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Abstract

Phishing websites, fraudulent sites that impersonate a

trusted third party to gain access to private data, continue

to cost Internet users over a billion dollars each year. In

this paper, we describe the design and performance char-

acteristics of a scalable machine learning classifier we de-

veloped to detect phishing websites. We use this classifier

to maintain Google’s phishing blacklist automatically. Our

classifier analyzes millions of pages a day, examining the

URL and the contents of a page to determine whether or

not a page is phishing. Unlike previous work in this field,

we train the classifier on a noisy dataset consisting of mil-

lions of samples from previously collected live classification

data. Despite the noise in the training data, our classifier

learns a robust model for identifying phishing pages which

correctly classifies more than 90% of phishing pages sev-

eral weeks after training concludes.

1 Introduction

Phishing is a social engineering crime generally defined

as impersonating a trusted third party to gain access to pri-

vate data. For example, an adversary might send the victim

an email directing him to a fraudulent website that looks

like a page belonging to a bank. The adversary can use

any information the victim enters into the phishing page to

drain the victim’s bank account or steal the victim’s identity.

Despite increasing public awareness, phishing continues to

be a major threat to Internet users. Gartner estimates that

phishers stole $1.7 billion in 2008, and the Anti-Phishing

Working Group identified roughly twenty thousand unique

new phishing sites each month between July and Decem-

ber of 2008 [3], [17]. To help combat phishing, Google

publishes a blacklist of phishing URLs and phishing URL

patterns [7], [29]. The anti-phishing features in Firefox 3,

Google Chrome, and Apple Safari use this blacklist. We

provide access to the list to other clients through our public

API [18].

In order for an anti-phishing blacklist to be effective, it

must be comprehensive, error-free, and timely. A blacklist

that is not comprehensive fails to protect a portion of its

users. One that is not error-free subjects users to unneces-

sary warnings and ultimately trains its users to ignore the

warnings. A blacklist that is not timely may fail to warn its

users about a phishing page in time to protect them. Con-

sidering that phishing pages only remain active for an aver-

age of approximately three days, with the majority of pages

lasting less than a day, a delay of only a few hours can sig-

nificantly degrade the quality of a blacklist [2], [30].

Currently, human reviewers maintain some blacklists,

like the one published by PhishTank [25]. With Phish-

Tank, the user communitymanually verifies potential phish-

ing pages submitted by community members to keep their

blacklist mostly error-free. Unfortunately, this review pro-

cess takes a considerable amount of time, ranging from a

median of over ten hours in March, 2009 to a median of

over fifty hours in June, 2009, according to PhishTank’s

statistics. Omitting verification to improve the timeliness

of the data is not a good option for PhishTank. Without ver-

ification, the list would have many false positives coming

from either innocent confusion or malicious abuse.

An automatic classifier could handle this verification

task. Previously published efforts have shown that a clas-

sification system could examine the same signals a human

reviewer uses to evaluate whether a page is phishing [13],

[16], [20], [21], [35]. Such a system could add verified

phishing pages to the blacklist automatically, substantially

reducing the verification time and improving the through-

put. With higher throughput, the system could even exam-

ine large numbers of questionable, automatically collected

URLs to look for otherwise missed phishing pages.

This paper describes such an automatic phishing clas-

sifier that we built and currently use to evaluate phishing

pages and maintain our blacklist. Since its activation in

November, 2008, this system evaluates millions of poten-

tial phishing pages every day. To evaluate each page, the

classifier considers features regarding the page’s URL, con-

tent, and hosting information. We retrain this classifier daily

using approximately ten million samples from classifica-

tion data collected over the last three months. To provide



training labels for this data, we use our published blacklist,

the most complete listing of known phishing pages we have

available. Since the coverage of our published blacklist is

not perfect, the training labels contain a number of misclas-

sifications. Nevertheless, our process develops classifica-

tion models that demonstrate excellent performance, main-

taining a false positive rate well below 0.1% while main-

taining high recall. During the first six months of 2009, our

classifier evaluated hundreds of millions of pages, automat-

ically blacklisting 165,382 phishing pages. For compari-

son, PhishTank evaluated 139,340 potential phishing pages,

finding only 47,203 actual phishing pages, during the same

timespan [25].

The contributions of this paper are: 1) A demonstration

that a scalable machine learning classifier can be used to

automatically maintain a blacklist of phishing pages. 2) A

demonstration that a machine learning classifier for phish-

ing pages can achieve a very high accuracy despite a noisy

training set. 3) An examination of the value of certain fea-

tures of a web page in the evaluation of whether that page is

phishing.

In Section 2, we precisely define “phishing” and review

previous work regarding anti-phishing tools and classifiers.

Section 3 describes the classifier’s design and how we op-

erate it in our production environment. We provide an anal-

ysis of the performance of the classifier in Section 4 before

concluding in Section 5.

2 Background

2.1 Definition of Phishing

PhishTank defines phishing as “a fraudulent attempt,

usually made through email, to steal ... personal informa-

tion” [25]. In order to protect end users against the broadest

set of phishing scams, we use a somewhat more general def-

inition of phishing than this. We define a phishing page as

any web page that, without permission, alleges to act on be-

half of a third party with the intention of confusing viewers

into performing an action with which the viewer would only

trust a true agent of the third party. Note that these actions

include, but are not limited to, submitting personal infor-

mation to the page. In a sense, our definition of phishing is

closer to “web forgery,” the phrase used in the Firefox user

interface, than the traditional definition of phishing. This

definition certainly covers the typical case of phishing pages

displaying graphics relating to a financial company and re-

questing a viewer’s login credentials. This definition also

covers phishing pages which display a trusted company’s

logos and request that the viewer download and execute an

unknown binary. Sites which claim to be able to perform ac-

tions through a third party once provided with the viewer’s

login credentials meet this broader definition as well. Sites

claiming to unblock an email or chat account when given

the login credentials fall under this last category. Note that

if one of these sites is sanctioned by the third party, then it

would be properly authorized and therefore not a phishing

page.

