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Abstract—Machine learning classifiers are a vital component
of modern malware and intrusion detection systems. However,
past studies have shown that classifier based detection systems are
susceptible to evasion attacks in practice. Improving the evasion
resistance of learning based systems is an open problem. To
address this, we introduce a novel method for identifying the
observations on which an ensemble classifier performs poorly.
During detection, when a sufficient number of votes from in-
dividual classifiers disagree, the ensemble classifier prediction is
shown to be unreliable. The proposed method, ensemble classifier
mutual agreement analysis, allows the detection of many forms
of classifier evasion without additional external ground truth.

We evaluate our approach using PDFrate, a PDF malware
detector. Applying our method to data taken from a real network,
we show that the vast majority of predictions can be made with
high ensemble classifier agreement. However, most classifier eva-
sion attempts, including nine targeted mimicry scenarios from two
recent studies, are given an outcome of uncertain indicating that
these observations cannot be given a reliable prediction by the
classifier. To show the general applicability of our approach, we
tested it against the Drebin Android malware detector where an
uncertain prediction was correctly given to the majority of novel
attacks. Our evaluation includes over 100,000 PDF documents
and 100,000 Android applications. Furthermore, we show that our
approach can be generalized to weaken the effectiveness of the
Gradient Descent and Kernel Density Estimation attacks against
Support Vector Machines. We discovered that feature bagging
is the most important property for enabling ensemble classifier
diversity based evasion detection.

I. INTRODUCTION

The use of machine learning has emerged as one of the
primary techniques employed to address a wide range of
malfeasance and malicious activities. Applications of machine
learning include clustering of malware families [7], [20],
detection of malicious downloads [12], [34], detection of
account misuse in social networks [14], [44], and detection of
commonly exploited file formats such as Java archives [36] and
documents [24], [25], [39]. Moreover, statistical or machine
learning techniques have been used successfully for years to
identify SPAM [11], [21], [35].
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One of the main weaknesses of systems that employ
machine learning classification in adversarial environments is
their susceptibility to evasion attacks. With evasion attacks, we
refer to the classes of attacks that take advantage of knowledge
of how the machine learning system operates, and in many
cases utilize access to the training set and features, to evade
detection passively or actively [8], [9], [15], [33], [45].

A common technique used in evasion attacks against ma-
chine learners is mimicry. Mimicry attacks thwart detection by
making the attack data appear benign according to the model
used by the intrusion detection system. Often this is achieved
by hiding overtly malicious content through encoding or en-
cryption [28], [42] or minimizing the footprint of malicious
content through data misuse or code re-use attacks [17], [37].
For instance, content aligning with a benign observation is
added to cover up or drown out the malicious content. Many
detection systems are evaded by exploiting differences in the
detection system and the systems being protected [16], [19].
Even if operational details of defense systems are kept secret,
enough knowledge to conduct evasion can often be obtained
solely from external testing [18]. With all of these potential
evasion vectors, preventing detection evasion remains an open
problem.

Our approach is not to prevent all possible evasion attacks,
but to introduce a mechanism that provides detection of poor
classifier performance. We analyze the use of introspection in
an ensemble classifier to detect when the classifier provides
unreliable results at classification time. The use of ensemble
classifier mutual agreement analysis relies on the intuition
that when individual classifiers in an ensemble vote for the
same prediction, the prediction is likely to be accurate. When
a sufficient number of the votes are in opposition, then the
classifier prediction is not trustworthy. In this state of internal
classifier disagreement, the detector returns the outcome of
uncertain instead of a prediction of benign or malicious. In
operation, confidence in the predictions of the classifier is
improved at the cost of a small portion of the samples being
labeled as uncertain, indicating that the classifier is not fit
to provide an accurate response. This separation of accurate
predictions from uncertain predictions is possible because the
majority of the misclassifications, including evasion attempts,
have a classifier voting score distribution distinct from the
accurate predictions.

To evaluate our technique, we applied mutual agree-
ment analysis to two well-studied malware detection systems:
PDFrate [40] and Drebin [4]. PDFrate uses features derived
from document structure and metadata fed into a Random



Forest classifier to detect Trojan PDFs. PDFrate is used in
real world intrusion detection systems and can be evaluated by
the public through submissions to pdfrate.com. PDFrate was
selected because it is publicly accessible, well documented,
uses an ensemble classifier which returns the raw voting
score, and has been subjected to multiple recently published
mimicry attacks [26], [27], [43]. Our evaluation includes over
100,000 documents sourced from an operational environment
and hundreds of malicious documents in nine unique evasion
scenarios from two independent evasion studies. To demon-
strate the general applicability of our approach, we apply
mutual agreement analysis to the Drebin Android malware
detector using over 100,000 applications, including over 5,000
malicious applications in over 20 labeled malware families. We
find that mutual agreement analysis enables the identification
of novel malware that would otherwise not be detected reliably.

In building an evasion resistant ensemble using Support
Vector Machines (SVM) as base classifiers, we find that
feature bagging, or constructing many individual classifiers
with randomized subsets of the whole feature set, is crucial
to providing this discriminatory power. Using this method, we
counter the Gradient Descent and Kernel Density Estimation
(GD-KDE) attack, which is highly successful against a tradi-
tional SVM classifier.

II. RELATED WORK

Adversarial learning is an active research topic [18]. Some
studies have proposed methods for creating effective classi-
fier based intrusion detection systems [6], [15], [41]. Many
studies have addressed the importance of data sanitization or
adversarial influence at training time [5], [13], [23], [30]. Yet
others focus on evasion of the deployed classifier [8], [27],
[43]. We also focus on evasion of a classifier during operation,
but instead of focusing on strategies for evasion, we propose
a means of detecting these evasion attempts.

Estimation of confidence based on knowledge of a pop-
ulation has long been foundational to statical methods [31].
Contemporary research has demonstrated how these confidence
estimates can be applied to a machine learning based classifier
deployed in an online setting [38]. However, since these
approaches rely on new observations matching the distributions
of training samples for which ground truth is known, they
are not applicable to intrusion detection systems which face
novel observations and mimicry attacks. Rather than seeking
to quantify the overall accuracy of a classifier, we identify the
individual observations for which a classifier cannot provide
a reliable response. Our approach makes use of data already
provided by the classifier, without additional appeal to ground
truth or independent outlier analysis.

Recent work has demonstrated that the diversity in ensem-
ble classifiers can improve malware detection rates [22], [29],
[46], [47]. Few studies, however, advance practical strategies
for detection of evasion attempts against these ensemble clas-
sifiers. Chinvale et al. proposed the use of mutual agreement
between a small number of independent SPAM filters to
optimize individual classifier re-training necessary due to drift
in input data [11]. We extend this approach to introspection
of ensemble classifiers in order to provide a per observation
confidence estimate at test time. We differ fundamentally from

Chinvale et al. in that they use the majority result of their en-
sembles as ground truth for re-training of individual classifiers
while we focus on identifying the specific examples where the
ensemble prediction is not trustworthy. In short, Chinvale et al.
use diversity in ensembles to improve classifier performance.
We use diversity to identify when resorting to external ground
truth is necessary. We study the factors that enable diversity
based confidence estimates in ensembles using variations of
bagging. Going beyond natural drift or novel attacks, we
apply mutual agreement analysis to targeted evasion attempts
consisting of attacks against feature extractors, training data,
and specific classifiers.

Our empirical evaluation relies on current research in ma-
chine learning based malware detectors [4], [40] and mimicry
attacks [26], [27], [43]. We seek to mitigate evasion in these
malware detectors.

