
Who’s in Control of Your Control System?
Device Fingerprinting for Cyber-Physical Systems

David Formby∗, Preethi Srinivasan∗, Andrew Leonard†, Jonathan Rogers†, Raheem Beyah∗
∗School of Electrical and Computer Engineering

Georgia Institute of Technology
djformby@gatech.edu, preethisrinivasan@gatech.edu, rbeyah@ece.gatech.edu

†School of Mechanical Engineering
Georgia Institute of Technology

aleonard31@gatech.edu, jonathan.rogers@me.gatech.edu

Abstract—Industrial control system (ICS) networks used in
critical infrastructures such as the power grid present a unique
set of security challenges. The distributed networks are difficult
to physically secure, legacy equipment can make cryptography
and regular patches virtually impossible, and compromises can
result in catastrophic physical damage. To address these concerns,
this research proposes two device type fingerprinting methods
designed to augment existing intrusion detection methods in
the ICS environment. The first method measures data response
processing times and takes advantage of the static and low-
latency nature of dedicated ICS networks to develop accurate
fingerprints, while the second method uses the physical operation
times to develop a unique signature for each device type.
Additionally, the physical fingerprinting method is extended to
develop a completely new class of fingerprint generation that
requires neither prior access to the network nor an example target
device. Fingerprint classification accuracy is evaluated using a
combination of a real world five month dataset from a live power
substation and controlled lab experiments. Finally, simple forgery
attempts are launched against the methods to investigate their
strength under attack.

I. INTRODUCTION

Fingerprinting devices on a target network, whether it is
based on their software or hardware, can provide network
administrators with mechanisms for intrusion detection or
enable adversaries to conduct surveillance in preparation for a
more sophisticated attack. In the context of industrial control
systems (ICS), where a cyber-based compromise can lead to
physical harm to both man and machine, these mechanisms
become even more important. An attacker intruding on an ICS
network can theoretically inject false data or commands and
drive the system into an unsafe state. Example consequences
of such an intrusion can range from widespread blackouts
in the power grid [24] to environmental disasters caused by
tampering with systems carrying water, sewage [3], oil, or
natural gas. These false data and command injections could

be thwarted using strong cryptographic protocols that provide
integrity and authentication guarantees, but in ICS networks
it is often infeasible to upgrade legacy equipment to provide
them due to lack of processing power, devices being in remote
locations, and the critical nature of the systems that must be
online at all times. In fact, some vendors do not even support
the functionality of upgrading devices to install critical patches.
When our previous research found vulnerabilities in several
power system devices and they were reported to ICS-CERT,
the resulting official advisory for one of the products stated that
“There is no method to update [Product A] devices released
prior to October 2014 [1].” Since adding cryptography to
resource limited devices and keeping them patched is infeasible
and sometimes just impossible, alternative methods such as
fingerprinting must be used to provide security and intrusion
detection.

While device fingerprinting is a well-studied topic with
several solutions already proposed, none of them are prop-
erly suited for the ICS environment. Active fingerprinting
techniques can achieve high accuracy detection of operating
systems and server versions, but require probing the network
with specially crafted packets. This solution is undesirable
in an ICS environment where devices are performing time-
critical functions and administrators would rather not risk even
the small chance of a port scan crashing the legacy devices
and resulting in critical system downtime that includes loss of
revenue and potentially life-threatening situations for affected
customers such as hospitals. Therefore passive techniques are
more suited, but they usually provide limited useful informa-
tion or require special equipment or TCP options enabled.

This paper presents some of the defining characteristics
of ICS networks and discusses how to use them to develop
two new fingerprinting approaches that perform uniquely well
in the ICS environment, where the two primary functions are
data acquisition and control and are carried out over supervi-
sory control and data acquisition (SCADA) protocols such as
DNP3, Modbus, and IEC 61850 GOOSE. Our first approach
takes advantage of the data acquisition functions by using
the interaction between the application layer responses and
transport layer acknowledgments to obtain measures estimating
the speed and workload of a particular intelligent electronic
device (IED). Due to the unique properties of ICS networks,
the distributions of these measurements are constant within
device types and software configurations allowing network
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Fig. 1. The two novel fingerprinting methods can work together to augment
traditional intrusion detection

administrators to passively detect changes in the configuration
or spoofed communication. Throughout this work we refer
to this technique as cross-layer fingerprinting. Our second
fingerprinting approach uses the control aspects of ICS envi-
ronments to generate signatures from the physical operations
being taken by the physical devices on the network. Even
though two relays or valves from different vendors may have
similar ratings, there will always be physical variations in
their construction resulting in fundamental differences in their
operation times. These differences are then used to identify
device types or spoofed command responses, which we call
physical fingerprinting. When used together as illustrated in
Figure 1, these two methods can achieve device fingerprinting
from software, hardware, and physics based perspectives and
provide a strong supplement to more traditional intrusion
detection systems (IDS) in the ICS environment.