2.2 Related Work

Garera et al. described an early prototype of our cur-

rent system, using both Google’s internal data, like PageR-

ank [26], and features extracted from the URL to classify

pages [16]. Our system continues to use some of the fea-

tures they describe while expanding the feature set consid-

erably. However, the original preparation of the training set

involved manual labeling, which is not feasible for training

sets as large as the ones we use now. We designed a new

training system for this paper.

Other papers have also examined the problem of auto-

matically classifying phishing web pages, but they have de-

scribed experimental systems, not systems in active use.

Also, none of these efforts used a noisy training dataset.

Our system, on the other hand, provides classifications to an

audience of over a hundred million web users in real time.

We can publish these classifications without further review

because our classifier makes fewer false positive classifica-

tions than the other systems despite our noisy training data.

Zhang et al. presented a system for using Google web

search as a filter for phishing pages but used only 2519 ac-

tive URLs in their most realistic dataset [35]. Also, their

conservative classifier demonstrated a false positive rate of

3%, too high to be viable without further review. Fette et

al. described a system for classifying phishing emails that

shares many similarities with our system, despite not classi-

fying web pages [13]. In fact, we extract many of the same

features regarding page content as they extracted regarding

email content. Ludl et al. also discussed a system for clas-

sifying phishing pages based on features of the page which

inspired some of our page features [20]. Ma et al. published

a pair of papers describing another system for identifying

malicious URLs by examining lexical features of the URLs

and features of the sites’ hosting information [21], [22]. We

use very similar features in our system, though we also use

a large number of features describing page content. Also,

they do not assign labels for their URLs dynamically with

their classifier as we do.

Besides our published blacklist, a number of other anti-

phishing solutions exist. For example, several vendors

provide a blacklist similar to ours. PhishTank, described

in Section 1, makes its data available in the form of a

downloadable feed [25]. Netcraft also makes a feed of

its blacklist data available to service providers and host-

ing companies [24]. Additionally, Netcraft supplies a tool-

bar that blocks the user from browsing to phishing pages



and displays additional data, like websites’ hosting coun-

tries. Other anti-phishing toolbars, like SpoofGuard, high-

light suspicious website characteristics based on a set of

heuristics [9]. Microsoft combines a manually compiled

blacklist with heuristic analysis in its latest version of In-

ternet Explorer [23].

Wu et al. examined the value of a number of these tools

in the context of a series of simulated phishing attacks,

though they did not examine any clients using Google’s

blacklist [33]. They also question the effectiveness of these

toolbars from a user interface perspective, though recent

studies have found that the Firefox anti-phishing feature

is indeed effective at protecting users when triggered [12].

Zhang et al. looked at the coverage of the anti-phishing

tools including the built-in phishing protection of Firefox 2,

at the time powered by our blacklist, along with many other

similar tools [34]. They found that our blacklist was com-

petitive with other products, although their sample size was

relatively small, consisting of only 100 phishing URLs and

516 legitimate URLs. A recent study by Sheng et al. also

compared tools based on Google’s blacklist with other anti-

phishing tools in two experiments, one in October, 2008 and

one in December, 2008 [30]. Incidentally, their two experi-

ments compare the quality of our blacklist before and after

we enabled our automatic classification system in Novem-

ber, 2008. We discuss the findings of this paper in Sec-

tion 4.3.

Highlighting the need for an anti-phishing solution, sev-

eral papers have studied why Internet users fall for phishing

attacks in the first place. Dhamija et al. conclude that the

average unaided user lacks the knowledge to properly in-

terpret the security signals built into web browsers, leaving

them vulnerable to phishing [10]. Downs et al. explore the

mental models used by Internet users to evaluate potential

phishing pages [11]. Some of their subjects used incorrect

strategies to analyze potential scams, leaving them at risk.

At a more fundamental level, Fogg et al. studied the at-

tributes of a web page that make it credible [14]. They find

that many features of a page’s appearance enhance its per-

ceived credibility, a fact that phishers routinely exploit and

that we, in turn, use to motivate parts of our feature set.

3 Phishing Classifier Infrastructure

3.1 Overall System Design

Our system classifies web pages submitted by end users

and collected from Gmail’s spam filters. To successfully

identify a wide variety of phishing pages, our system ex-

tracts and analyzes a number of features regarding these

pages. These features describe the composition of the web

page’s URL, the hosting of the page, and the page’s HTML

content as collected by a crawler. A logistic regression clas-

sifier makes the final determination of whether a page is

phishing on the basis of these features [5]. The classifi-

cation model used by the classifier is developed in an of-

fline training process. The training process uses features

collected by the classification system over the past three

months labeled according to our published blacklist.

Using our published blacklist in this fashion introduces

the risk of feedback loops, where an error in our published

data propagates to classification models used to generate ad-

ditional published data. To minimize this risk, we also ex-

amine the relatively small number of user submitted phish-

ing pages and reported errors manually, allowing us to break

any such loops. Note that we must manually review these

submissions anyway to promptly correct any user reported

errors in our blacklist. However, less than one percent of

the input to our system receives a manual review, leaving

our automatic system to handle the bulk of the analysis.

Since we use our published blacklist to label the train-

ing data, the resulting classifier effectively generalizes the

blacklist. We find that this works well in practice, since

many of the phishing pages not on our blacklist are similar

to pages on our blacklist. By expanding on the common fea-

tures of known phishing pages, the classifier can correctly

identify new phishing pages.

