected AOIs on an iPad 2’s backside.

Fig. 5. An example of a selected AOI, AOI-2.

information. In computer vision, the texture information of
an image refers to the relationship of nearby pixels. Given a
frame, we use the textured area detection algorithm [30] to
identify the areas with texture information and select them as
AOIs for subsequent motion detection.

Fig. 4(a) shows an image of the iPad 2 backside, where the
areas enclosed by rectangles are identified AOIs, which include
the power button, the voice up and down buttons, the silence
button, the backside camera, the ear plug, the loudspeaker,
the logo, the manufacture information, and other decorative
patterns. These AOIs can be used to detect the tablet backside
motion. In practice, almost every tablet’s backside contains
adequate areas with rich texture information. Even if the tablet
is protected by a backside cover like iPad Smart Case, the
backside of the cover itself still contains areas with rich texture
information making it easy to find enough AOIs for subsequent
motion detection.

We then select a subset of the AOIs that are near the edges
of the tablet backside and separated from each other, as these
AOIs tend to have larger and more distinctive motions than
others, making them more capable of differentiating the motion
patterns caused by different keystrokes. Fig. 4(b) shows the
backside image of an iPad 2 placed on a holder, where the
areas specified by rectangles are the selected AOIs.

D. Decompositions of Selected AOIs

Now we have a series of frames extracted from the cropped
video, each containing the same set of selected AOIs. For each
frame, we use complex steerable pyramid decomposition [28]
to decompose each selected AOI into complex sub-bands. As
an example, Fig. 5 shows an AOI that is part of the Apple
logo, and Fig. 6 shows the image decomposed via complex
steerable pyramid decomposition. More specifically, Figs. 6(a)
to 6(d) show the real part, imaginary part, phase, and amplitude
of the decomposed image at three scales and four orientations,
respectively. We can see from Fig. 6(c) that the image has more

features at orientation 3 and 4 and less features at orientation 2.
Since the phase variations are proportional to subtle motions,
Fig. 6(c) indicates that more subtle motions can be detected at
orientation 3 and 4. Finally, we obtain a decomposed complex
steerable pyramid for each selected AOI in each frame.

E. Motion Detection via Phase Variances

To estimate the motion for each selected AOI over time,
we first compute the pixel-level motion. As in [31], [32],
for each selected AOI, we first decompose its frame series
using complex steerable pyramid and then compute the pixel-
level motion from the amplitude and phase of its pixels.
Specifically, complex steerable pyramid decomposition adopts
a filter bank to decompose each frame into complex sub-bands
corresponding to each scale and orientation. The complex
steerable pyramid decomposition of a frame at time t at scale
r and orientation θ can be written as

A(t, x, y, r, θ)eiφ(t,x,y,r,θ), (1)

where x and y are the pixel coordinates in x-axis and y-axis
at scale r, respectively, and A(t, x, y, r, θ) and φ(t, x, y, r, θ)
are the amplitude and phase at coordinate (x, y) of the
decomposition at scale r and orientation θ, respectively.

We then calculate the phase variance at scale r and
orientation θ as

∆φ(t, x, y, r, θ) = (φ(t, x, y, r, θ)− φ(t0, x, y, r, θ)) mod 2π,
(2)

where t0 is the time for any initial frame. According to
[25], the phase variations ∆φ(t, x, y, r, θ) are approximately
proportional to displacements to image structures along the
corresponding scale and orientation.

Finally, we estimate each selected AOI’s motion using
its pixel-level motion. Since the pixel-level phase variance
∆φ(t, x, y, r, θ) is an approximation of the pixel-level motion,
an intuitive way to estimate the motion of the AOI is to sum
the phase variation ∆φ(t, x, y, r, θ) of all its pixels. However,
the pixel-level phase variance approximates the pixel-level
motion only if the area has rich texture information. For areas
with little texture information, the pixel-level phase variance is
random due to background noise. To simultaneously strengthen
the pixel-level phase variation for areas with rich texture
information and weaken the pixel-level phase variation for
areas with little texture information, we compute a weighted
sum of phase variances at scale r and orientation θ as

Φ(t, r, θ) =
∑
x,y

A(t, x, y, r, θ)2∆φ, (3)

where A(t, x, y, r, θ) is the measure of texture strength.

Since a frame is decomposed into multiple scales and
different orientations, we sum the motions for all the scales
and orientations to obtain the estimated motion for the specific
AOI as

Ψ(t) =
∑
r,θ

Φ(t, r, θ) =
∑
r,θ,x,y

A(t, x, y, r, θ)2∆φ. (4)

Fig. 7 depicts the motion signals of the apple stem in Fig. 5
during a word-entry process. We can see the typed word with

5

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

(a) Real parts of the decomposed image at each scale and orientation.

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

(b) Imaginary parts of the decomposed images at the same scale and
orientation.

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

(c) Phase of oriented band-pass images at each scale and orientation.

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

Scale 1, Orientation 1 Scale 1, Orientation 2 Scale 1, Orientation 3

Scale 1, Orientation 4

Scale 2,
Orientation 1

Scale 2,
Orientation 2

Scale 2,
Orientation 3

Scale 2,
Orientation 4

Scale 3,
Orient. 1

Scale 3,
Orient. 2

Scale 3,
Orient. 3

Scale 3,
Orient. 4

(d) Amplitude of the decomposed images at the same scale and orientation.

Fig. 6. A 3-scale, 4-orientation complex steerable pyramid representation of AOI-2.

0 2 0 0 4 0 0 6 0 0 8 0 0
- 2 5 0

- 2 0 0

- 1 5 0

- 1 0 0

- 5 0

0

5 0

gnitanosrepm

Am
plit

ud
e

T i m e i n d e x

i

Fig. 7. Motions of the apple stem in Fig. 5 for typing “impersonating”.

thirteen letters each corresponding to a peak in amplitude, i.e.,
a sudden significant change in |Ψ(t)|.