III. BACKGROUND

We apply mutual agreement analysis to two malware
detectors: PDFrate and Drebin. Our study of PDFrate includes
two mimicry attacks against PDFrate: Mimicus and Reverse
Mimicry.

A. PDFrate

PDFrate is a machine learning based malware detector
operating on PDF documents. The pdfrate.com website allows
user submissions and returns ratings for these submitted files.
PDFrate is useful for this study because the underlying mech-
anisms are well documented [40], it is openly available for
online attack, and it provides considerable information about
each submitted PDF. Because of this transparency, PDFrate
has been the target of practical mimicry attack studies [26],
[27], [43].

PDFrate classifies PDF documents based on analysis of
their structural and metadata attributes. Risk factors for a ma-
licious document include items such as existence of Javascript
objects or improperly formatted timestamps. On the other
hand, benign documents contain inert content such as text
content or font objects. Basic structural and metadata informa-
tion is extracted using regular expressions applied to the raw
document. This small subset of structural information taken
from the document is presented to the user in the document
scan report. From this base information, features are extracted.
Examples of features include the number of Javascript objects
and the relative position of the end of file marker in the
document. All told, 202 features are used.

Random Forests is used as the classifier in PDFrate. A
Random Forest is constructed of hundreds or thousands of
individual classification trees. For each tree, a subset of the
training set is used for construction. At each node in the tree,
a subset of features is tried to determine which feature and
threshold best divides the classes. This process is repeated until
each leaf node contains a single class. Hence, in a Random
Forest, each tree is based on both a randomly selected subset
of the training data and the features. New observations are
run through each tree, the leaf node dictating the vote for
that tree. A discriminating characteristic of PDFrate is that it
provides a score or rating instead of a simple benign/malicious



determination. The score provided by PDFrate is the portion
of trees that voted for the positive (malicious) class.

The PDFrate website provides scores from classifiers based
on multiple training sets. The Contagio data set is taken from
a widely available data set designated for researchers [32]. It
contains 10,000 documents, evenly split between benign and
malicious. The list of documents in this data set is published
openly. The second data set was composed by researchers at
George Mason University and is called the University data set.
It contains a much larger number of documents, over 100,000,
but the exact composition of the training set is not published.
We use both of these training sets, and the classifiers derived
from them, in this study.

B. Mimicus

Mimicus [1] is a framework for performing mimicry at-
tacks against PDFrate. It is the implementation of what is
described by Srndi¢ and Laskov as “the first empirical security
evaluation of a deployed learning-based system” [43]. It is an
independent, comprehensive, and openly available framework
for attacks against the online implementation of PDFrate.

Mimicus implements mimicry attacks by modifying ex-
isting malicious documents to appear more like benign doc-
uments. Mimicus adds markers for additional structural and
metadata items to documents. These additions do not involve
adding actual content that is interpreted by a standards-
conforming PDF reader, but rather these additions exploit a
weakness in the feature extractor of PDFrate. The extraneous
PDF attributes are added in slack, or unused space, immedi-
ately preceding the document trailer (structure at the end of the
document), which is not prohibited by the PDF specification.
This approach provides considerable flexibility in the evasion
attack as the additional elements do not have to be valid.
Mimicus enables a simple process for the attacker. The attacker
constructs a malicious document without concern for PDFrate
evasion. Mimicus then adds the necessary decoy structural
elements. This mimicry attack only adds fake elements to the
document file-no existing elements are removed or modified.

Mimicus constructs these decoy elements by comparing
a malicious document to multiple different benign documents.
The feature vectors for the malicious documents are adjusted to
mirror the feature vectors for the benign documents. These ad-
justments are bounded by the modification approach Mimicus
uses. The candidate mimicry feature vectors are run through a
local PDFrate replica to determine the scores. The best feature
vector is selected. That feature vector is used as the goal in
modifying the original malicious document by adding decoy
structural and metadata elements. Due to interrelated features
and other complications, it is not feasible to construct a final
mimicry malicious document that exactly matches the target
mimicry feature vector. The resulting malicious document has
a feature vector that is somewhere between that of the original
Trojan document and that of a benign document. After the
mimicry document is created, it is submitted to pdfrate.com
for evaluation.

An important observation of the Mimicus study is that the
interdependency of PDFrate’s features make mimicry attacks
more difficult because modifying one feature necessarily af-
fects other features. It is generally accepted that irrelevant

or redundant features are not desirable for machine learning
methods. However, in the case of PDFrate, redundant features
appear to make evasion attacks, like those implemented by
Mimicus, more difficult by making construction of a PDF
matching a target feature vector more difficult.

The Mimicus attack model requires knowledge of the
feature set used by PDFrate. The premise is that for a mimicry
attack to be successful, at least knowledge of the type of fea-
tures is necessary. Also, since this attack leverages a difference
between normal PDF readers and the PDFrate feature extractor,
knowledge of how to exploit this difference is also necessary.
Hence, all Mimicus attack scenarios are labeled with an “F”,
indicating that the attacker used knowledge of the feature set.

Relying on the common basis of the feature extraction,
the Mimicus attacks demonstrate various levels of knowledge
used by the attacker. In situations where the training data and
classifier are known by the attacker, replicas that are very close
to the original are used. When an attacker with limited system
knowledge is modeled, reasonable substitutes are employed.
The labels “T” and “C” are used to denote attacker knowledge
of training data and classifier, respectively. Hence, an attack
scenario with the label “FTC” denotes attacker knowledge of
all three major facets of PDFrate.

The training set used by the Contagio classifier of PDFrate
is publicly documented and is readily available to researchers.
Hence, in attack scenarios where the training data is known
by the attacker, the same data set is used by PDFrate and
Mimicus. For scenarios where the attacker has no knowledge
of the training set, Srndi¢ and Laskov compiled a surrogate
training set with malicious documents sourced from VirusTotal
and benign documents sourced from the Internet. In addition,
they selected 100 malicious documents from within the Con-
tagio training set for the baseline attack documents, To allow
reproduction of results, all of the data sets used by Srndi¢ and
Laskov are documented.

Lastly, to complete the offline PDFrate replica, Srndi¢ and
Laskov used a Random Forests classifier when knowledge
of the classifier was known, and a Support Vector Machine
classifier to simulate the case of the naive attacker. The Mim-
icus study shows that when all three particulars of PDFrate
are spoofed, the result is nearly identical scores from the
PDFrate online and the Mimicus offline classifier, despite
various implementation differences. Mimicus also implements
a GD-KDE attack which seeks to attack the SVM surrogate
classifier directly. This attack does not apply to Random
Forests classifiers, and therefore does not directly apply to
PDFrate.

C. Reverse Mimicry

Maiorca et al. also study evasion against PDFrate and
other PDF document classifiers [26], [27]. They advance the
Reverse Mimicry technique. Instead of adding content to a
malicious document to make it appear benign (as Mimicus
does), they embed malicious content into a benign PDF, taking
care to modify as little as possible. The Reverse Mimicry attack
implements an independent evasion approach against PDFrate.

Three different evasion scenarios are advanced by Maiorca
et al. In the EXEembed scenario, a malicious executable is



implanted in an existing benign PDF document. The malware
is executed when the document is opened. These documents
utilize CVE-2010-1240. In the PDFembed scenario, a mali-
cious PDF is embedded into a benign PDF. These embedded
documents are rendered automatically when the document is
opened. For evaluation, Maiorca et al. embedded a document
leveraging CVE-2009-0927 into existing benign PDF docu-
ments. Lastly, in the JSinject scenario, malicious Javascript, the
same used in the PDFembed embedded document, is injected
directly into the root benign document.