3.1.1 Design Goals. First, the classifier must prioritize

precision over recall to minimize the number of published

false positives1. In order to find as many phishing pages as

possible, we examine a large set of pages, most of which are

not phishing. Given the relative scarcity of actual phishing

pages in the set of pages examined, the false positive rate of

the classifier must be extremely low.

Second, the classifier must achieve high recall. If the

classifier fails to identify most of the phishing pages, it does

not adequately replace a manual system.

Third, the classifier must tolerate noisy training data.

Since we must train on the data and classifications we al-

ready have available, we need the classifier to pick up con-

sistent patterns despite any existing misclassifications.

Finally, the classifier must process a large number of web

pages with low latency. Our URL collection system obtains

millions of new pages to examine every day, so the classifier

must keep up with the load. The classifier may need to drop

some likely non-phishing URLs early in the classification

process to reduce the load on bottlenecks in the system and

improve overall latency.

1Precision = number of true positive classifications / number of positive

classifications.
Recall = True positive rate = number of true positive classifications /

number of positive examples.

False positive rate = number of false positive classifications / number of

negative examples. [15]



3.2 Classification Workflow

The workflow for classifying a web page as phishing di-

vides the work into a number of separate processes, each

handled by a pool of workers. The first process extracts

features about the URL of the page. The second process

obtains domain information about the page and crawls it. If

the crawl succeeds, the third process extracts features from

the page contents. The final process assigns the page a score

based on the collected features representing the probability

that the page is phishing. If the score is high enough, this

process automatically adds the page to the blacklist pub-

lished by our serving system. To save bandwidth, our serv-

ing system combines similar blacklisted URLs into blacklist

patterns.

To help run this workflow, we create tasks to represent

units of work for each workflow process. A task manage-

ment system buffers these tasks for the various processes,

assigns tasks to workers, and retries any tasks that fail. After

a worker finishes with a task, it stores any generated data in

a Bigtable database and adds a new task to the queue for the

next process in the workflow [8]. If a task fails or times out,

the task is returned to its queue and retried. Since each task

is an independent unit of work, no inter-worker coordina-

tion is necessary. Therefore, if the workflow cannot handle

the volume of collected URLs, we can increase the number

of workers, and the overall throughput of our system scales

linearly.

A detailed description of each of the workflow processes

follows. Refer to Section 4.2 for a summary of the described

features with statistics regarding their value to the classifier.

3.2.1 Candidate URL Collection. We receive new po-

tential phishing URLs in reports from users of our blacklist

and from spam messages collected by Gmail. We receive

approximately one thousand user reports and five million

URLs from spam emails each day. For URLs from spam

emails, we take precautions to make sure that we do not ac-

cidentally fetch user-identifiable URLs. Primarily, we en-

sure that several unique Gmail users received a URL before

we add that URL to our system.

3.2.2 URL Feature Extraction. We can often tell

whether or not a web page is phishing simply by looking

at the URL. Phishers commonly construct their URLs to

confuse the viewer into believing that the URLs belong to a

trusted party. To identify the telltale signs of these efforts,

the first process in the workflow, the URL Feature Extractor,

looks only at the URL of the page to determine features.

First, if the URL is improperly constructed or if it

matches a whitelist of high profile, safe sites, then the URL

Feature Extractor drops the URL from the workflow en-

tirely. We manually compile this whitelist of 2778 sites,

requiring that each site both have high traffic and not host

arbitrary user-generated content. Sites on this list include

citibank.com and cnn.com.

One feature this process extracts is whether the URL

contains an IP address for its hostname. Using an IP ad-

dress in this fashion effectively disguises the owner of the

site from a casual viewer. It also prevents administrators

from shutting down the site by disabling the domain name.

However, the URL will break if the host computer changes

its IP address. Fortunately, static IP address hosting is easy

to detect. Since a few legitimate services, like the Google

webcache, use an IP address as the URL host, this feature

cannot be used in isolation.

Another feature this process extracts is whether the page

has many host components. Phishers commonly use a long

hostname, prepending an authentic-sounding host to their

fixed domain name, to confuse viewers into believing that

the page is legitimate [33]. An example of this is 9794.my-

onlineaccounts2.abbeynational.co.uk.syrialand.com. This

is also easy to detect automatically by counting the num-

ber of host segments in the URL before the domain (e.g., 5

in the previous example.)

Besides manipulating the structure of their URLs, phish-

ers often include characteristic strings in their URLs to

mislead viewers. These can include the trademarks of the

phishing target, like “abbeynational” in the example above,

or more general phrases associated with phishing targets,

like “login”. The URL Feature Extractor extracts all string

tokens separated by non-alphanumeric characters out of the

URL to use as features rather than looking for specific char-

acter strings as in Garera et al. [16]. By including all

of these tokens, our models can respond automatically to

phishing attacks that use a common string in their URLs.

The feature extractor transforms each of these tokens into a

boolean feature, such as “The path contains the token ‘lo-

gin.’” Although each URL does not have many of these fea-

tures, the number of these sparse, boolean features in the

dataset increases the overall size of the feature space sig-

nificantly. When combined with similar boolean features

regarding the hosting and page content described in Sec-

tion 3.2.4, the total number of features seen in one month

can exceed one million. We rely on feature selection meth-

ods built into our machine learning framework to incorpo-

rate only the most useful of these features into our classifi-

cation models [5].

The URL Feature Extractor also collects URL metadata,

including PageRank, from Google proprietary infrastruc-

ture and constructs corresponding features [26]. We also

use a domain reputation score computed by the Gmail anti-

spam system as a feature. This score is roughly the per-

centage of emails from a domain which are not spam. Do-

mains that send lots of non-spam email earn high reputa-

tion scores and are less likely to host phishing sites. Taylor



describes the exact method for calculating these reputation

scores [32].