F. Feature Extraction

Now we extract temporal and spatial features from selected
AOIs’ motion signals to represent the motion patterns. The
former are obtained from the motion signals’ time domain, and

spatial features depict the motion relationship among different
AOIs that is capable of reflecting the posture of the tablet.

To extract temporal features, we represent the motion se-
quence of each AOI as a vector that specifies the time-varying
motion amplitude and then derive the following features for
each AOI.

• Skewness. This refers to the third central moment
which measures the asymmetry of the vector.

• Kurtosis. This is the fourth central moment which
measures the peakedness or flatness of the vector.

• Maximum motion amplitude. The maximum motion
amplitudes are different for different AOIs.

• Relative and absolute differences between maximum
motion amplitudes. Assume that there are n selected
AOIs. We define a ratio vector which comprises the
ratio of the maximum motion amplitude of the i-th
AOI to that of the (i + 1)-th AOI for all i ∈ [1, n −
1]. We also define a difference vector comprising the
maximum motion amplitude of the i-th AOI subtracted
by that of the (i+ 1)-th AOI for all i ∈ [1, n− 1].

6

To extract spatial features, we denote the motions of all
AOIs by matrix Am×n, where m is the time index, n is the
number of AOIs, and Ai,j is the j-th AOI’s motion amplitude
at time i. We derive the following spatial features.

• 1-norm. The 1-norm of Am×n is calculated as

||Am×n||1 = max
1≤j≤n

m∑
i=1

|aij | ,

which is its maximum absolute column sum.

• 2-norm. As in [16] we calculate three 2-norm features
from Am×n. Let Ri denote the ith row of Am×n for
all i ∈ [1,m]. The 2-norm of each Ri is given by

||Ri||2 =

√√√√ n∑
j=1

|aij |2.

We then extract the mean, maximum, and minimum
from

[||R1||2, ||R2||2, . . . , ||Rm||2]T .

• Infinity-norm. The infinity-norm of Am×n is

||Am×n||∞ = max
1≤i≤m

n∑
j=1

|aij | ,

which is its maximum absolute row sum.

• Frobenium-norm. The frobenium-norm is calculated as

||Am×n||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 ,

which is the square root of the squared sum of the
matrix elements.

• Pearson correlation. The Pearson correlation measures
the correlation of the motion vectors of different
AOIs during the same typing process. For two motion
vectors Vi and Vj of two AOIs i and j, respectively,
the Pearson correlation is defined as

Pij =
cov(Vi, Vj)

σiσj
,

where cov(Vi, Vj) is the covariance between Vi and
Vj , and σi and σj are the standard deviation of Vi
and Vj , respectively.

G. Classifier Training

To train a classifier, we first reconstruct the attack scenario
from the images taken in the video recording phase using
standard distance and angle estimation algorithms such as [29].

We then let multiple attackers type on every key position of
the soft keyboard for multiple times, during which we record
the videos of the tablet backside as well as the typed keys.
We finally obtain the training data set consisting of NKM
samples, where N is the number of attackers that mimic the
victim, K is the number of keys on the soft keyboard, and M
is the number of times each key is typed by each attacker.

We use a multi-class Support Vector Machine (SVM) [33]
with C-SVC type and linear kernel to distinguish different
typed keys. Specifically, we use the implementation in WEKA
[34] with default parameters. Since we have already obtained
NKM labeled typing samples, we feed them into WEKA to
obtain a trained multi-class SVM classifier.

H. Keystroke Inference

In this step, we use the motion data extracted from the
video recording of the victim’s tablet backside and the trained
classifier to obtain a candidate key set for each key the victim
typed. Specifically, for a backside video capturing the victim’s
typing process, it is processed through Steps 1 to 5 to output 36
features in total, including four skewness features, four kurtosis
features, four maximum motion features, six relative difference
features, six absolute difference features, six Pearson correla-
tion features, one one-norm feature, three two-norm features,
one infinity-norm feature, and one Frobenium-norm feature.
We then use the trained multi-class SVM classifier to predict
one key. Since the distance between two adjacent keys in both
alphabetical and PIN keyboards is very small, it is possible for
the key entered by the victim to be misclassified as neighboring
keys. We therefore let the SVM classifier output a candidate
key set consisting of all the keys that are no more than h hops
from the predicated key, where h is a parameter determined
by the attacker.

I. Text Inference

In this step, we further infer the entered text by using
a dictionary and a linguistic relationship between adjacent
words. Specifically, for a word consisting of W letters, we
can obtain W candidate letter sets in the previous step. We
use the “corn-cob” dictionary [35] that contains over 58,000
lower-case English words and is also used by previous work
[21]. First, we list all the combinations of the possible words
and filter out the combinations that are not in the dictionary. We
then manually select one word from each of the candidate lists
to form a meaningful sentence by considering the linguistic
relationship between adjacent words. As an alternative, given
the candidate word list for each word, we may use a well-
studied n-gram model such as [36] generated from linguistic
statistics to generate candidate sentences.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of VISIBLE
through extensive experiments on a 9.7-inch Apple iPad 2
tablet with iOS 8 and a 7-inch Google Nexus 7 tablet with
Android 4.4. The experiments involved eight participants in
total, and the data collection process has been approved by
Institutional Review Board (IRB) at our institution. We intend
to answer the following five questions in our evaluations.

1. What is the (single-)key inference accuracy on alpha-
betical and PIN keyboards, respectively?

2. What is the word inference accuracy on the alphabet-
ical keyboard?

3. Is it possible to infer a victim’s typing sentences?

4. How do the inference results differ on different tablets
(e.g., an iPad 2 and a Nexus 7)?

7

(a) One-hop and two-hop neighbors of letters "a" and "j".

1
4

2
5

7
0

98

(b) One-hop neighbors of keys 1 and 8.

Fig. 8. Examples of one and two-hop neighbors on alphabetical and PIN keyboards.

5. What are the impacts of environmental factors (e.g.,
the light conditions, the angle between the tablet and
the camcorders, and the imperfect reconstruction of
attack scenario) on keystroke inference accuracy?