The fingerprint (or signature) of a device can be repre-
sented as a probability density function (PDF) of the response
times described above. To generate these PDFs, one of three
approaches can be used: white box, black box, and gray box
modeling. In a white box approach, a dynamic model of the
device is constructed from first principles and model parame-
ters identified from CAD drawings, source code, physical mea-
surements, etc. without ever seeing any true samples from the
system. The simulated behavior is then used to create a PDF
by varying model parameters using an uncertainty distribution.
In a black box approach, the PDF is constructed strictly from
experimental data without any dynamic modeling, requiring
a significant amount of experimental measurements but little
knowledge of the underlying system. Until now, this approach
has been the only method used by all previous fingerprinting
work. Finally, in a gray box approach, a dynamic model is
first constructed and the resulting PDF is then refined based
on experimental measurements. White box modeling is best
suited for when a system’s internal details are accessible but
access to experimental measurements is restricted. Black box
modeling performs best when experimental measurements are
easily available and especially when the system is proprietary
or too complex to model. Finally, gray box approaches are
most advantageous when the basic characteristics of a software
or hardware design are known, but there is some uncertainty
in model structure or parameters that can only be dealt with
through experimental observations [17].

Due to the abundance of measurements in the available
dataset and lack of proprietary source code, the data acquisition
fingerprinting method proposed here, called cross-layer finger-
printing, focuses on a black box modeling approach. In the case
of the physical fingerprinting technique, there are some devices
where the operations occur so rarely that collecting enough real
samples to generate an accurate fingerprint through black box
modeling is completely infeasible. Additionally, there is such

a wide variety of physical devices available and their costs
are so prohibitive that creating a black box signature database
offline is also infeasible. Therefore an alternative approach
for signature generation must be used. This paper proposes a
new class of fingerprint generation for physical fingerprinting
based on white box modeling to allow an administrator to
generate a usable device fingerprint without ever having access
to the target device type or network. The white box generated
physical fingerprint is then validated against the black box
approach using an example control device.

The major contributions of this research include:

• Two novel fingerprinting approaches that take advan-
tage of the unique characteristics of ICS devices

• A new class of fingerprint generation specific to ICS
networks using “white box” modeling

• Performance analysis using both real world data from
a power substation and controlled lab tests

• Evaluation of the methods under simple forgery at-
tacks for different classes of adversary

The remainder of this paper is organized as follows.
Related work in the area of device fingerprinting and intrusion
detection in ICS is presented in Section II. The assumptions
and threat model addressed by this work are presented in
Section III and the details of the cross-layer and physical
fingerprinting methods using black box modeling are discussed
in Section IV. Section V provides an explanation of the
extension of the physical fingerprinting technique via the use
of synthetic signatures generated from white box modeling.
Finally, the performance and limitations of the techniques are
discussed in Section VI, and the results and future work are
summarized in Section VII.

II. RELATED WORK

Device fingerprinting methods are usually classified into
active or passive techniques depending on whether they ac-
tively probe a device with specially crafted packets or passively
monitor network traffic to develop the fingerprint.

One of the oldest and most well known fingerprinting
tools, Nmap, uses active fingerprinting techniques to gather
information about devices on a network [2]. By sending a
series of specific requests, Nmap determines the OS and server
versions running on a machine based on how the device
responds. While this tool is invaluable for both pen-testers and
attackers on a “normal” network, it has limited use in an ICS
network where active methods are not as desirable.

For passive fingerprinting, a variety of techniques exist
that provide both device type fingerprinting and individual
device fingerprinting. One example is the open source p0f
tool, which passively examines TCP and HTTP header fields to
determine information about a client, such as OS and browser
version [26]. The first attempt at formalizing methods for
active and passive fingerprinting of network protocols was
published in 2006, when authors used parametrized extended
finite state machine (PEFSMs) to model the behavior of
different protocol implementations [19]. Determining software
versions is of some use, but identifying individual devices
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on a network based on their hardware is even more useful,
which for example could be used for tracking a device across
the Internet or intrusion detection. Using both passive and
active techniques, Kohno et al. produced the first such work
on individual device fingerprinting in 2005 by examining TCP
timestamps to detect individual device clock skew [13].