In order to evade detection, the Reverse Mimicry attacks
focus on changing the document structure as little as possible.
For example, in the EXEembed attack, a new logical version
of the PDF is constructed with few new structural elements,
but all the content from the original PDF is left in the file. A
compliant reader will not display the content associated with
the previous version of the document, but the artifacts will
be analyzed by the feature extractor of PDFrate and similar
detectors.

In addition to minimizing the structural artifacts of the
malcode injection, Maiorca et al. make use of PDF encoding,
especially stream compression, to hide the inserted content. For
example, in the PDFembed attack, the malicious document is
embedded in a compressed PDF stream. Detection tools, such
as PDFrate, that do not decompress the PDF streams are not
able to extract features from the embedded malicious PDF.

The Mimicus and Reverse Mimicry attacks use two sep-
arate paths to evade PDFrate. Mimicus uses addition of de-
coy objects that would not be processed by a normal PDF
reader but are parsed by the simple regular expression based
processing of PDFrate. The Reverse Mimicry attacks, on the
other hand, use valid PDF constructs to minimize and hide
malicious indicators. Mimicus operates by adding camouflage
while the Reverse Mimicry attack seeks to make the malicious
elements stealthy. Mimicus leverages extensive knowledge of
PDFrate while the Reverse Mimicry approach uses data hiding
techniques peculiar to the PDF file format.

D. Drebin Android Malware Detector

Ensemble classifier mutual agreement analysis should be
applicable to all situations where evasion is possible, includ-
ing other malware classifiers. We evaluated the utility of
mutual agreement analysis on the Drebin Android malware
detector [4]. Drebin complements PDFrate because it operates
on a software package instead of a document and utilizes
many string based features instead of numerical features. Since
the data used in the original Drebin study is available to
researchers, we use this data for our evaluation.

Drebin operates by performing a quick scan to extract fea-
tures from the Android application manifest and disassembled
code. These features are formatted as strings. Features ex-
tracted from the manifest include the names/values of hardware
components, requested permissions, application components,
and intents (message framework). The values of API calls, used
permissions, and network addresses/URLs are taken from the
disassembled code. The string values are mapped into a binary
feature vector containing over 500,000 unique values.

A linear SVM is trained offline and used to provide weights
(distance from hyperplane) for each feature observed during

classification. This per predictor weight is combined to provide
an overall score and compared to a threshold to determine the
outcome. Due to this scheme, Drebin provides a maliciousness
score and can identify variables that contribute to this score.
Drebin is evaluated with over 100,000 benign and 5,000
malicious samples, providing a false positive rate of 1% and
a malware detection rate of nearly 94%.

IV. APPROACH

An ensemble classifier is constructed from many base
classifiers. To provide meaningful diversity in the ensemble,
each individual classifier is constructed using mechanisms
such as random sampling (bagging) of training data and
features. Typically, the result is combined by voting, where
each independent classifier gets an equal vote. The count of
votes are summed to generate a score. If the score is over 50%,
then the observation is labeled malicious. Otherwise, the result
is benign.

Ensembles have been shown to improve accuracy in many
use cases, including malware detection. However, we have
found the primary advantage of ensemble classifiers to be
that they can provide a measure of internal coherence which
serves as an estimate of the classifier’s confidence of individual
predictions.

In a well preforming ensemble, the majority of individ-
ual classifiers provide the same vote. If the base classifiers
provide conflicting votes, then the ensemble is in a state
of disagreement and the prediction is less trustworthy. The
agreement or disagreement in voting of individual contributors
in the ensemble provides an estimate of the confidence of the
prediction of the ensemble.

A classifier may not be able to provide an accurate response
for some observations. For example, when a 50/50 vote split
occurs in traditional ensembles, a prediction is provided using
a method such as random selection. Most applications will treat
a randomly selected prediction when the classifier is in total
disagreement the same as one where all contributors vote for
the same class. However, in the case of complete disagreement,
the only reasonable interpretation is that the classifier cannot
make a competent prediction.

Diversity in ensemble classifiers is the core attribute that
facilitates mutual agreement based confidence estimates. This
diversity is caused by extrapolation in individual classifiers.
Barring limitations of the classifier scheme and quality of
features, when an observation is close to samples in the
training set, the classification is well supported and should
be accurate. However, as new observations diverge farther
from training samples, the classifier is forced to extrapolate.
For ensemble classifiers which employ bagging effectively, the
farther new observations are from classifier training, the more
disagreement there will be in the ensemble.

This diversity in extrapolation is observed in the Random
Forest based classifiers used in PDFrate. Table I shows the
classification performance of the first 25 trees (out of 1000)
in the Contagio classifier applied to various mimicry attacks.
Performance is reported relative to the forest average number
of votes for the correct class, dividing at 4= 0.5 standard devia-
tions. It is observed that the vast majority of the trees have all



TABLE 1.

RELATIVE PERFORMANCE OF INDIVIDUAL TREES IN CONTAGIO CLASSIFIER INDICATED AS ABOVE (+), BELOW (-), OR WITHIN (0) 0.5

STANDARD DEVIATIONS OF FOREST AVERAGE

Evasion Scenario Individual Tree Performance
F_mimicry 0 + + - 0 0 + 0 + 0 + - + 0 0 0 - + + + +
FC_mimicry + + + - + 0 - + 0 + - + 0 0 0 0 0 0 + + + 0 -
FT_mimicry 0 + + - - 0 0 + 0 0 - 0 0 0 + - - 0 0 + + 0 0 0
FTC_mimicry - + o+ - 0o + 0 - - + 0 - + 0o + + + 0 + - + 0 0
F_gdkde - + + + + + - + + 0 0 + - + + - + 0 - - 0
FT_gdkde + 4+ + + 0 + - + o+ o+ - + 4+ - - 0 0 - + 4+ - 0
JSinject + - - 0o + + - o + + + 0 o + 0 o 0 + - 0 + - 0+ -
PDFembed 0 - - + 0 0 0 - - - - + o+ - - - 0 - - - +
EXEembed - 0 0 - - - + 0 + 0 - - + 0 + - + o+ 0 0 -
TABLE II. ENSEMBLE CLASSIFIER OUTCOMES
,\? 1004
0 < =)
Voting Score | Outcome Evasion Type ~
[0,25] Benign Strong Evasion E
(25,50) . (Benign) . v
[50.75) Uncertain (Malicious) Weak Evasion g 754
[75, 100 ] Malicious No Evasion e
<
= ) Benign\ o/ Malicious | Agree
h : : L > Uncertain | Disagree
three outcomes depending upon the evasion scenario: average = enign) (Malici g
(0), below average (-), and above average (+). Hence, when S
applied to data distant from the training data, the accuracy of @
each tree varies widely between observations. There are no g
universally strong or weak trees. The random noise present Q
when extrapolating far from the training data is what enables b
mutual agreement analysis. % 50 7 160
. Ensemble Classifier Votes (%)
To apply mutual agreement analysis generally, we propose
a new outcome, uncertain, in addition to the predictions of
Fig. 1. Mutual Agreement Based on Ensemble Vote Result

benign and malicious. For example, instead of splitting the vote
region in half, we split it into 4 quadrants. In the 0% to 25%
region, the majority of the votes agree that the result is negative
(benign). Similarly, in the 75% to 100% region, the majority
of the votes agree that the result is positive (malicious).
However, if the score is between 25% and 75%, the individual
classifiers disagree and the outcome is uncertain. To support
comparison with simple ensemble voting predictions, this area
can be split into the other two quadrants: uncertain (benign)
from 25% - 50% and uncertain (malicious) from 50% - 75%.
These classification outcomes are demonstrated in Table II.
The uncertain rate (UR) is the portion of observations that fall
within the uncertain range.