A. Experiment Design

In our experiment, we used two commercial off-the-shelf
(COTS) camcorders to video-record the tablet backside during
the victim’s typing process. One camcorder is a Panasonic HC-
V700 with 21× zoom lens, which can record 1080p60 HD
videos and feature an intelligent zoom function that supports
up to 46× zoom. The second camcorder is a Sony FDR-AX100
with 10× zoom lens, which can record 4Kp302 or 1080p60
HD videos and support up to 160× zoom.

We placed an Apple iPad 2 tablet with iOS 8 on a holder as
shown in Fig. 4(b) and two camcorders 1.8 meters away from
the tablet. The distance between the attacker’s camcorders and
the victim’s tablet can be increased as long as the attacker
is equipped with more advanced lens (e.g., telephoto lens)
to video-record the tablet backside at a distance. The angle
between each camcorder and the tablet was 90 degree by
default, and we evaluated the impact of different angles as well.
The two camcorders focused on the left-half and right-half
of the tablet backside, respectively. We simultaneously used
two camcorders because one camcorder cannot simultaneously
include all the AOIs and have sufficiently high resolution for
each AOI.

Let Ωh(i) be key i’s h-hop neighborhood, including key i
itself. As two examples, Fig. 8(a) shows the one-hop and two-
hop neighbors of letters "a" and "j", where the orange and
yellow keys (marked by triangle and square) are the one-hop
and two-hop neighbors, respectively. Fig. 8(b) shows the one-
hop neighbors of keys 1 and 8, where the green and orange
keys (marked by triangle and rectangle) are the neighbors of
key 1 and key 8, respectively.

We use the following two metrics to evaluate the inference
accuracy of VISIBLE.

• Pinpoint accuracy Pi. The probability that a key i
typed by the victim is correctly inferred as i.

• h-hop accuracy Phi . The probability that a key i typed
by the victim is inferred as some key in Ωh(i).

By letting Ω0(i) = {i}, we can see that the pinpoint accuracy
is a special case of h-hop accuracy, as Pi = P 0

i . We consider

24Kp30 denotes that the camcorder can take 3840× 2160 video at a rate
of 30 frames per second.

1 0 % 3 0 % 5 0 % 7 0 % 9 0 %
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Inf
ere

nc
e a

ccu
rac

y
T r a i n i n g s e t s i z e

 P i n p o i n t a c c u r a c y
 O n e - h o p a c c u r a c y
 T w o - h o p a c c u r a c y
 T h r e e - h o p a c c u r a c y

Fig. 9. Impact of the training set size.

both pinpoint and h-hop accuracies for two reasons. First, the
capability of narrowing down a typed key to a small area
still poses a serious threat to user privacy, as the attacker
can still learn sensitive information. Second, considering the
neighborhood of a key instead of only the key itself is
particularly important for word and sentence inference, as we
will see shortly. In this paper, we consider h = 0, 1, 2, and 3
for alphabetical keyboard and h = 0 and 1 for PIN keyboard.

B. Alphabetical Keyboard Experiment

We first report the performance of VISIBLE on the alpha-
betical keyboard of an iPad 2 tablet with iOS 8, on which
keystroke inference is challenging for two reasons. First, the
distance between two adjacent keys is very small, while we
need to distinguish at least 26 different keys. Second, the
alphabetical keyboard is usually located at the bottom of the
touchscreen which makes the motions caused by keystrokes
less noticeable.

In this experiment, we involved four participants and let
each participant type each English letter 20 times and collected
20× 26× 4 = 2080 keystrokes in total. We selected a portion
of data from the collected dataset as a training set and used
the rest of the collected data as a test set. We trained a multi-
class SVM classifier using the training set and then tested it
using the test set. We used 10-fold cross-validation to test the
performance of the key inference of VISIBLE.

Table I compares the pinpoint and h-hop accuracies of
VISIBLE and random guess for each English letter on the
alphabetical keyboard. We can see that the pinpoint accuracy

8

TABLE I. KEY INFERENCE RESULTS FOR ALPHABETICAL KEYBOARD, WHERE VIS AND RG DENOTE VISIBLE AND RANDOM GUESS, RESPECTIVELY.

Key Pi |Ω1(i)| P 1
i |Ω2(i)| P 2

i |Ω3(i)| P 3
i

VIS RG VIS RG VIS RG VIS RG
a 33.8% 3.84% 5 78.8% 19.2% 8 95.0% 30.7% 11 100% 42.2%
b 36.3% 3.84% 5 78.8% 19.2% 14 98.8% 53.8% 18 100% 69.1%
c 52.5% 3.84% 5 71.3% 19.2% 14 93.8% 53.8% 18 98.8% 69.1%
d 21.3% 3.84% 8 91.3% 30.7% 14 98.8% 53.8% 17 100% 65.3%
e 22.5% 3.84% 6 70.0% 23.0% 14 98.8% 53.8% 17 98.8% 65.3%
f 27.5% 3.84% 8 91.3% 30.7% 14 98.8% 53.8% 20 100% 76.8%
g 25.0% 3.84% 8 88.8% 30.7% 14 98.8% 53.8% 20 100% 76.8%
h 16.3% 3.84% 8 95.0% 30.7% 14 100% 53.8% 19 100% 73.0%
i 21.3% 3.84% 6 85.0% 23.0% 11 100% 42.2% 14 100% 53.8%
j 20.0% 3.84% 8 83.8% 30.7% 13 98.8% 49.9% 17 100% 65.3%
k 22.5% 3.84% 7 88.8% 26.9% 11 98.8% 42.2% 14 100% 53.8%
l 42.5% 3.84% 5 85.0% 19.2% 9 100% 34.6% 12 100% 46.1%