3.2.3 Fetching Page Content. After the URL Feature

Extractor analyzes the URL, the Content Fetcher process

crawls the page and gathers its hosting information. First,

the Content Fetcher resolves the host and records the re-

turned IPs, nameservers, and nameserver IPs. It also ge-

olocates these IPs, recording the city, region, and country.

Next, the Content Fetcher sends the URL to a pool of head-

less web browsers to render the page content. Rendering

the page in a browser ensures that we mimic the environ-

ment that the user would experience as much as possible.

After the browser renders the page, the Content Fetcher re-

ceives and records the page HTML, as well as all iframe,

image, and javascript content embedded in the page.

The Content Fetcher rate limits fetches to each website

as an extra safeguard against generating a high volume of

traffic to popular sites. Based on the rate of recent fetches

to the requested domain, the Content Fetcher may defer the

task until later or drop the task to avoid creating a large

backlog of fetches.

3.2.4 Hosting and Page Feature Extraction. While the

URL of a phishing page may be manipulated by a phisher,

the same is not true for the page’s hosting information. The

DNS entries for a phishing pagemust be accurate, otherwise

potential victims cannot view the page. While the hosting

information alone cannot prove conclusively that a page is

phishing, this data can establish whether a page is hosted

like other phishing sites. The Page Feature Extractor uses

the page hosting data gathered by the Content Fetcher to

generate features for this purpose.

To start, the Page Feature Extractor constructs features

out of the autonomous system numbers to which the page’s

hosts and nameservers correspond using the routing data

from the University of Oregon Route Views project [1].

Autonomous system numbers give a more accurate picture

of IP address association than simply looking at IP address

subnets. Also, they present a smaller range of features for

the machine learning algorithms. The feature extractor also

computes features based on the geolocations of the page’s

hosts and nameservers, taking into account their city, re-

gion, and country.

Even with a legitimate looking URL and reputable host-

ing, we can still tell when a page is phishing by looking

at the page contents. To this end, the Page Feature Extrac-

tor also extracts features from the HTML collected by the

Content Fetcher.

One of these features is the extent to which pages link

to other domains in terms of both HTML hyperlinks and

images. Links and images on phishing pages often point

directly to the target website. For the links, they need to

function correctly for the phishing page to look legitimate.

In the case of the images, the phishers do not need to copy

all of the target’s images to their short-lived phishing pages

if they link to the appropriate target images directly. These

features are similar to ones used by the classifier constructed

in Ludl et al. [20].

While we could construct features out of every term ap-

pearing in the text of a page, this many features per page

would overburden our machine learning software. Instead,

the feature extractor only makes features of the terms with

the highest term frequency-inverse document frequency

(TF-IDF) values [28]. The TF-IDF value of a term on a

page is the frequency of the term in the given page (term

frequency,) divided by the log of the frequency of the term

in all pages (document frequency.) In this case, the docu-

ment frequency is calculated based on terms found on pages

in the same language as the evaluated page in the Google

search index. Phishing pages often use terms from their

targets prominently, and their highest valued TF-IDF terms

reflect this. Non-phishing pages do not contain these target-

related terms often enough to give them a high TF-IDF

value. Zhang et al. also used terms with the highest TF-

IDF values as a key component of their analysis [35].

Finally, the Page Feature Extractor constructs a feature

indicatingwhether the page has a password field. Most stan-

dard phishing sites use a form with a password field to steal

a viewer’s login credentials, though nontraditional phish-

ing pages may request that the viewer download a virus or

key logger instead. Non-phishing pages that have password

fields are usually easy to distinguish on the basis of their

other features.

3.2.5 Page Classification. With all of the features col-

lected, the classifier process scores the page on a scale of

0.0 being not at all phishing to 1.0 being definitely phish-

ing. The score translates to the computed probability that

the page is phishing. A separate training process, described

in Section 3.3, computesmodels which the classifier reloads

daily and uses to calculate these scores.

To compute this score, the classifier first creates a set of

feature values for the page. For boolean features, “true”

becomes a value of 1.0, and “false” becomes a value of 0.0.

All continuous features are scaled to be between 0.0 and

1.0. Any features absent from the page are assumed to have

a value of 0.0. To compute the score for the page in log

odds, the classifier combines these values using a logistic

regression defined by the classification model [5]. Finally,

the classifier transforms the score in log odds to the final

output score:

score =
e

logodds

1 + elogodds

If the score is greater than 0.5, the page is more likely



than not phishing, and the classifier marks it as such within

our review system. Before the classifier automatically

blacklists the page, it checks to make sure that the page

does not have a high PageRank [26]. If it does, the page

is popular, unlikely to be phishing, and therefore a possible

classification error. Popular pages require a final manual

review before being added to the blacklist to prevent high

impact false positive classifications.

3.2.6 Aggregation and Serving. The final process in the

workflow, the Blacklist Aggregator, prepares the blacklist

to be served to clients. The Blacklist Aggregator reads in

the set of blacklisted URLs and transforms them into host

suffix/path prefix expressions required by the SafeBrowsing

protocol specification [7].

The Blacklist Aggregator next applies a broadening algo-

rithm to the expressions, to reduce the number of patterns on

our blacklist. If a number of blacklisted URLs match some

broader expression, the Blacklist Aggregator may blacklist

the broader expression instead. Phishing attacks often use

URLs that vary only by a portion of the host or path, so

broadening reduces these URLs to a single blacklist entry

per attack. This reduction minimizes the size of the list

served to our clients. It also improves our blacklist coverage

by blockingURLs that are part of a phishing attack but were

missed by our classification system. To avoid acting too

aggressively, the broadening algorithm avoids patterns that

match sites with a high PageRank [26]. For example, this

safeguard prevents it from blacklisting the top-level URL

of a hosting site even though the site may contain several

phishing pages.