To be more precise about this concept, we introduce a
metric to quantify the agreement between individual votes in
an ensemble classifier:

A=|v—0.5]*%2

Where A is the ensemble classifier mutual agreement rate
and v is the portion of votes for either of the classes. This
function is demonstrated in Figure 1, which also shows the
classifier outcomes resulting from a 50% mutual agreement
threshold. The end and middle points drive the general shape
of this function. If the classifier vote ratio is either O or 1,
then the classifier has full agreement on the result and the
mutual agreement should be 1 (or 100%). If the classifier is
split with 0.5 of the votes for each class, then the mutual
agreement should be at the minimum of 0 (or 0%). As long
as a single threshold is used, it is not important what shape
is used for the lines between these end and middle points—
any continuous curve would allow the selection of a given

threshold on the classifier vote scores. The function need not
follow the distribution of scores, for example. We choose a
linear function because it is straightforward.

The threshold for mutual agreement is the boundary above
which the classifier is said to be in a state of ensemble agree-
ment, and the resulting classification should be considered
valid. Below this mutual agreement rating, the classification is
specious. We use the boundary of 50% throughout most of this
paper. However, this value should be adjusted by the operator.
Decreasing this threshold decreases the number of observations
in the disagreement or uncertain classification zone. Tuning of
this threshold is discussed in detail in Section VI.

Mutual agreement analysis is effective at identifying the
specific samples on which the classifier performs poorly. In the
context of evasion attacks, ensemble mutual agreement serves
as criteria for separating novel attacks and weak mimicry
attacks from effective mimicry attacks. For novel attacks, it
is common for the voting result to be distributed around
50%, indicating that the observations under consideration map
consistently close to neither the benign or malicious samples
in the training set. Since these attacks fall in the relatively rare
uncertain range, they are easily discerned and are considered
weak evasions. Strong mimicry attacks are those where the
distribution of the attack votes is close to that of the benign
observations. Hence, typical novel attacks are identified by
mutual agreement analysis, but strong mimicry attacks cannot
be. Since uncertain observations are supported poorly by the
training set, these observations are the most effective to add
to the training set in order to improve classifier accuracy.



TABLE III. PDFRATE OUTCOMES FOR BENIGN DOCUMENTS FROM

OPERATIONAL EVALUATION SET

Benign [ Malicious
Classifier Uncertain
Contagio 98076 1408 [ 203 40

University | 99217 360 [ 95 |55

TABLE IV. PDFRATE OUTCOMES FOR MALICIOUS DOCUMENTS
FROM OPERATIONAL EVALUATION SET
Benign | Malicious
Classifier Uncertain
Contagio 0] 0] 19] 254
University [ 0 [ 0 [ 0 [ 273

In operation, mutual agreement analysis is employed to
prevent evasion of an intrusion detection system. The mutual
agreement rate is trivially derived from the result provided
by an ensemble classifier at the time that detection occurs.
Ensemble classifier agreement can be used in many ways by
the operator, including adjusting the vote threshold to prevent
false positives or false negatives, filtering observations for
quarantine or more expensive analysis, and prioritizing alerts.
The strength of mutual agreement analysis is that it can be used
to identify probable intrusion detection evasion at the time of
evasion attempts.

V. EVALUATION

To evaluate our approach, we apply mutual agreement
analysis to PDFrate using an operational data set taken from
a real world sensor and mimicry attack data taken from the
Mimicus and Reverse Mimicry attacks. We study the degree
to which mutual agreement analysis separates observations on
which the classifier is reliable from classifier evasions. We also
evaluate the utility of mutual agreement analysis in detecting
novel malware families using the Drebin Android malware
detector.

A. PDFrate Operational Data Set

We applied mutual agreement analysis to PDFrate scores
for documents taken from a network monitor processing files
transfered through web and email. This data set includes
110,000 PDF documents, which we randomly partitioned into
two data sets. The operational evaluation set contains 100,000
documents and operational training set contains 10,000 doc-
uments. Ground truth for the documents was determined by
scanning with many antivirus engines months after collection.
These data sets included 273 and 24 malicious documents
respectively. Table III and Table IV show the scores for
the operational evaluation data set using both the Contagio
and the University classifiers of PDFrate. The distribution of
the PDFrate Contagio classifier scores for the benign and
malicious samples of this operational evaluation data set are
shown in Figure 2 and Figure 3.

It is important to note that the scores for the benign and
malicious examples are weighted heavily to the far end of
their respective score range, with the distribution falling off
quickly. In a typical system deployment, the number of obser-
vations in the uncertain range is very small and the majority
of misclassifications fall within the uncertain region. Hence,
mutual agreement analysis can be used to make an estimate of
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the upper bound on the number of misclassifications, at least
in the absence of strong evasion attacks.

Not only is ensemble classifier mutual agreement analysis
useful for identifying when the classifier is performing poorly,
it is also effective for identifying specific examples which will
provide the most needed support to improve the classifier.
To demonstrate this, we sought to replicate improvements to
the classification scores that would occur in the operational
evaluation data set as additional samples are added to the
classifier training set. We started with the Contagio classifier
and added samples from the operational training set.

Using the original Contagio training data set, we deter-
mined the rating of all the observations in the operational
training set. In an operational setting, all observations above
the uncertain threshold (scores greater than 25) would typically
require additional investigation, whether the outcome is uncer-
tain or malicious. There were 200 documents in the operational
training set matching this criteria. Of these 200 samples, 43
would be false positives and 14 would be false negatives using
a traditional threshold. We added these 200 observations to the
Contagio training set with the correct ground truth and created
another classifier.

For comparison, we also created additional classifiers with
varying sized randomly selected subsets of the operational
training set to simulate randomly selected additions to the Con-



TABLE V. SCORES OF BENIGN DOCUMENTS FROM OPERATIONAL
EVALUATION SET USING CONTAGIO CLASSIFIER SUPPLEMENTED WITH
OPERATIONAL TRAINING DATA

Benign [ Malicious
Additional Training Data | Training Set Size Uncertain
None (original Contagio) 10000 98076 1408 203 40
Random subset 2500 12500 | 99332 265 98 | 32
Random subset 5000 15000 99444 200 71 12
Random subset 7500 17500 | 99502 169 49 7
Uncertain and Malicious 10200 99506 183 26 12
Full training partition 20000 | 99540 134 48 5

TABLE VL SCORES OF MALICIOUS DOCUMENTS FROM
OPERATIONAL EVALUATION SET USING CONTAGIO CLASSIFIER
SUPPLEMENTED WITH OPERATIONAL TRAINING DATA

Benign [ Malicious
Additional Training Data | Training Set Size Uncertain
None (original Contagio) 10000 | O 0 19 | 254
Random subset 2500 12500 | O 14 4 | 255
Random subset 5000 15000 | 0 | 14 4 | 255
Random subset 7500 17500 | 0 | 14 4 | 255
Uncertain and Malicious 10200 | 0 | 14 7 | 252
Full training partition 20000 | O 14 4 | 255

tagio classifier. The performance of these classifiers applied to
the operational evaluation set is demonstrated in Table V and
Table VI

These results indicate that local tuning of the classifier has
a great effect on improving the accuracy of the classifier. Note
that shifting a few samples across the score midpoint in the
wrong direction, as occurs with the malicious observations, is
not considered harmful as these samples are already deep in the
uncertain range (very close to the 50% vote mark) as shown
in Figure 3. The ratio of observations in the benign region
(certain true negatives) rises from 98.3% to 99.8% for either of
the top two re-training strategies, even surpassing the accuracy
of the generally superior University classifier (99.5%). The
corresponding drop in false positives is important because it
coincides with a drop in uncertain observations. In this case, if
an operator responds to all uncertain or malicious observations,
the majority of alerts will be true positives.