m 50.0% 3.84% 4 80.0% 15.4% 11 98.8% 42.2% 15 100% 57.6%
n 31.3% 3.84% 5 77.5% 19.2% 13 97.5% 49.9% 17 100% 65.3%
o 41.3% 3.84% 5 88.8% 19.2% 8 98.8% 30.7% 11 100% 42.2%
p 47.5% 3.84% 3 81.3% 11.5% 7 98.8% 26.9% 8 100% 30.7%
q 30.0% 3.84% 4 70.0% 15.4% 8 90.0% 30.7% 11 98.8% 42.2%
r 40.0% 3.84% 6 80.0% 23.0% 14 95.0% 53.8% 20 97.5% 76.8%
s 28.8% 3.84% 8 76.3% 30.7% 11 95.0% 42.2% 14 100% 53.8%
t 30.0% 3.84% 6 86.3% 23.0% 14 97.5% 53.8% 20 100% 76.8%
u 51.3% 3.84% 6 97.5% 23.0% 13 100% 49.9% 17 100% 65.3%
v 45.0% 3.84% 6 83.8% 23.0% 12 98.8% 46.1% 19 100% 73.0%
w 31.3% 3.84% 6 72.5% 23.0% 11 95.0% 42.2% 14 100% 53.8%
x 41.3% 3.84% 6 92.5% 23.0% 11 100% 42.2% 15 100% 57.6%
y 27.5% 3.84% 6 81.3% 23.0% 12 98.8% 46.1% 19 100% 73.0%
z 77.5% 3.84% 4 98.8% 15.4% 9 100% 34.6% 12 100% 46.1%

Avg. 36.2% 3.84% 5.9 83.6% 22.7% 11.7 97.9% 44.9% 15.7 99.8% 60.3%

P i n p o i n t O n e - h o p T w o - h o p T h r e e - h o p
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Inf
ere

nc
e a

ccu
rac

y

 O n e p a r t i c i p a n t
 T h r e e p a r t i c i p a n t s

Fig. 10. Impact of the number of participants.

of VISIBLE for each key ranges from 16.3% for letter "h"
to 77.5% for letter "z". The average pinpoint accuracy of
VISIBLE across all 26 letters is 36.2%, which is almost an
order of magnitude higher than 3.84% of random guess. Since
different keys’ h-hop neighborhoods have different sizes for
the same h, we calculate each Phi for random guess based on
the actual number of keys within key i’s h-hop neighborhood
(i.e., |Ωh(i)|) to ensure fair comparisons. We can see that
for both VISIBLE and random guess, the Phi for each key
i increases as h increases, which is expected, as the larger
the neighborhood being considered, the higher the probability
that a key inferred as some key in the neighborhood, and vice

versa. Moreover, the Ph(i) of VISIBLE is always significantly
higher than the corresponding Ph(i) of random guess. We also
calculate the average P 1

i , P
2
i , and P 3

i of VISIBLE across all
26 keys as 83.6%, 97.9%, and 99.8%, respectively, which are
much higher than corresponding 22.7%, 44.9%, and 60.3%
of random guess. Meanwhile, note that the average Phi may
only be used with caution to compare the performance of two
different techniques, due to the difference in the size of keys’
neighborhood.

We also notice that pinpoint and h-hop accuracies of the
letters at corner positions (i.e., "q", "z", "p", and "m") are
higher than those of the letters at the center (e.g., "g" and "h").
This is because typing the letters at corner positions causes
more distinguishable motion patterns than those at the center.
Moreover, we can see that the pinpoint and h-hop accuracies
of letter "z" are much higher than those of other three letters
at the corner positions. The reason behind such disparity is
that our selected AOIs are not evenly distributed. As shown in
Fig. 4(b), the distances between letter "z" and selected AOIs
are greater than those of other letters, and typing "z" thus
causes more distinguishable motion patterns.

Fig. 9 shows the impact of the training set size on the
inference accuracy. As expected, increasing the training set
size can slightly improve the key inference accuracy. Fig. 10
shows the impact of the number of participants in the training
set. We can see that as the number of participants increases,
the key inference accuracy slightly increases in all the cases.
In addition, a small number of participants is sufficient for

9

TABLE II. LIST OF WORDS USED TO TEST THE ATTACK.

Word Length Word Length Word Length Word Length
paediatrician 13 pomegranate 11 unphysical 10 platinum 8
interceptions 13 feasibility 11 institute 9 homeland 8
abbreviations 13 polytechnic 11 extremely 9 security 8
impersonating 13 obfuscating 11 sacrament 9 between 7
soulsearching 13 difference 10 dangerous 9 spanish 7
hydromagnetic 13 wristwatch 10 identity 8 nuclear 7

inquisition 11 processing 10 emirates 8

t o p - 5 t o p - 1 0 t o p - 2 5 t o p - 5 0 t o p - 7 5 t o p - 1 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Inf
ere

nc
e a

ccu
rac

y

 B e r g e r [2 1] V I S I B L E

Fig. 11. Word inference accuracy.

achieving acceptable key inference accuracy, which means that
VISIBLE requires very few attackers to launch.

C. Word Inference Experiment

We now report the experimental results of the word in-
ference attack on the iPad 2 tablet. In this experiment, we
involved two participants and let each participant enter each
word in Table II (which is also used in [21]) once to evaluate
the word inference accuracy. In total, we collected 2 × 27
words with 7∼13 letters, where all the letters in the words are
in lower-case. As in [21], we used the “corn-cob” dictionary
[35] consisting of more than 58, 000 English words. For each
letter in each word, we first used the trained multi-class SVM
classifier to predict one key and obtained a candidate key set
consisting of all the keys that are less than two hops from the
predicated key. Then for each word, we obtained a candidate
word list by filtering out the combinations that are not in the
“corn-cob” dictionary [35].