Once pattern broadening finishes, the Blacklist Aggre-

gator removes any overlapping expressions and assembles

the remaining expressions into the binary format served to

clients using the SafeBrowsing protocol.

3.3 Training Process

Training the classifier is an offline process that runs once

per day to pick up new phishing trends. As a training

dataset, we use a sample of roughly ten million URLs an-

alyzed by the classification workflow over the past three

months along with the features obtained at the time. We

include each URL only once in our training set, even if we

received it both from a user report and from a Gmail spam

message. We also limit the number of URLs from any sin-

gle domain to 150 per week to prevent a single domain from

having too much weight in determining our classification

models. We find this limit prevents concentrated phishing

attacks from dominating our training data while still allow-

ing us to include a representative sample of large websites

with many legitimate pages. We use our published blacklist

as a noisy source of true phishing classifications. We as-

sume that pages not in our blacklist are not phishing. As we

discover more phishing pages or identify errors in our pub-

lished blacklist, we update our training data for subsequent

training runs.

When we train classification models, we build six sep-

arate models: five cross-validation models, each leaving

out a different part of the training data, and a candidate

model trained on all of the data. Each of the cross-validation

models excludes a different set of URLs according to each

URL’s first entry time in our database. The first model

excludes the earliest data, the last model excludes the lat-

est, etc. This sharding scheme aims to have one of the

validation models entirely exclude each individual phish-

ing attack, possibly consisting of a large number of simi-

lar URLs. This separates attacks quite well, since phishing

attacks rarely last more than a few days while our shards

each span almost three weeks [2], [30]. Without this type

of separation, each cross-validation model would train on

samples of every attack, leading us to believe that the can-

didate would perform better than it would in reality. We

train the models using a proprietary, but general purpose,

implementation of the online gradient descent logistic re-

gression learning algorithm, which we run over the entire

dataset during training [5]. This implementation examines

blocks of the training data serially to find potentially use-

ful features to include in the classification model. Features

which do not contribute to the model are simply omitted.

This system can handle millions of training instances, each

with dozens of features and a sparse feature space contain-

ing over a million unique features. Since we use an online

learning algorithm, training on larger datasets means takes

longer but does not require significantly more computing

resources.

We chose to use this proprietary machine learning sys-

tem because it is convenient to operate in our computing

environment, not because it performs unusually well. Ma-

chine learning systems which can handle noisy training data

and a very large feature set should perform similarly to our

proprietary system. For example, we experimented with us-

ing a classifier based on random forests [6]. Since random

forests do not dynamically select features, we preselected

3000 features from the training set using information gain

and document frequency feature selection algorithms [15].

With these features, we found that a random forest classifier

consisting of 100 trees each trained on a random quarter of

the training set performed similarly to our proprietary clas-

sifier. Demonstrating another approach, Ma et al. showed

that generic online learning algorithms performed well on a

dataset similar to ours with two million instances and hun-

dreds of thousands of sparse features [22]. These findings

suggest that both random forests and other online learning

implementations would adequately substitute for our pro-

prietary learning system.



Once the training finishes, we test each cross-validation

model against the training data left out during its construc-

tion. Because the last model excluded the latest training

data, it only trained on older data. Therefore, the perfor-

mance of this model provides an estimate of how the candi-

date model will perform on new, live data. We also test the

candidate model on all of the training data to make sure that

the model contains no obvious flaws.

For our target model performance, we require that mod-

els exhibit better than 90% precision and 90% recall. If

the cross-validation models average above this level, the

cross-validation fold tested on the last part of training data

is above this level, and the candidate model performs above

this level on the full training set, then the candidate model

is pushed to the live classifiers.

3.4 Potential Adversarial Attacks

Phishers can attempt to bypass our system in a few ways.

The following attacks represent real vulnerabilities in our

classifier, which we expect phishers to attempt to exploit.

However, we believe that the possible attacks on our system

are either limited or expensive.

Phishers can try to bypass our system by disguising their

pages as non-phishing pages. However, in order for phish-

ing pages to operate correctly, they must both appear visu-

ally like a third party and request that the victim perform

some action. Both of these characteristics are possible to

identify automatically. To make these features less suspi-

cious, the phishers could try to trick our classifier by giv-

ing their page a high PageRank. However, PageRank is

designed to make manipulation of the ranking scores dif-

ficult [26]. Consequently, altering the PageRank of a phish-

ing page requires a significant investment, which reduces

the potential profit of the phisher. Alternately, the phish-

ers could try to post their content on a reputable host which

already has a high PageRank. A phisher could accomplish

this by exploiting a site with a high PageRank and using

it to display their phishing page. Administrators of sites

with high PageRanks typically remove malicious pages un-

der their control promptly, though, limiting the potential au-

dience and profitability of phishing pages posted to their

sites.

Alternatively, the phishers could attempt to manipulate

our classification models. If they could pollute our train-

ing set, our classifier would make more user-visible mis-

takes which would reduce the value of our blacklist. Specif-

ically, phishers could try to expand the set of pages deemed

non-phishing by introducing non-phishing pages with some

phishing attributes into our training set, similar to the attack

described by Barreno et al. [4]. Theoretically, they could al-

ter the training set enough so that trained classifiers would

mistake phishing pages for non-phishing pages. To combat

this, we use a large training set collected over a long period

of time and limit the number of times a given domain can

appear in the training set as described in Section 3.3. Since

we weight all data equally, phishers do not have an opportu-

nity to target higher weighted segments of our training set.

Despite our safeguards, we still see phishing campaigns that

make up a significant portion of our training data (see Sec-

tion 4.1.) However, setting up similar campaigns of non-

phishing pages to possibly influence our classification mod-

els would be expensive, again reducing the phisher’s gains.