The random subset training additions have the outcome
anticipated by intuition. As the number of random samples
added from the training set increases, the classification results
on the partitioned evaluation data improve. Adding the samples
above the uncertain threshold from the training partition results
in a classifier that is very close in accuracy to that constructed
with the complete training partition. It follows that mutual
agreement analysis is effective at identifying the observations
on which the classifier performs poorly. It also follows that
adding these samples to the training set does indeed improve
the classifier by providing support in the region near these
samples. On the other hand, adding the observations for which
there is high mutual agreement improves the classifier very
little. The result of adding the whole training set and adding
the uncertain samples is similar, but the effort invested is
drastically different. The difference in obtaining ground truth
and adding 10,000 vs. 200 observations to the training set is
monumental.

B. Mimicus

To demonstrate the utility of mutual agreement analysis in
identifying observations that evade detection, we reproduced

TABLE VIIL PDFRATE CONTAGIO CLASSIFIER OUTCOMES FOR
MIMICUS EVASION ATTACKS
Benign [ Malicious
Scenario Uncertain
Baseline Attack 0 0 0 100
F_mimicry 2 70 26 2
FC_mimicry 7 78 15 0
FT_mimicry 10 | 64 26 0
FTC_mimicry 33 62 5 0
F_gdkde 71 92 1 0
FT_gdkde 4 1 95 0 1
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Fig. 4. Score Distribution for F_Mimicry Attack

the work of Srndi¢ and Laskov [43] and applied mutual agree-
ment analysis to these evasion attempts. We used the Mimicus
framework to generate PDF documents that implement various
evasion attack scenarios. We used the same data sets as the
Srndi¢ and Laskov publication and submitted the resulting
documents to pdfrate.com to obtain scores. Because we used
the same attack data, our results are limited to 100 samples
per attack type. We were able to achieve results that closely
mirrored those documented in the Mimicus study.

We present the results of classification using mutual agree-
ment from the various attack scenarios in Table VII. Note that
since all of these documents are malicious, the correct classi-
fication is malicious. A rating of benign indicates successful
evasion.

The distribution of PDFrate voting scores for the doc-
uments in each non-GD-KDE scenario is demonstrated in
Figures 4 through 7. The GD-KDE attacks will be addressed
specifically in Section VII. The vote score distribution of these
attacks is largely disjoint of that seen in typical benign or
malicious observations. Using an ensemble classifier diversity
based approach, the majority of these attacks can be separated
from benign observations. Hence, these attacks should be
considered weak mimicry attempts.

When all attributes of the classifier are known, 33% of the
attacks are effective. However, when either the details of the
classifier or the training set are withheld, the attack success rate
drops to 10% or lower. In addition to evaluation against the
Contagio data set, the mimicry attack data was tested against
the classifier trained with the University data set. This results
in an alternate FC attack scenario because the training set is
unknown to the attacker. Figure 8 shows the distribution of
scores from applying the malware from the FTC attack sce-
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Fig. 7. Score Distribution for FTC_Mimicry Attack

nario against the Contagio classifier to the University classifier.
The results are very similar between the two classifiers. In
both cases, only 7 of the 100 evasion attempts are classified
as benign. Carefully comparing Figure 6 and Figure 8 yields
the observation that the University classifier provides a tighter
cluster of scores near the center of the disagreement region.
The results from the Contagio classifier are similar to that of
the University classifier because the Mimicus evasion attempts
use Contagio data for both baseline benign and attack data.
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Fig. 8. Scores for FC_Mimicry Attack Using University Classifier

TABLE VIIL. PDFRATE OUTCOMES FOR REVERSE MIMICRY ATTACKS

Contagio Classifier
Benign [ Malicious
Scenario Uncertain
EXEembed 77 22 1 0
PDFembed 93 7 0 0

0

JSinject 30 | 67 3
University Classifier
Benign [ Malicious
Scenario Uncertain

EXEembed 0 4 16 | 80
PDFembed 81 19 0 0
JSinject 0 | 22 55 | 23

When mutual agreement is utilized, the majority of mimi-
cus attacks are labeled as uncertain, indicating known classifier
failure and possible evasion. In the best mimicry attack sce-
nario, where all attributes of PDFrate are known, only 33% of
the mimicry attempts are successfully classified as benign. If
some details of the classifier, such as the exact training set,
are not known by the attacker, then the mimicry success rate
is below 10%.

C. Reverse Mimicry

We also applied mutual agreement analysis to the Reverse
Mimicry attack proposed by Maiorca et al. [26], [27]. The
exact procedures required to replicate these attacks are not
publicly documented. However, Maiorca et al. provided us with
the documents used in their studies. Their most recent attacks
involved 500 documents in each evasion scenario. To remain
consistent with the Mimicus attack evaluation, we took a 100
sample random subset of each scenario for our evaluation.

In Table VIII, we present the results of applying mutual
agreement analysis to the Reverse Mimicry attacks against both
the Contagio and University classifiers. The score distributions
for these attacks against the University classifier are shown in
Figures 9, 10, and 11. In spite of mutual agreement analysis,
67% of the Reverse Mimicry attacks are successful evasions
(considered benign) against the Contagio classifier.

The University classifier fares much better than the Con-
tagio classifier. The only evasions against the University clas-
sifier are achieved by the PDFembed attack. This attack is
so successful because a complete malicious PDF is embedded
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Fig. 10. Score Distribution for PDFembed Attack

in an otherwise benign document. This embedded document
resides in a compressed data stream, which means that the
structural features cannot be observed by PDFrate’s feature
extractor. This is in contrast to the other scenarios, EXEembed
and JSinject, where despite efforts at minimization, some
indicators of malfeasance remain exposed.

The PDFembed scenario is effective against the detector
at pdfrate.com because it does not perform recursive decoding
and analysis as would be necessary in an operational system.
This failure is similar to malware analysis systems that assume
an input of an unpacked executable and fail when presented
with a packed executable or a Trojan document. When PDFrate
is deployed in operational detection systems, it is usually
done within a framework that provides both decoding of
PDF streams and extraction of PDFs from other containers
such as emails or zip files [3]. In all the PDFembed attacks,
the embedded document was identical. The Contagio and
University classifiers both easily detect this document with
high confidence once it is extracted, returning scores of 97.6%
and 100% respectively.

For the isolated PDFrate implementation, the PDFembed
scenario represents a strong evasion scenario, where classi-
fier introspection provides little benefit because the feature
extractor is evaded so well. Even though the Contagio based
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Fig. 11. Score Distribution for JSinject Attack

classifier is a poor fit for the malware used in the EXEembed
and JSinject, many of these samples still fall in the uncertain
outcome vote range. When the stronger University classifier is
used, mutual agreement analysis flags these evasion scenarios
that would otherwise be successful.