Fig. 11 compares the overall word inference accuracy of
VISIBLE and the technique proposed in [21] for the tested
words in Table II. To enable direct comparison, we view the
size of the candidate word list output by VISIBLE as the lowest
possible rank of the correct word in the candidate word list if
the correct word is in candidate word list. In other words, if a
candidate word list of c words contains the correct word typed
by the victim, then we say the correct word is among the top-k
candidate words for any k ≥ c. As shown in Fig. 11, the correct
word is among the top-5 candidate words output by VISIBLE
48% of the time, which means that nearly half of the words in
Table II have a candidate word list with no more than 5 words.
Besides, we can see that the correct word is among top-10, top-
25, and top-50 candidate words with probabilities 63%, 78%,

7 8 9 1 0 1 1 1 2 1 3
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Inf
ere

nc
e a

ccu
rac

y
W o r d l e n g t h

 t o p - 1 0
 t o p - 2 5
 t o p - 5 0
 t o p - 1 0 0

Fig. 12. Word inference accuracy vs. the word length.

and 93%, respectively. In contrast, the technique in [21] infers
the correct word in top-10, top-25, and top-50 candidate words
with probabilities 43%, 61%, and 73%, respectively. VISIBLE
thus achieves much higher accuracy for word inference than
[21].

Fig. 12 shows that word inference accuracy increases as
the word length increases. Two reasons account for this trend.
First, a longer word has more constraints in letter combinations
and thus fewer candidate words in the dictionary. Second,
according to statistics of English words, the number of words
of length seven is the largest among all words, so words with
seven letters have the most candidate words in the dictionary,
which leads to a lower inference accuracy.

D. Sentence Inference Experiment

Next, we report VISIBLE’s performance for inferring com-
plete sentences on the iPad 2 tablet. For this experiment, we
used Enron Email Dataset [37]–[39], which comprises over
600,000 emails generated by 158 employees of the Enron
Corporation and is also used in previous work [40] to test the
sentence inference accuracy. We asked one participant to select
two sentences from the dataset and enter the selected sentences
using the alphabetical keyboard of the iPad 2 tablet. The
attacker video-recorded the sentence-entry process using two
camcorders and used a multi-class SVM classifier trained by
the keystroke data. The attacker then performed word inference
to obtain a candidate word list for each word and finally chose
one word from each candidate word list to form a meaningful
sentence based on the linguistic relationship between adjacent
words.

10

 Typed Text: our friends at the university of texas are planning a conference on
 energy economics and finance in february of next year
Inferred Text: *** friends at the university of texas are ******** a conference on
of Cand. 127 7 84 2 2 53 59 1 9 12
 energy economics and finance in february of next year
 84 10 29 64 12 39 14 66 86
 Typed Text: we discuss the major factors underlying the exceptionally high
 volatility of electricity prices
Inferred Text: *** ****** *** major factors underlying the exceptionally high
of Cand. 29 53 10 69 1 83

 volatility of electricity prices
 1 13 2 28

Fig. 13. Sentence inference results.

Fig. 13 illustrates the input sentences and the results
inferred by VISIBLE. The number under each word is the
number of candidate words output by VISIBLE. The red italic
words are the ones correctly chosen by the attacker. The black
non-italic words are the ones in the candidate word list but
hard to choose. Symbol "*" indicates that the corresponding
word is not correctly inferred during word inference. More
detailed investigations find that the incorrectly inferred words
are due to one or two misclassified letters. We expect that the
sentence inference accuracy of VISIBLE can be dramatically
improved by incorporating more advanced linguistic models.

E. PIN Keyboard Experiment

We now evaluate the key inference performance on the
PIN keyboard of the iPad 2 tablet. In this experiment, we
involved three participants. Intuitively, the key inference on
the PIN keyboard is more difficult than that on the alphabetical
keyboard for mainly two reasons. First, all the keys are located
in a relatively small area in the central part of the touchscreen.
Second, the typed keys are very likely to be random, and
there are no relationships (e.g., linguistic relationship) between
adjacent keystrokes.

Table III compares the pinpoint and 1-hop accuracies of
VISIBLE and random guess for each key on the PIN keyboard.
We can see that the pinpoint accuracy of each key ranges from
21% for number "9" to 61% for "c" cancel key. The average
pinpoint accuracy of VISIBLE across all 26 letters is 38%,
which is more than four times of that of random guess, i.e.,
100
11 = 9%. When considering one-hop neighborhood, the P 1

i
of VISIBLE for each key is still much higher than that of
random guess. We can see that the average P 1

i of VISIBLE
across all 11 keys is 68%, which is much higher than 36% of
random guess. Again, the average P 1

i should be only used with
caution to compare the inference accuracies of two techniques.

Moreover, comparing Tables I and III, we can see that
although the PIN keyboard has fewer keys than the alphabetical
keyboard, the key inference accuracy of the PIN keyboard is
not dramatically higher than that of the alphabetical keyboard.
The reason is that the keys of the PIN keyboard reside in a

TABLE III. KEY INFERENCE RESULTS FOR PIN KEYBOARD.

Key Pi Ω1(i) |Ω1(i)| P 1
i

VIS RG VIS RG
1 21% 9% 1, 2, 4 3 58% 27%
2 25% 9% 1, 2, 3, 5 4 75% 36%
3 45% 9% 2, 3, 6 3 63% 27%
4 55% 9% 1, 4, 5, 7 4 81% 36%
5 40% 9% 2, 4, 5, 6, 8 5 66% 45%
6 35% 9% 3, 5, 6, 9 4 64% 36%
7 44% 9% 4, 7, 8 3 73% 27%
8 23% 9% 5, 7, 8, 9, 0 5 53% 45%
9 27% 9% 6, 8, 9, c 4 61% 36%
0 47% 9% 0, 8, c 3 72% 27%
c 61% 9% 0, 9, c 3 80% 27%

Avg. 38% 9% - 4 68% 36%

relatively small area in the central part of the touchscreen,
and the motion patterns caused by different keys are not
so distinguishable. In contrast, even though the alphabetical
keyboard has more keys, they are located in a relatively large
area from the left side to the right side of the touchscreen.
The motion patterns of different keys, especially distant ones,
cause more distinguishable motion patterns.