Other passive fingerprinting research has focused on var-
ious timing aspects of network traffic to fingerprint devices
and device types. In 2010 researchers were able to use wavelet
analysis on passively observed traffic flowing through access
points to accurately identify each access point [12]. The next
year, another paper was published that described a method
for device fingerprinting based on models of the timing of a
device’s implementation of application layer protocols using
Temporal Random Parametrized Tree Extended Finite State
Machines (TR-FSMs) [11]. A third paper that used passive
observations of network traffic timing to achieve device fin-
gerprinting was published in 2014, and used distributions of
packet inter-arrival times (IAT) to identify devices and device
types [18].

Although these three papers all took different approaches
to using passively observed network traffic timing to perform
fingerprinting, they are all infeasible for implementation in an
ICS network. The wavelet analysis approach was designed and
tested only on wireless access points under heavy loads, a sce-
nario that does not occur in ICS where wired communication
is preferred for its reliability and data rates are relatively low.
The method using TR-FSMs only looks at application layer
behaviors and requires a large database of all possible sessions.
Finally, the method using distributions of IATs requires a large
number (at least 2500) of training samples to achieve accurate
results, but with some devices on ICS networks being polled
at an interval as large as a few seconds, this would result
in unacceptably slow operation. Another technique was de-
veloped that used timing measurements of USB enumerations
to fingerprint host devices [4], but this is also impractical in
the ICS environment where most devices do not have USB
interfaces and where it is desirable to passively fingerprint
all devices on the network at once rather than driving out to
remote locations to fingerprint each individual device.

Another unique approach to passive device fingerprinting
relevant to this paper focused on the physical layer of device
communication, rather than the higher layers. Specifically, re-
searchers were able to use amplitude and phase measurements
of the signals generated by Wi-Fi radios to identify individual
devices [21]. This may have been the first work to use physical
measurements to fingerprint devices, but it still is not feasible
in ICS networks where Wi-Fi devices are rarely used.

The two methods presented in this paper overcome the
limitations of the previous work on device fingerprinting by
providing higher accuracy results using techniques specially
suited for ICS networks. The first method improves on the
more traditional timing based approaches by using network
traffic measurements that are unique to ICS devices, and the
second proposed method extends the idea of physical layer
fingerprinting to identifying ICS control devices based on the
reported timings of their physical operations. Additionally,
all previous fingerprinting work used black box methods that
require access to an example target device. This research also
overcomes this limitation by proposing a white box fingerprint

generation approach that requires no previous access to exam-
ple devices.

One of the primary uses of the two proposed fingerprinting
techniques would be to augment existing IDS solutions, of
which there is already a significant amount of previous work.
The first attempt at tailoring IDS methods for ICS and SCADA
systems was proposed by Idaho National Laboratories in 2008,
and focused on monitoring traffic flows for regular patterns
and understanding packets at the application layer to look
for intrusions [23]. Some researchers have also approached
the problem by modifying the popular Bro IDS software to
perform specification based intrusion detection for common
ICS protocols [16]. Others have attempted to model the states
a process control system can enter and detect when a command
might cause it to enter a critical state [10] [5]. These solutions
are able to detect some types of attacks, but are unable to
detect a class of stealthier ones called false data injection
attacks. To address this, some methods have been proposed
for power system state estimation [14] and for process control
systems [6]. However, they are only useful in the context of
power state estimation or where the process behind the control
system can be accurately modeled. The fingerprinting methods
proposed in this paper offer two novel approaches that are
generic enough to be applied to most ICS networks and enable
accurate detection of falsified data and control messages.

III. THREAT MODEL, ASSUMPTIONS, AND GOALS

Without loss of generality, this paper addresses the pro-
posed methods in terms of the power grid with extensions to
other ICS applications being easily made.