D. Drebin

To apply mutual agreement analysis to the Drebin Android
malware detector, we constructed an ensemble classifier. We
employed a Random Forest classifier, which required adapting
the features to ensure computational efficiency and to ensure
results comparable to the original linear SVM. Instead of
using all string values as features, we used a subset of 8§91
features that comprise the most durable features. We used
all of the features for constrained categories such as API
calls and permissions. For arbitrarily named attributes, such as
components and intents, we utilized the most prolific values,
selecting those which occur over 100 times in the training set.
Lastly, we ignored specific values for highly volatile items such
as URLs and network addresses, which compose over half the
features used by Drebin. Lastly, we summed the occurrences
of each category of features and used these counts as features.
As an optimization, we de-duplicated any equivalent feature
vectors during classifier training (not during evaluation). This
de-duplication, using our narrow feature set, resulted in a
reduction from 123,453 to 63,379 unique benign and 5,560 to
2,185 unique malicious samples. Barring these transformations
of data, we used the published Drebin data sets including data
set partitions in our evaluation.

We tuned our Random Forest based classifier to provide
classification performance comparable to the linear SVM clas-
sifier of Drebin. The primary item we tuned was the ratio
of benign to malicious samples used in training each tree.
This was necessary because there is an extreme imbalance in
the benign to malicious ratio of the various training sets. We
tuned the ratio for individual tree training to 2.5 benign to 1
malicious in order to match the desired false positive rate of
1% chosen by Arp et al. We set the other tunable parameters
for Random Forest to standard values: each Random Forest
contained 1000 trees and the number of variables tried at each
split was set to the square root of the number of features. Our
Random Forest classifier provided an average false positive
rate of 1.06% and a malware detection rate of 92.3% on
the published data set partitions using a traditional thresh-
old without an uncertain region. The Random Forest based
classifier performance is very similar, albeit slightly inferior
to that provided by Drebin’s linear SVM. Figure 12 shows
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TABLE IX. DREBIN RANDOM FOREST CLASSIFIER OUTCOMES AS

MUTUAL AGREEMENT THRESHOLD IS ADJUSTED

Benign Samples

Benign (%) [ Malicious (%)
Mutual Agreement Threshold (%) Uncertain
30 | 97.46 1.49 0.54 0.52
40 | 9649 | 245 0.63 0.43
50 | 95.12 | 3.82 0.71 0.35
Malicious Samples

30 444 | 327 5.44 | 86.85
40 377 | 393 7.30 | 84.99
50 3.16 | 4.56 10.34 | 81.95

the distribution of scores for the benign samples using one of
the published data set partitions. Figure 13 shows the same
for the malicious samples. As expected, the score distributions
are shaped similar to that of PDFrate, but since the classifier
accuracy is lower, the samples are distributed farther from the
respective ends of the score continuum. Table IX shows the
classifier outcomes for typical mutual agreement thresholds.

An important facet of the original Drebin study is the
division of the malware by family and evaluation of the
classifier on previously unknown malware families. This was
achieved by withholding the family to be evaluated from the
training set and then applying the resultant classifier to the
malware samples in that family. It is noted by Arp et al. [4]
that Drebin provides relatively poor classification of previously
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Fig. 14.  Score Distribution for Unknown Family A

unknown malware. We applied our Random Forest based
classifier and uncertain score region to this same problem.
Figure 15 compares the detection rates of the linear SVM
classifier and our Random Forest based classifier using mutual
agreement analysis.

As expected, the vast majority of unknown malware fam-
ilies have the score distribution of a weak evasion attack, in-
dicating that the classifier considers these observations neither
similar to the benign or malicious samples seen in the training
set. As an example, the scores of malware family A are shown
in Figure 14. On average, 75.2% of every family is labeled
as uncertain and an additional 8.2% are labeled as malicious
using our Random Forest based classifier, while 50.6% of
every family is labeled as malicious by the Drebin linear SVM.
Families Q and R represent strong evasion. Arp et al. note that
Family R cannot be reliably detected with the feature set used
by Drebin. While the features used by Drebin are sufficient
for the detection of Family Q when included in the training
set, it is too different from other families in Drebin’s feature
space to be flagged as an evasion. On the other hand, Family
P is so similar to other malware families in Drebin’s feature
space, that it is not necessary to have samples of this family in
the training set. Removing these 3 families, an average 89.7%
of the samples in the remaining 17 families are identified as
malicious or uncertain by the Random Forest classifier, while
53.2% are detected by the linear SVM classifier. It should be
considered advantageous to label these previously unknown
samples as uncertain so that the operator can take action to
improve the classifier. While the linear SVM classifier provides
the average classification accuracy of a coin toss in these
scenarios, the mutual agreement conscious ensemble is able
to flag the majority of the novel attacks as possible evasions.

Mutual agreement analysis is effective at identifying pos-
sible evasions in the PDFrate and Drebin malware detection
systems caused by both novel attacks and targeted mimicries.

VI. MUTUAL AGREEMENT THRESHOLD TUNING

For most of our evaluations, we used a 50% mutual
agreement threshold, which splits the classifier voting score
region into four equal sized quadrants. It is possible to choose
an arbitrary mutual agreement threshold. Table IX contains
Drebin predictions for three mutual agreement threshold levels.
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TABLE X. PDFRATE UNIVERSITY CLASSIFIER PERFORMANCE AS

In Table X, we present the PDFrate University classifier MUTUAL AGREEMENT THRESHOLD IS ADIUSTED

outcomes applied to the operational evaluation data set and the

FC Mimicus attacks across the full mutual agreement range. Benign O’erat“’?‘r‘llleEvaluatlglse
. Mutual Uncertain | Negative Positive | Uncertain
The exact mutual agreement threshold chosen strikes a Agreement Score Rate Rate Rate
balance between improvement in classification failure detec- Threshold Range (TNR) (FPR) (UR)
tion and the number of classifier predictions thrown out as (1)(?:7 e ggg? 853;‘7 00592‘;”
. . o N .8% . o .| 0
uncertain. Operators who wish to have a lower amount of 0% @0.60) | 997% | 0103% | 0.147%
uncertain outcomes may choose a lower threshold. Taking the 30% (35.,65) 99.7% | 0.0832% 0.256%
PDFrate performance in Table X as an example, if 30% is se- ‘;83 82;(5); ggg? 8%5? 822%3’
. . . lo s .5% A o K @
lecteq as a threshold, the uncertain region comprises ensemble 0% 050) 593% T 0.0531% 0.618%
classifier voting scores between 35% and 65% instead of 25% 70% (15.85) 99.1% | 0.0291% 0.825%
and 75% with a 50% threshold. For the operational data set, 80% (10,90) 98.7% | 0.0261% 1.27%
the uncertain rate for benign samples drops from 0.456% to ?8?% (551’3(5); 2;'232 0'012832 3'60‘1‘22
0.256%. However, the number of successful evasion attempts ;
rises from 7% to 12%. The optimal setting for this threshold Malicious Operational Evaluation
depends on the preferences of the operator. The sensitivity of ggor”h"ld Range FI(\)I; 15(1;; IOJ};
uncertain detection is adjusted by tuning the mutual agreement 10% (@5,55) 0% 100% 0%
threshold, setting the boundaries for the uncertain range. 20% (40,60) 0% 100% 0%
30% (35,65 0% 100% 0%
0% (30,70) 0% 100% 0%
VII. GD-KDE AND ENSEMBLE SVMS 50% (25,75) 0% 100% 0%
) 60% (20,80) 0% 99.6% | 0.366%
Mutual agreement analysis should apply to all ensemble 70% (15.85) 0% 99.6% 0.366%
classifiers that provide sufficient diversity in individual classi- 80% (10.90) 0% | 996% | 0.366%
fiers. To validate thi tudied the feasibility of counterin i O3) U X X )
ers. To validate this, we studied the feas y of countering T00% 0.100) 0% 35.6% 0%
evasion against SVMs by applying mutual agreement analysis
to SVMs using an ensemble approach. Mimicus FC Attack
Threshold Range FNR TPR UR
The Mimicus attack framework implements a Gradient (1’(‘]70‘7 S 2‘9‘3 ngf 2(3’20
. . . o 5 o0 o 0
Descent and Kernel Density Estimation (GD-KDE) attack 0% @0.60) % % 5%
against their PDFrate replica utilizing an SVM classifier. This 30% (35,65) 12% 1% 84%
attack operates by exploiting the known decision boundary of ‘5‘83 82;(5); ;3 }Z’ g;?
. . . o N o o 0
a differentiable classifier [8]. 0% 080) = % 0%
. I 0% (15,85) 6% 0% 94%
We reproduced the GD—.KDE evasion attacks of Mlmlc.:us 0% (10.90) 0% 0% T00%
and confirm that they are indeed extremely effective. Using 90% (5,95 0% 0% 100%
the e1071 package of R [2], which relies on 1ibSVM [10], we 100% (0,100) 0% 0% 100%