F. Impact of Environmental Factors

We also evaluate the impact of a number of environmental
factors on the performance of VISIBLE.

a). Different Light Conditions. Our attack relies on ana-
lyzing the video recordings of the tablet backside during the
victim’s typing process, while the video quality is affected by
light conditions. In general, the low-light condition will lead
to increased video noise, streaking, blurred motion, and poor
focus. We did key inference experiments under light conditions
of 400 lux (normal) and 180 lux (low light). Fig. 14 shows
the key inference results for each key. We can see that the
key inference accuracy decreases slightly as the light condition
changes from 400 lux to 180 lux, which is expected. However,
the key inference result under 180 lux is still quite acceptable,

11

a b c d e f g h i j k l m n o p q r s t u v w x y z A v g .
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ac
cu

rac
y

L e t t e r

 N o r m a l L o w l i g h t I m p e r f e c t

(a) One-hop accuracy.

a b c d e f g h i j k l m n o p q r s t u v w x y z A v g .
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ac
cu

rac
y

L e t t e r

 N o r m a l L o w l i g h t I m p e r f e c t

(b) Two-hop accuracy.

a b c d e f g h i j k l m n o p q r s t u v w x y z A v g .
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ac
cu

rac
y

L e t t e r

 N o r m a l L o w l i g h t I m p e r f e c t

(c) Three-hop accuracy.

Fig. 14. Alphabetical keyboard inference accuracy under different light conditions and imperfect reconstruction of the attack scenario.

which highlights the wide applicability of VISIBLE in low-
light conditions.

b). Different angles between camcorders and the tablet.
The performance of VISIBLE is also affected by the angles be-
tween the camcorders and the tablet. In previous experiments,
the angle between the camcorders and tablet was 90 degree.
We changed the angle to 60 and 30 degrees while keeping the
distance between the camcorders and tablet unchanged. The
experimental result is shown in Fig. 15 for each key’s inference
accuracy by considering one-hop, two-hop, and three-hop
neighbors. We can see that in each of three subfigures, 90
and 60 degree angles lead to similar key inference accuracy
which is nevertheless better than that of the 30 degree angle.
The reason is as follows. Each camcorder has a specific Depth
of Field (DOF) that is the distance between the nearest and
farthest objects in a scene that appear acceptably sharp in an
image. If the angle between the camcorders and the tablet is 90
or 60 degree, all the AOIs are in the DOF of the camcorders
so their motions can be clearly recorded. However, if the
angle between the camcorders and the tablet is too small, the
camcorders cannot contain all the AOIs in their DOF, which
leads to blurred AOI images and thus inaccurate estimation of

tablet backside motions. If the angle has to be small due to
practical constraints, the attacker can use multiple camcorders
to record the motions of different AOIs to obtain sharp image
of each AOI.

c). Imperfect reconstruction of the attack scenario. As
mentioned in Section V-B, to launch a successful key inference
attack, the attacker needs to reconstruct the attack scenario
based on recorded images. However, the reconstructed layout
cannot be exactly the same as the true layout. We therefore
evaluate the impact of imperfect reconstruction of the attack
scenario. For this experiment, we changed the location of the
camcorders randomly by five centimeters and the position of
the tablet by three centimeters and then redid the key inference
experiment. Fig. 14 shows the key inference accuracy when the
attack scenario is not perfectly reconstructed. We can see that
the key inference accuracy for each key is only slightly lower
than that under perfect reconstruction, which shows the robust-
ness of VISIBLE against small environment change. Note that
attack scenario reconstruction is under the full control of the
attacker and does not involve the victim. Its accuracy depends
only on the quality of the recorded images, and we expect
the reconstructed attacker scenario to be accurate in practice.

12

a b c d e f g h i j k l m n o p q r s t u v w x y z A v g .
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ac
cu

rac
y

� � 	 	 � �

� � �
� � � �
� � � �
�

(a) One-hop accuracy.

a b c d e f g h i j k l m n o p q r s t u v w x y z A v g .
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ac
cu

rac
y

� � 	 	 � �

� � �
� � � �
� � � �
�

(b) Two-hop accuracy.

a b c d e f g h i j k l m n o p q r s t u v w x y z A v g .
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ac
cu

rac
y

� � 	 	 � �

� � �
� � � �
� � � �
�

(c) Three-hop accuracy.

Fig. 15. Alphabetical keyboard inference accuracy for different angles between the tablet and camcorders.

On the other hand, if the environment changes significantly
during video recording, e.g., the victim changes position or
moves the tablet for more than 10 centimeters, the attacker
may need to launch a new round of attack to obtain accurate
inference result.

G. Experiments on a Google Nexus 7 Tablet

To demonstrate the universality of VISIBLE, we also
did experiments on a Google Nexus 7 tablet with a 7-inch
touchscreen which is smaller than that of an iPad 2. Backside
motion estimation on Nexus 7 is easier than that on an iPad
2 tablet for two reasons. First, the size of Nexus 7 is smaller
than that of iPad 2, so we were able to video-record the clear
tablet backside motion with only one camcorder. Second, the
Nexus 7’s backside has more texture information (e.g., logo
and dots) which enables motion estimation at more parts of
the tablet backside.

Fig. 16 compares the performance of VISIBLE on a Google
Nexus 7 tablet with Android 4.4 with that on an iPad 2 tablet
with iOS 8. It is easy to see that the key inference accuracy of
VISIBLE is similar on both tablets. This means that VISIBLE

is applicable to smaller-size tablets as long as there are
sufficient areas with texture information on the tablet backside,
which holds for almost all tablets. Besides, we can find that the
performance on Nexus 7 is slightly better than that on iPad 2.
The reason is that the Nexus 7’s backside has more texture
information for the attacker to extract motion information,
while the iPad 2’s backside has less texture information (as
shown in Fig. 4(a)). As mentioned in Section V-C, AOIs near
the edges of the tablet backside and separated from each
other tend to have larger and more distinctive motions than
others, making them more capable of differentiating the motion
patterns caused by different keystrokes. Therefore, VISIBLE
performs better on the tablets with rich texture information on
their backsides.