One of the unique challenges for ICS network security is
the vast attack surface available due to the distributed nature
of the networks. For example, the electric utility from which
experimental data was gathered for this research covers an
area of 2800 square miles with 35 substations, where each
substation serves as a point of entry to the network. With such
a large area to cover, physical security is extremely difficult
to achieve [20]. Therefore, we consider two different attacker
models: 1) an outsider who is unable to gain physical access
but has compromised a low powered node in the network
with malware, and 2) an outsider who is feasibly able to gain
physical access to the target network and use her own portable
machine with standard laptop computing power. The first
attacker model was chosen due to how vulnerable these devices
are (as evidenced by the 30 year old TCP vulnerabilities found
widespread in the power grid [9]) and because it was the
method used on the most well known ICS attack to date,
Stuxnet [15]. The second attacker model is realistic in the
scenario of a widely distributed control system where physical
security is difficult to achieve.

Figure 2 illustrates the different points of attack that an
adversary can take advantage of when attacking a power
substation network. He can either attack the communication
infrastructure or one of the individual devices such as the
remote terminal unit (RTU) or a programmable logic controller
(PLC). Depending on where he attacks the network, the adver-
sary can attempt to inject false data responses, false command
responses, or both. As already discussed in the related work
in Section II, false data and command injections such as
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Fig. 2. Points of attack in a power substation network

these can have disastrous effects on the power grid. With
this in mind, the goal of this research is to develop accurate
fingerprinting methods to identify what type of device these
responses are originating from as opposed to unique devices.
Such methods could be crucial to distinguishing between
responses originating from a legitimate IED, an adversary with
a laptop who has gained access to the network, or a comprised
IED posing as a different device on the network.

For a formal definition, assume the global set of all ICS
devices G consists of products Dj,k, where j identifies the
vendor and k signifies the model for each vendor’s product.
Given a sequence of observations Oi every device i on the
network, the goal of the fingerprinting methods will be to
identify which subset of G, specifically which Dj,k, those
observations belong to.

IV. OVERVIEW OF DEVICE FINGERPRINTING METHODS

Two of the properties that differentiate ICS networks from
more traditional networks are their primary functions of data
acquisition through regular polling for measurements and con-
trol commands. These properties hold true for all of the most
critical ICS networks regardless of the underlying physical
process, including the distribution of power, water, oil, and
natural gas. The two methods proposed below take advantage
of these unique properties and are explained using the power
grid as a specific example. The first method is evaluated using
data from a live power substation and verified with controlled
lab experiments. The second method is evaluated only with lab
experiments due to the relatively rare occurrence of operations
in the given dataset1, but it should be noted that other power
grid networks and industries, such as oil and gas, have more
frequent operations.

A. Method 1: Cross-layer Response Times

The first proposed fingerprinting method addresses the
data acquisition half of SCADA systems by leveraging the
interaction between regular polling of measurement data at

1The utility whose network we monitored is small and part of a Utility
Cooperative, and the control actions are not representative of larger, more
modern, utilities.

the application layer with acknowledgments at the TCP layer
to get an estimate of the time a device takes to process the
request, and then develops a fingerprint for each device based
on the distribution of these times. The timing diagram of
how this measurement, which we call the cross-layer response
time (CLRT), would be taken in a typical SCADA network is
illustrated in Figure 3. It should be noted that since the CLRT
measurement is based on the time between two consecutive
packets from the same source to the same destination, it is
independent of the round trip time between the two nodes.

Fig. 3. Measurement of cross-layer response time

The fingerprint signature is defined by a vector of bin
counts from a histogram of CLRTs where the final bin includes
all values greater than a heuristic threshold. For a formal
definition, let M be a set of CLRT measurements from a
specific device, B define the number of bins in the histogram
(and equivalently the number of features in the signature
vector), and H signify the heuristic threshold chosen to be
an estimate of the global maximum that CLRT measurements
should ever take. We divide the range of possible values by
thresholds ti where ti = i H

B−1 , and define each element sj of
the signature vector by the following equation:

sj =

{
|{m : tj−1 ≤ m < tj ,m ∈M}| 0 < j < B

|{m : m > H,m ∈M}| j = B
(1)

1) Theory: The CLRT measurement is advantageous for
fingerprinting ICS devices because it remains relatively static
and its distribution is unique within device types and even
software configurations. To understand why this is true for ICS
devices, all of the factors which might affect this measurement
must be considered.