calculated the average probability of 8.9% malicious (or 91.1%
benign) for both GD-KDE scenarios, putting these attacks
squarely within the evasion region. Srndi¢ and Laskov use the
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TABLE XI. NUMBER OF DOCUMENTS PER GD-KDE ATTACK WHERE
ENSEMBLE SVM CLASSIFIER PROVIDES CORRECT PREDICTION AS
PORTION OF FEATURES USED IS VARIED.

Feature Subset
Attack 5% | 7.5% 10% 12.5%
Baseline Malicious 100 99 98 98
Baseline Benign 2 41 93 94
F_gdkde 100 100 99 5
FT_gdkde 99 100 92 1

TABLE XII. NUMBER OF DOCUMENTS PER GD-KDE ATTACK WHERE
ENSEMBLE SVM CLASSIFIER PROVIDES CORRECT PREDICTION AS
PORTION OF TRAINING DATA USED IS VARIED.

Training Data Subset
Attack 125% | 25% | 50% 100%
Baseline Malicious 86 87 92 98
Baseline Benign 100 100 100 100
F_gdkde 0 0 0 0
FT_gdkde 0 0 0 0

scaled distance from the SVM decision boundary of a different
SVM implementation to provide a similar result. The GD-KDE
attacks demonstrate that introspection of a single classifier such
as SVM cannot be relied upon to detect evasions.

While effective against an SVM classifier, the results on
PDFrate’s Random Forest classifier using the GD-KDE attack
are roughly comparable to the conventional counterparts (see
Table VII). It is is not practical to wage a similar type of
attack against Random Forests because Random Forests have
extremely complex and stochastic decision boundaries.

We sought to determine the extent to which we could
make an SVM classifier identify probable evasions through
diversity enabled introspection. We implemented a simple
SVM based ensemble classifier using 100 independent SVM
classifiers with the score being the simple sum of the votes
of individual classifiers. To determine the attributes important
to building diversity in ensembles, we varied the subset of
features and training data used in constructing each of the
individual SVMs. We performed a full grid search. The most
salient results are reported in Table XI, which shows feature
bagging using the full training data set, and Table XII, which
shows bagging on training data using the full feature set.
These tables demonstrate the portion of classifier outcomes
that match the correct result (malicious or uncertain).

It appears that bagging of training data is not particularly
important in building an ensemble classifier where mutual
agreement analysis is useful. To our amazement, we found
no situation where anything but the full training set provided
the best results.

However, bagging of features is critical to constructing a
classifier where mutual agreement analysis is able to identify
uncertain predictions. This bagging of features for an SVM
classifier provides the necessary diversity in extrapolation that
makes mutual agreement analysis meaningful. It seems that the
individual classifiers based on subsets of the complete feature
set are much harder to evade collectively than a single classifier
using all the features. While a single classifier can be evaded by
successfully mimicking a subset of the features, it appears that
a combination of multiple classifiers based on a small number
of features requires a more complete mimicry across the full
feature set. The application of feature bagging to the many
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TABLE XIII. PDFRATE SVM ENSEMBLE CLASSIFIER OUTCOME FOR

GD-KDE EVASION ATTACKS.

Benign [ Malicious
Attack Uncertain
Baseline Malicious 0 0 2 98
Baseline Benign 93 7 0 0
F_gdkde 3197 0 0
FT_gdkde 8 | 91 1 0

independent SVMs makes a GD-KDE style attack infeasible
as there is no longer a single predictable decision boundary to
attack.

The results also indicate that careful tuning of the portion
of features used in bagging is critical when using an SVM
based ensemble. There seems to be a trade-off between the
ability to correctly classify malicious observations (including
evasion attempts) by using fewer features in each classifier,
and benign observations by using more features. The use of
fewer features results in a more complex classifier with smaller
divisions while more features moves closer to a standard SVM,
which has a single hyperplane divider. These result suggest that
the features used in PDFrate provide better extrapolation for
benign samples. It appears that the malicious samples have
higher variation in PDFrate’s features, requiring more similar
training samples for successful classification.

Table XIII shows the outcomes of the SVM ensemble
classifier applied to the Mimicus GD-KDE attacks and baseline
benign and malicious samples. The outcome shows that while
the evasion attempts are successful in dropping the scores
out of the malicious range, the vast majority of the evasion
attempts fall in the uncertain range. Only 8% of the evasion
attempts are fully successful in the best scenario while only
4.5% of the known data is in the uncertain region. These results
are comparable to results obtained using PDFrate’s Random
Forest classifier where GD-KDE attacks are not possible.
Hence, mutual agreement analysis applies not only to Random
Forests, but seems to apply generally to all ensembles which
have adequate diversity. Bagging of features appears central to
this capability.

VIII. DIiScUSSION AND FUTURE WORK

Mutual agreement analysis in ensemble classifiers provides
an estimate of confidence that the classifier prediction is accu-
rate, without external validation. Many classifiers can provide
a score continuum, such as the distance from the decision
boundary used in SVM, but these metrics are not accurate
in the face of mimicry attacks. Furthermore, conventional
measures of confidence are not applicable to data which
diverges from the population for which ground truth is known.

Mutual agreement reflects the internal consistency of the
classifier. This internal consistency is a proxy for the con-
fidence of the classifier, assuming adequate strength of the
features. The attacks against PDFrate demonstrate that mimicry
resistant features are critical to identification of novel at-
tacks. The sole strong evasion attack against PDFrate was
successful because it fully evaded PDFrate’s features through
embedding a malicious PDF in another, making the malicious
PDF invisible to the feature extractor. Other attacks, while
seeking to fool the feature extractor, were insufficient because
some features were still operative. If the feature extractor is



resistant to tampering and the features are proper indicators
of malfeasance, then novel attacks will either be detected as
malicious or be rated as uncertain. However, if the feature set
(or feature extraction mechanism) is weak, then evasion will
still be possible. Operators must be vigilant to prevent evasion
during the feature extraction phase of malware detection.