Phishers could attempt to use the rate limiting described

in Section 3.2.3 to prevent our system from crawling their

pages by putting many phishing pages on one domain.

However, if they put enough different pages on the same

domain to slow down our fetches, our URL aggregation al-

gorithm will block their entire domain (see Section 3.2.6.)

Finally, phishers can try to bypass our system by hid-

ing their phishing pages from us. They could avoid sending

phishing emails to Gmail users to avoid our automatic URL

collection system. However, many users forward email

from other accounts into Gmail, so this tactic would not al-

ways work. Instead, phishers could exploit our privacy safe-

guards, described in Section 3.2.1, to keep their URLs out

of our system. Phishers could also try to serve our crawlers

non-phishing content different from what they serve their

intended victims to escape automatic phishing classifica-

tions.

Even if a phishing page defeats our automatic classifica-

tion system, the more people it reaches, the higher the like-

lihood that a victim will report the page to us. This allows

us to correctly classify the phishing page manually, regard-

less of how the page appears to our classification system.

Because of this, defeating our automatic classifier does not

mean that the page will never appear on our blacklist. In-

stead, phishers can only hope to increase the length of time

before their pages are blacklisted.

4 Evaluation

In our evaluation, we intend to demonstrate the overall

quality of our classification system and the value of the fea-

tures we examine. To evaluate the quality of the classifica-

tion system, we first train a full classification model along

with cross-validation models as described in Section 3.3.

Next, we evaluate the models’ performance on both their

training data and on a validation dataset. We intend that

these tests closely emulate the environment in which our

classifier normally operates and therefore provide a realis-

tic evaluation of the performance of our system. To exam-

ine the usefulness of the features, we compare the feature

values in phishing pages and in non-phishing pages. We

use previously collected classification data to determine fea-

ture values, and we use our published blacklist to determine



which pages are phishing. While using our published black-

list as ground truth in these evaluations allows us to exam-

ine a large quantity of data, errors in our blacklist introduce

some noise into the analysis. Based on the relatively small

number of misclassifications reported to us by our users,

we do not expect this noise to impact our analysis of the

features significantly.

4.1 Evaluation Dataset

In our evaluation, we use two sets of data. The first set,

a copy of a training set used by our system, contains data

collected between April 16, 2009 and July 14, 2009 with

labels from July 15, 2009. We use this set to examine our

selected features and train our evaluation models. We use

the second set, collected during the first two weeks of Au-

gust, 2009, as a validation dataset. Besides the different

size, this second set differs from the first set in that we up-

dated its labels with our blacklist data from August 24, ten

days after the end of data collection period. Consequently,

the second set contains fewer labeling errors, since we had

more than a week to respond to reported errors and cor-

rect any mislabelings. This dataset allows us to show the

performance of the classification model with as little noise

as possible. Both datasets exclude URLs dropped from the

system prior to final classification, since our data regarding

these URLs may be incomplete. For example, our database

does not include page or hosting features for URLs dropped

due to rate limiting (see Section 3.2.3.) Also, both datasets

limit the number of URLs from any one domain to 150 per

week, just like we do during our training process, and do

not contain duplicate URLs. Table 1 details the statistics of

these two datasets.

Note that these datasets do not contain a random subset

of web pages. As described in Section 3.2.1, the only URLs

analyzed are either submitted as a potential phishing page

or collected from a spam email. From these, URL feature

extraction filters out approximately half of the pages as ei-

ther invalid or whitelisted (see Section 3.2.2.) The majority

of these filtered pages are URLs for high profile domains

added to spam emails to enhance their appearance of le-

gitimacy. The remaining pages in the training sets are al-

ready quite suspect. However, most of these pages are not

phishing. Since our datasets contain roughly one percent

phishing web pages, our classifier must demonstrate a false

positive rate of 0.1% to achieve precision of 90%.

Despite skipping many URLs from overrepresented

domains through rate limiting and capping the num-

ber of URLs coming from any single domain in our

datasets, one phishing campaign is overweighted in

our data. Roughly 51,000 of the phishing pages

in the April–July dataset, hosted across hundreds of

domains, match a particular bank phishing template.

Apr 16–Jul 14 Aug 1–14

Total URLs Received 446,152,060 74,816,740

User Submitted URLs 75,048 14,490

Gmail Spam URLs 446,093,814 74,805,549

URLs Skipped: In-

valid/Whitelisted

226,636,463 44,806,767

URLs Skipped: Rate

Limited

202,727,905 27,228,220

URLs Skipped: Error

(e.g., Host Not Found)

3,606,765 521,093

URLs with Complete

Data

13,180,927 2,260,660

Dataset URLs (limited

# URLs/domain)

9,388,395 1,516,076

Phishing Dataset URLs 103,684 (1.1%) 16,967 (1.1%)

Dataset URLs From

User Submission

46,682 9,830

Dataset URLs From

Gmail Spam

9,348,783 1,507,682

Table 1. Dataset statistics. Note that URLs

may come from both user submissions and

Gmail spam. Refer to Section 3.2.2 for
more information on skipping invalid and

whitelisted URLs and Section 3.2.3 for more

on skipping rate limited URLs.

All of their URLs are in the form http://www.bank-

ofamerica.com.srv <random>.<random>.<random top-

level domain>/customerservice/securedirectory/cform.do/

cform.php, and all their page contents are identical. Be-

cause of the large number of randomized domains, we sus-

pect that a botnet using domain flux, like the Torpig bot-

net analyzed by Stone-Gross et al., hosts this phishing cam-

paign [31]. While the weighting of this attack in our dataset

is not ideal for our evaluation, it accurately reflects the

widespread nature of this particular phishing campaign. We

highlight the situations where this attack impacts the statis-

tics we present in the following analysis.