VII. CONCLUSION, COUNTERMEASURES, AND FUTURE
WORK

In this paper, we proposed VISIBLE, a video-assisted key
inference attack framework to infer the victim’s typing content
based on the video recordings of the tablet backside. We
adopted complex steerable pyramid decomposition to obtain
the subtle motions on the tablet backside and used machine

13

a b c d e f g h i j k l m n o p q r s t u v w x y z A v g .
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ac
cu

rac
y

L e t t e r

 i P a d 2 N e x u s 7

(a) One-hop accuracy.

a b c d e f g h i j k l m n o p q r s t u v w x y z A v g .
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ac
cu

rac
y

L e t t e r

 i P a d 2 N e x u s 7

(b) Two-hop accuracy.

a b c d e f g h i j k l m n o p q r s t u v w x y z A v g .
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ac
cu

rac
y

L e t t e r

 i P a d 2 N e x u s 7

(c) Three-hop accuracy.

Fig. 16. Alphabetical keyboard inference accuracy on a Google Nexus 7 tablet and an iPad 2 tablet.

learning techniques to infer the typed keys, words, and sen-
tences. We thoroughly evaluated the performance of VISIBLE
via extensive experiments. Our results show that VISIBLE
can achieve high key inference accuracy for both PIN and
alphabetical soft keyboards and correctly infer the victim’s
typed words or sentences with very high probability.

There are several possible countermeasures against VISI-
BLE. The most straightforward defense is to design a large
featureless cover to cover the stand or the tablet to prevent
the attacker from finding useful AOIs in the recorded video.
The second possible defense is to randomize the layouts of
the PIN and alphabetical soft keyboards, such that the attacker
cannot recover the typed keys even if he can infer the keystroke
positions on the touchscreen. This defense may be effective,
but it sacrifices the user experience, as the user needs to
find every key on a random keyboard layout during every
key-typing process. Another possible defense is to have on-
board vibrators generate vibrations during the typing process
to mask the motions caused by the user’s typing process.
However, unlike smartphones, most current commercial off-
the-shelf tablets are not equipped with on-board vibrators.
The ultimate solution is to cover the whole tablet (both the

front and back sides). Though most effective, this solution is
inconvenient and might be socially awkward. The investigation
of these defenses is left as future work.

To the best of our knowledge, VISIBLE is the first attempt
to utilize the backside motion of tablets for keystroke analysis.
There are still many issues worth investigation in addition to
the countermeasures above. As we mentioned in Section V-B,
higher resolutions can help us video-record more texture
information details on the tablet backside, and higher frame
rates could video-record more motion details overtime. We
plan to test VISIBLE with more advanced camcorders with
higher resolutions and frame rates. We also seek to investigate
the impact of optical and digital zoom and the distance between
camcorder and the victim’s tablet. In this paper, we only
consider the lower-case letters in the English alphabet. In
practice, more contents such as upper-case letters, punctuation,
characters, and key combinations might be typed by the victim.
Further studies on this issue are challenging but meaningful.
Our current study assumes that the victim places the tablet
with a holder on a desk, while another common scenario is to
hold the tablet by hand. In this case, the motion of the tablet
backside is the combination of the motions of the holding hand

14

and the non-holding hand’s keystrokes. Keystroke inference
in this scenario is much more challenging because we need
to cancel the time-varying motion of the holding hand. In
VISIBLE, the attacker needs to reconstruct the attack scenario
to obtain a training data set to infer the victim’s typed inputs.
Although feasible, it is not so convenient. A more attractive
way is to build a unified and normalized model, which could
automatically transfer motions video-recorded in different dis-
tances and angles to a unified and normalized distance and
angle. This will greatly improve the convenience of launching
our proposed attack and deserves further investigations.

ACKNOWLEDGMENT

We would also like to thank our shepherd, Patrick Traynor,
and the anonymous NDSS reviewers for insightful comments.
This work was partially supported by the US National Science
Foundation under grants CNS-1514381, CNS-1513141, CNS-
1421999, CNS-1514014, and CNS-1422301.

REFERENCES

[1] “Gartner: Device shipments break 2.4b units in 2014, tablets to
overtake pc sales in 2015,” http://techcrunch.com/2014/07/06/gartner-
device-shipments-break-2-4b-units-in-2014-tablets-to-overtake-pc-
sales-in-2015/.

[2] M. Shahzad, A. Liu, and A. Samuel, “Secure unlocking of mobile touch
screen devices by simple gestures: You can see it but you can not do
it,” in ACM MobiCom’13, Miami, FL, Sep. 2013, pp. 39–50.

[3] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for
smartphones,” in NDSS’13, San Diego, CA, Feb. 2013.

[4] J. Sun, R. Zhang, J. Zhang, and Y. Zhang, “Touchin: Sightless two-
factor authentication on multi-touch mobile devices,” in IEEE CNS’14,
San Francisco, CA, Oct. 2014.

[5] Y. Chen, J. Sun, R. Zhang, and Y. Zhang, “Your song your way:
Rhythm-based two-factor authentication for multi-touch mobile de-
vices,” in IEEE INFOCOM’15, Hongkong, China, Apr. 2015.

[6] M. Backes, M. Dürmuth, and D. Unruh, “Compromising reflections-or-
how to read lcd monitors around the corner,” in IEEE S&P’08, Oakland,
CA, May 2008.

[7] M. Backes, T. Chen, M. Duermuth, H. Lensch, and M. Welk, “Tempest
in a teapot: Compromising reflections revisited,” in IEEE S&P’09,
Oakland, CA, May 2009.

[8] D. Balzarotti, M. Cova, and G. Vigna, “Clearshot: Eavesdropping on
keyboard input from video,” in IEEE S&P’08, Oakland, CA, May 2008.

[9] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “A
fast eavesdropping attack against touchscreens,” in IAS’11, Melaka,
Malaysia, Dec. 2011.