In building an ensemble using base SVM classifiers, we
found feature bagging to be critical to generating the diversity
necessary to make mutual agreement measurements meaning-
ful. Unqualified, bagging refers to the utilization of random
subsets of training data. This method is used extensively in
machine learning techniques. In our study, bagging of training
data was not shown to be important for mutual agreement
analysis. This may have been due to a lack of diversity in that
training set. Further studies might show under what conditions
training data bagging provides diversity useful for facilitating
mutual agreement analysis. We also observed that tuning the
portion of features used in our SVM ensemble was important.
We observed no similar need to tune the parameters of Random
Forest based classifiers, but this should be an area of future
study. The number of features tried at each node (mtry) and
the depth of the trees might impact the useful diversity in a
Random Forest. It appears that many features, even if they are
interdependent or have low classification value, contribute to
make evasion more difficult.

If the features are strong, then the relevance of the training
set will dictate the mutual agreement rating for individual
observations. If the test observations are similar to samples
in the training set, then high certainty predictions will occur.
The test observations that differ from the training set in feature
space will be given classifications considered uncertain by the
classifier. In some instances in our evaluation, the quality of
the training set was shown to be important to detection of
evasion attacks. For example, the superior PDFrate University
classifier had considerably fewer evasions than the Contagio
classifier for the Reverse Mimicry attacks. For the Drebin
evaluation, Family R represented strong evasion due to weak
features, but Family Q was detectable if it was included
in the training set. Therefore, the effectiveness of mutual
agreement analysis is also dependent upon adequate coverage
in the training set. However, the effectiveness of the training
set is directly dependent upon the strength of the features.
A weak feature set will require a more expansive training
set than a feature set that more closely models fundamental
malicious attributes. Operators should ensure that features used
for malware detection are not only resistant to spoofing but that
they are based on artifacts caused by malware and not merely
coincidental with current attacks.

As was shown in Section V-B, keeping the training set
of a classifier secret helps improves resiliency against targeted
evasion attempts. It might be advisable for operational systems
to hide the exact scores returned from their classifiers as these
scores assist attackers in knowing if changes they make hurt
or help their evasion attempts. This information could weaken
the benefit provided by a secret training set [18].

The GD-KDE attacks of Mimicus demonstrate that some
classifiers can make machine learning based detectors sus-
ceptible to evasion attacks. Stochastically generated ensemble
classifiers have not been shown to be vulnerable to similar
attacks, but new approaches might be found. The ability to
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measure mutual agreement in ensemble classifiers comes at
little cost, but provides for detection of practical classifier
evasion. This capability is a strong reason to use ensembles
in situations where classifier evasion is a concern, such as in
malware detectors. If mutual agreement is used to optimize
classifier training, then an attacker may have more knowledge
of additions to the training set than if random selection is
used. However, it is not obvious how this knowledge could
be exploited by an attacker. Any effective attacks that use
knowledge of mutual agreement based training optimization
to poison the classifier would be important.

Some advocate the use of simple, monolithic classifiers,
because the result is perceived as easier to interpret. For
example, the ability of Drebin to identify the features that
contribute to the classification is lauded. It is not clear,
however, if this information is really useful to end users. Users
are already given the opportunity to review permissions and
often choose incorrectly when prompted. Given that URLSs
and API calls can be socially engineered and that users are
generally not aware of these elements, it is not likely that
providing these items as context to a user will help them
make a correct decision. For security professionals, ensemble
classifiers provide mechanisms that aid in analysis such as
similarity to existing known malicious or benign samples. Most
importantly, the feature set will be useful to a trained analyst.

Mutual agreement analysis gives operators greater con-
fidence in the accuracy of the classifier and the ability to
prioritize response to alerts. Some operators will use ensemble
classifier introspection simply to adjust the voting threshold.
Environments that seek to avoid false negatives (evasion at-
tacks) will use a low threshold and increase the number of
false positives. On the other hand, some environments might
use a higher than normal voting threshold to achieve a low
false positive but potentially higher false negative rate, such
as that achieved by antivirus engines.

The operator gets the most benefit from mutual agreement
analysis when uncertain observations are subjected to focused
analysis. These samples must necessarily be subjected to
different and complementary analysis or detections. Since the
number of uncertain observations is low for a well performing
classifier, this second opinion can be relatively expensive,
possibly manually driven or involving dynamic analysis. En-
semble diversity based confidence estimates are useful for
organizations that desire to identify novel attacks to perform
additional analysis. While possibly unconventional for the
machine learning field, the addition of the uncertain outcome
is intuitive for the security field where many systems provide
only adjudications for known observations, whether benign
or malicious. For example, it is common for SPAM filters
to utilize a quarantine for samples that cannot be classified
reliably. Very often, high fidelity alerts are preferred over a
response for every observation.

Mutual agreement analysis is very effective at identifying
those samples which are not similar to the already known
samples in the training set. Since adding uncertain samples
to the classifier dramatically improves the classifier accuracy,
analysis of uncertain observations is likely to motivate rather
than desensitize operators. Operators are empowered to im-
prove the classifier in a manner much more effective than
random additions to the training set.



Evaluation of machine learning based detectors might be
improved though application of mutual agreement analysis. A
concise metric is the Uncertain Rate, or portion of observations
for which a classifier is poorly suited to provide a prediction.
The effectiveness of classifier evaluation using the mutual
agreement score distribution and variance could be a topic
of future studies. The classifier score distributions shown in
Figure 12 and Figure 13 seem to indicate that regression could
be used to predict the amount of successful evasions. The
difficulty in this type of analysis, however, is separating the
arcs for the benign and malicious data when external ground
truth is not provided.

Most importantly, monitoring mutual agreement in ensem-
ble classifiers raises the bar for evasion, for both previously
unseen attacks and targeted mimicry attacks. Contemporary
evasion attacks, which have called into question the resiliency
of learning based detectors, are shown to be weaker than
previously supposed. Merely obfuscating attacks such that they
no longer appear as known attacks is not enough. Successful
mimicries must very closely mirror benign samples. Of course,
future research into the degree to which mutual agreement
analysis can improve attack quality seems worthwhile.

IX. CONCLUSIONS

We introduce a new technique to detect malware classifier
performance degradation on individual observations. Mutual
agreement analysis relies on diversity in ensemble classifiers
to produce an estimate of classifier confidence. We evaluate
our approach using over 100,000 PDF documents and 100,000
Android applications. Applying PDFrate to documents taken
from a real network, we find that the number of uncertain
outcomes is small-only 0.2%. If these uncertain examples are
excluded, the true positive rate rises from 95% to 100% and
the false positive rate drops from 0.053% to 0.0050%. Fur-
thermore, mutual agreement analysis is effective at identifying
the samples to be added to the training set, resulting in con-
siderably more rapid improvements in classifier performance
than random sampling. In the direct evasion attacks against
PDFrate and novel attacks against Drebin, the majority of the
observations are assigned the outcome of uncertain, notifying
the operator of the detector failure. While evasion attacks are
still possible, they require more complete mimicry across the
whole feature set.

We believe that mutual agreement analysis can be applied
generally to ensemble classifiers. We find that feature bagging
is critical to diversity based evasion detection. The GD-KDE
attack, employed with great success against Support Vector
Machines, can be foiled by an SVM ensemble. Ensemble clas-
sifier mutual agreement analysis provides a critical mechanism
to evaluate the accuracy of machine learning based detectors
without using external validation.
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