4.2 Evaluation of Features

In this section, we analyze the value of the assorted fea-

tures in our feature set. For a summary of the feature set

we described in Section 3.2, see Table 2. Note that since

phishing pages make up 1.1% of our dataset, if 1.1% of the

URLs with a feature are phishing, then that feature is com-

pletely uncorrelated with phishing. If the feature appears

more often than that on phishing pages, then it is correlated

with phishing.

For our URL features, we find that IP address hosting

is several times more common in phishing pages than in

non-phishing pages and that a very small percentage of non-



Feature Type Visualization

URL Features (Section 3.2.2)

IP Address for Hostname boolean Table 3

Long Hostname boolean Table 3

Tokens from URL booleans Table 4

PageRank float Figure 1

Gmail Reputation float Figure 2

Hosting Features (Section 3.2.4)

Autonomous System Numbers booleans Table 5

Geolocations booleans Table 6

Page Features (Section 3.2.4)

Password Field boolean Table 7

Top TF-IDF Terms booleans Table 8

External Linking Frequency float Figure 3

Table 2. Summary of feature set. Features of

type “boolean” consist of a single boolean
value. The type “booleans” indicates a

sparse set of binary featureswhich are always
“true” if present. For example, we construct

one such feature for each token in the URL,

and we construct one feature for each au
tonomous system number on which the URL

is hosted.

phishing sites have unusually long host names (see Table 3.)

Some tokens in the URL, like “signin” in the host, are far

more common in phishing pages, whereas others, like “al-

bum” in the path, are more common in non-phishing pages

(see Table 4.) Confirming the findings of Garera et al., we

also find that no phishing pages have high PageRank scores,

as shown in Figure 1 [16]. We find that the Gmail reputation

scores, shown in Figure 2, follow a similar pattern.

#

Phishing

URLs

# Non-

phishing

URLs

%

Phishing

IP Address Host 2,341 33,208 6.6%

# Host segments before

domain > 3

62,383 934 98.5%

Table 3. Statistics for URL characteristics for
data collected Apr 16–Jul 14. Note that URLs

belonging to the overrepresented phishing

template have a long hostname. “% Phish
ing” is the fraction of URLs that are phishing

out of all URLs with the feature.

Looking at our hosting features, we find that some au-

tonomous systems, especially those belonging to residen-

tial ISPs, have very high levels of phishing, as shown in

Table 5. Additionally, Table 6 shows that some areas are

highly associated with phishing activity. While the United

States hosts the largest number of phishing pages, a large

#

Phishing

URLs

# Non-

phishing

URLs

%

Phishing

Host contains “www” 71,034 4,872,888 1.4%

Host contains “signin” 148 3 98.0%

Host contains “blog” 25 33,824 0.1%

Path contains “custom-

erservice”

54,749 349 99.4%

Path contains “com” 8,971 46,416 16.2%

Path contains “album” 31 83,184 0.04%

Table 4. Statistics for selected URL tokens for

data collected Apr 16–Jul 14. Note that the

URLs from the overweighted phishing tem
plate have “www” in the host and “custom

erservice” in the path.
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Figure 1. Complimentary cumulative distribu

tion function (CCDF) of PageRank for phish
ing and nonphishingpages for data collected

Apr 16–Jul 14.
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Figure 2. CCDF of Gmail reputation score for

phishing and nonphishing pages for data

collected Apr 16–Jul 14.

fraction of pages hosted in some Eastern European coun-

tries are phishing.

Turning to features from page HTML, Table 7 shows

that a high proportion of phishing pages have a password

field. The number of phishing pages without a password

field indicates that nontraditional phishing attacks are be-

coming somewhat more common. When looking at the

terms with the highest TF-IDF scores for a page, some

terms are highly indicative of phishing, like “online bank-

ing” and “pin,” whereas others, like “islands,” are relatively

safe (see Table 8.) Also, Figure 3 shows that relatively few

legitimate pages link heavily to other domains.

4.3 Classifier Performance

To evaluate the performance of our classification sys-

tem, we examine the classifier trained on data we collected

between April 16 and July 14, described in Section 4.1.

As outlined in Section 3.3, we train five cross-validation

models, leaving out a different portion of the data set each

time, and a candidate model, leaving out nothing. Figure 4

shows the performance of the classifier in a precision-recall

curve for the average cross-validation performance, the final

cross-validation fold by itself, the candidate model trained

and tested on the whole dataset, and the candidate model

tested on data collected between August 1, 2009 and Au-

gust 14, 2009. To generate these curves, we first calculate

the classification scores using the trained models. Next, as

we vary a threshold from 0.01 to 0.99, we determine the

precision and recall obtained by classifying pages with a

score greater than that threshold as phishing pages. We add

a point marking a threshold score of 0.5, the point at which

ASN
#

Phishing

URLs

# Non-

phishing

URLs

%

Phishing

6739 (Cableuropa -

ONO)

42,283 883 98.0%

8708 (RCS & RDS) 35,537 7,777 82.0%

6830 (UPC Broadband) 34,921 678 98.1%

7132 (AT&T Internet

Services)

29,497 4,829 85.9%

9116 (Golden Lines

Main)

26,645 5,280 83.5%

19262 (Verizon Internet

Services)

26,174 1,855 93.4%

16338 (Cableuropa -

ONO)

22,323 6,260 78.1%

9141 (UPC Poland) 22,219 19 99.9%

5089 (NTL Group Lim-

ited)

18,213 1,146 94.1%

5617 (Polish Telecom

(Commercial))

18,054 3,437 84.0%

Table 5. ASNs hosting the most phishing

pages for data collected Apr 16–Jul 14. Many

phishing pages, including those from the
widespread phishing template, are hosted on

many different ASNs. Each URL may be
hosted on multiple ASNs, which is why the

sum of the phishing pages hosted by these

ASNs exceeds the total number of phishing
pages in the dataset.