[10] R. Raguram, A. White, D. Goswami, F. Monrose, and J.-M. Frahm,
“ispy: Automatic reconstruction of typed input from compromising
reflections,” in AMC CCS’11, Chicago, IL, Oct. 2011.

[11] Y. Xu, J. Heinly, A. White, F. Monrose, and J.-M. Frahm, “Seeing dou-
ble: Reconstructing obscured typed input from repeated compromising
reflections,” in AMC CCS’13, Berlin, Germany, Oct. 2013.

[12] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition
of touched keys on mobile devices,” in AMC CCS’14, Scottsdale, AZ,
Nov. 2014.

[13] D. Shukla, R. Kumar, A. Serwadda, and V. Phoha, “Beware, your hands
reveal your secrets!” in AMC CCS’14, Scottsdale, AZ, Nov. 2014.

[14] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion,” in USENIX HotSec’11, Berkeley, CA, Nov.
2011.

[15] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory:
Password inference using accelerometers on smartphones,” in ACM
HotMobile’12, San Diego, CA, Feb. 2012.

[16] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. Choudhury, “Tap-
prints: your finger taps have fingerprints,” in ACM MobiSys’12, Low
Wood Bay, Lake District, UK, June 2012, pp. 323–336.

[17] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors,” in ACM
WiSec’12, Tucson, AZ, Feb. 2012.

[18] L. Simon and R. Anderson, “Pin skimmer: Inferring pins through the
camera and microphone,” in SPSM’13, Berlin, Germany, Nov. 2013.

[19] S. Narain, A. Sanatinia, and G. Noubir, “Single-stroke language-
agnostic keylogging using stereo-microphones and domain specific
machine learning,” in ACM WiSec’14, Oxford, United Kingdom, Jul.
2014.

[20] L. Zhuang, F. Zhou, and J. Tygar, “Keyboard acoustic emanations
revisited,” in ACM CCS’05, Alexandria, VA, Nov. 2005.

[21] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard
acoustic emanations,” in ACM CCS’06, Alexandria, VA, Nov. 2006.

[22] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using
keyboard acoustic emanations,” in ACM CCS’14, Scottsdale, AZ, Nov.
2014.

[23] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iphone:
Decoding vibrations from nearby keyboards using mobile phone ac-
celerometers,” in ACM CCS’11, Chicago, IL, Nov. 2011.

[24] D. Fleet and A. Jepson, “Computation of component image velocity
from local phase information,” Int. J. Comput. Vision, vol. 5, no. 1, pp.
77–104, Aug. 1990.

[25] T. Gautama and M. V. Hulle, “A phase-based approch to the estimation
of the optical flow field using spatial filtering,” IEEE Trans. Neural
Netw., vol. 13, no. 5, pp. 1127–1136, Sep. 2002.

[26] E. Simoncelli and W. Freeman, “The steerable pyramid: A flexible
architecture for multi-scale derivative computation,” in ICIP’95, Wash-
ington, DC, Oct. 1995.

[27] E. Adelson, C. Anderson, J. Bergen, P. Burt, and J. Ogden, “Pyramid
methods in image processing,” RCA Engineer, vol. 29, no. 6, pp. 33–41,
1984.

[28] J. Portilla and E. Simoncelli, “A parametric texture model based on
joint statistics of complex wavelet coefficients,” Int. J. Comput. Vision,
vol. 40, no. 1, pp. 49–70, Oct. 2000.

[29] A. Torralba and A. Oliva, “Depth estimation from image structure,”
IEEE Trans. Pattern Anal. Mach. Intell., pp. 1226–1238, Sep. 2002.

[30] R. Bergman, H. Nachlieli, and G. Ruckenstein, “Detection of textured
areas in images using a disorganization indicator based on component
counts,” 2007, HP Laboratories Israel Technical Report.

[31] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-
based video motion processing,” ACM Trans. Graph, vol. 32, no. 4, pp.
80:1–80:10, Jul. 2013.

[32] A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and
W. Freeman, “The visual microphone: Passive recovery of sound from
video,” ACM Trans. Graph, vol. 33, no. 4, pp. 79:1–79:10, Jul. 2014.

[33] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector ma-
chines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27,
2011, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[34] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. Witten, “The weka data mining software: An update,” SIGKDD
Explor, vol. 11, no. 1, pp. 10–18, Nov. 2009.

[35] “corn-cob dictionary,” http://www.mieliestronk.com/wordlist.html.
[36] P. Brown, P. deSouza, R. Mercer, V. Pietra, and J. Lai, “Class-based

n-gram models of natural language,” Comput. Linguist., vol. 18, no. 4,
pp. 467–479, Dec. 1992.

[37] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email
classification research,” in Machine learning: ECML 2004. Springer,
2004, pp. 217–226.

[38] “Enron email dataset,” https://www.cs.cmu.edu/ ./enron/.
[39] “Parakweet lab’s email intent data set,”

https://github.com/ParakweetLabs/EmailIntentDataSet.
[40] D. Ping, X. Sun, and B. Mao, “Textlogger: Inferring longer inputs on

touch screen using motion sensors,” in ACM WiSec’15, New York, NY,
Jun. 2015.

15

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Related Work
	Video Processing Basics
	Phase-based Optical Flow Estimation
	Complex Steerable Pyramid Decomposition

	Adversary Model
	VISIBLE Framework
	VISIBLE Overview
	Video Recording and Preprocessing
	AOIs Detection and Selection
	Decompositions of Selected AOIs
	Motion Detection via Phase Variances
	Feature Extraction
	Classifier Training
	Keystroke Inference
	Text Inference

	Performance Evaluation
	Experiment Design
	Alphabetical Keyboard Experiment
	Word Inference Experiment
	Sentence Inference Experiment
	PIN Keyboard Experiment
	Impact of Environmental Factors
	Experiments on a Google Nexus 7 Tablet

	Conclusion, Countermeasures, and Future Work
	References