Country
#

Phishing

URLs

# Non-

phishing

URLs

%

Phishing

United States 76,124 4,675,812 1.6%

Romania 54,638 76,711 41.6%

Spain 53,703 179,682 23.0%

Poland 45,611 93,734 32.7%

Hungary 35,968 60,598 37.2%

Russia 34,391 327,142 9.5%

Israel 28,003 29,568 48.6%

United Kingdom 25,148 307,708 7.6%

Mexico 24,478 10,432 70.1%

Netherlands 22,025 614,726 3.5%

Table 6. Countries hosting the most phishing

pages for data collected Apr 16–Jul 14. Each
URL may be hosted in multiple countries.



#

Phishing

URLs

# Non-

phishing

URLs

%

Phishing

Password Field 90,072 1,620,184 5.3%

No Password Field 13,612 7,664,527 0.2%

% With Password Field 86.9% 17.5%

Table 7. Password field statistics for data col
lected Apr 16–Jul 14.

Term among Top TF-

IDF Scores

#

Phishing

URLs

# Non-

phishing

URLs

%

Phishing

online banking 55,326 587 99.0%

pin 3,354 1,256 72.8%

paypal 6,683 5,509 54.8%

online 1,353 22,100 5.8%

email 259 52,437 0.5%

islands 223 107,166 0.2%

Table 8. Statistics for pages with selected
terms among thehighest TFIDF scored terms

in data collected Apr 16–Jul 14. Note that “on

line banking”was one of the top scored terms
for pages from the overrepresented phishing

template.
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Figure 3. CCDF of external link frequency
breakdown for phishing and nonphishing

pages for data collected Apr 16–Jul 14. Note
that the overrepresented phishing template

has 12.5% of its links pointing to external

targets, accounting for the large jump in the
CCDF for phishing pages.

our classifier exhibits high precision while not sacrificing

much recall, to each of these curves. Table 9 shows exact

statistics for the classifier in cross-validation and on the Au-

gust dataset for this threshold.

The precision-recall curve of the candidate classifier on

the August dataset roughly matches the curve generated

during cross-validation. This shows that even a month later,

our classification model remains highly predictive. How-

ever, the point corresponding to a threshold of 0.5 shows

higher precision and lower recall relative to the similar

statistics from cross-validation. The improved labeling of

the August dataset explains this difference. Most of the cor-

rections to the phishing labels mark previously unidentified

phishing pages properly. This raises the precision of the

classifier, since some of the original classification false pos-

itives become true positives. This also lowers the recall, as

some of the original true negatives become false negatives.
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Figure 4. Precisionrecall curves for classifier
trained on data collected Apr 16–Jul 14. Note

that the graph is zoomed in to better show the

differences between the curves.

Cross-

Validation

Candidate on

August Data

True Positives 98,467 15,585

False Positives 2,479 166

False Negatives 5,217 1,382

True Negatives 9,282,232 1,498,943

True Positive Rate/Recall 0.9497 0.9185

Precision 0.9754 0.9895

False Positive Rate 0.0003 0.0001

Table 9. Statistics for classifier trained ondata

collected Apr 16–Jul 14 using a threshold of
0.5.



Figure 5 shows how our classifier scores phishing and

non-phishing pages during cross-validation. The vast ma-

jority of the classification scores are near the extremes.

Over 99.9% of non-phishing pages score below 0.1, and

90% of phishing pages score over 0.9, indicating our fea-

ture space provides sufficient separation between phishing

and non-phishing pages to allow for correct classification in

most situations.
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Figure 5. CCDF of classification score for
phishing and nonphishing pages during

crossvalidation on data collected Apr 16–Jul
14.

The work of Sheng et al. illustrates the ultimate impact

of our automatic classification system [30]. Between their

two experiments, we began using our classifier to automat-

ically update our published blacklist. Their results suggest

that the coverage of our blacklist improved by 150% dur-

ing the first two hours of a phishing attack due to our auto-

matic classification system. By the end of this time period,

our blacklist included 97% of the phishing pages examined.

These findings highlight how much automatic classification

has added to the comprehensiveness and timeliness of our

blacklist.

4.4 PerURL Classification Latency

Figure 6 shows the distribution of latency between when

our classification workflow received URLs and when the

classifier wrote out scores for data we collected between

mid-April and mid-July. The workflow processed the ma-

jority of tasks quickly with a median of 76 seconds. How-

ever, a few tasks took up to a few hours to process, a de-

lay attributed to the throttling of page fetches described in

Section 3.2.3. Nonetheless, this represents a considerable

improvement over PhishTank, which has not reported a me-

dian verification time under 10 hours for any month in the

first half of 2009 [25].
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Figure 6. CCDF for endtoend classification

time for classifications made Apr 16–Jul 14.

5 Conclusion

In this paper, we describe our large-scale system for au-

tomatically classifying phishing pages which maintains a

false positive rate below 0.1%. Our classification system ex-

amines millions of potential phishing pages daily in a frac-

tion of the time of a manual review process. By automati-

cally updating our blacklist with our classifier, we minimize

the amount of time that phishing pages can remain active

before we protect our users from them.

Even with a perfect classifier and a robust system, we

recognize that our blacklist approach keeps us perpetually

a step behind the phishers. We can only identify a phishing

page after it has been published and visible to Internet users

for some time. However, we believe that if we can provide

a blacklist complete enough and quickly enough, we can

force phishers to operate at a loss and abandon this type of

Internet crime.
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