Device Characteristics. ICS devices have simpler hard-
ware and software architectures than general purpose comput-
ers because they are built to perform very specialized critical
tasks and do little else. A typical modern-day computer now
has fast multi-core processors in the range of 2-3GHz with
significant caching, gigabytes of RAM, and context switching
between the wide variety of processes running on the machine.
In contrast, the ICS world is dominated by programmable logic
controllers (PLCs) running on low powered CPUs in the tens
to hundreds of MHz frequencies with little to no caching, tens
to hundreds of megabytes of RAM and very few processes.
With such limited computing power available, relatively small
changes in programming result in observable timing differ-
ences. Depending on the desired task, different ICS device
types are built with different hardware specifications (CPU
frequencies, memory and bus speeds) [18] as well as different
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software (operating systems, protocol stack implementations,
number of measurements being taken, complexity of control
logic) all resulting in each one being able to process requests
at different speeds. However most importantly, no matter what
kind of ICS network it is in or what physical value the device
is measuring (e.g. voltage, pressure, flow rate, temperature) the
device is still going to go through the same process of parsing
the data request, retrieving the measurement from memory, and
sending the response. Therefore, due to the limited processing
power and fixed CPU load CLRTs can be leveraged to identify
ICS device types, but this does not explain why the CLRTs
are so constant over the network.

Network Level Characteristics. Although the use case
for this technique (as in the deployment of any anomaly
based IDS) would involve a training period on each target
network, one of the desired properties for device fingerprinting
in general is that the network architecture of the target not be
a significant factor.

In a traditional corporate network mobile phones and
laptops are constantly moving around and connecting to dif-
ferent wireless access points. The traffic they are generating
is traveling over vast distances, encountering routers that are
experiencing unpredictable loads, and consecutive packets are
never guaranteed to take the same path over the Internet.
However, devices in ICS networks are dedicated to one critical
task and are fixed in a permanent location. The traffic generated
from their regular polling intervals travel over relatively short
geographic distance and over simple network architectures that
offer little to no chance for consecutive packets to take differ-
ent paths. The regular polling cycle means that routers and
switches on ICS networks have consistent predictable loads
which result in consistent and predictable queuing delays.
Consequently for any given ICS network, a TCP ACK and
SCADA response sent in quick succession will with extremely
high probability take the same exact path, encounter the same
delay, and therefore have a very consistent spacing in between
them. Therefore, there is little opportunity for differences
in network architecture to cause significant changes in the
distribution of CLRTs. In Section IV-A3 we study how much
a change in networks effects the performance by learning
fingerprints from one substation and testing the fingerprints
over a year later on a different substation.

Due to the low computational power found in ICS devices,
the CLRTs are much larger than most delays that might be
caused by differences in network architecture. In the real-
world dataset used for this research, illustrated in Figure 6a,
the CLRTs are all on the order of tens or even hundreds of
milliseconds. In contrast, typical latencies obtained from ICS
network switch datasheets and theoretical transmission delays
on a 100Mbps link are both on the order of microseconds,
resulting in a minor contribution to the overall CLRT mea-
surement. Furthermore, ICS networks most often have over-
provisioned available bandwidth to ensure reliability (e.g. the
live power substation network studied for this research used an
average of 11Kbps bandwidth out of the available 100Mbps,
a strikingly low traffic intensity of 0.01%). These low traffic
intensities ensure that the switches and routers on the network
are never heavily loaded and have consistently low queuing
delays.

Finally, even in the scenario where two network architec-
tures are so different as to significantly alter the distribution of
CLRTs, this would have no significant effect on the defensive
utility of the proposed method and would arguably make it
stronger. Any real-world application of the fingerprinting tech-
nique would involve a training period on the target network that
would capture the minor effects of the network architecture.
Then, if an attacker was attempting to create an offline database
of signatures for all device types and software configurations
without access to the specific target network, she would also
have to consider all the possible network architectures that
could affect them.

Due to this combination of low computational power, fixed
CPU loads, and simple networks with predictable traffic, any
significant change in a device’s distribution of CLRTs highly
suggests either an attacker spoofing the responses with a
different machine, or a change in CPU workload [25] or
software configuration, which could be a sign of a device being
compromised with malware.

2) Experimental Setup: To test this method, experiments
were run at a large scale using a real world dataset as well
as on a small scale using controlled lab tests. The large
scale tests were conducted in two rounds, before and after
changes in the network architecture. First, network traffic
( 20GB) was captured from a live power substation with
roughly 130 devices running the DNP3 protocol over the span
of five months with the network architecture as illustrated in
Figure 4. Then over a year later, one more month of data
was captured from the same substation after the network was
slightly modified by replacing the main router with a new
switch, changing the IP addressing scheme accordingly, and
increasing the frequency of measurement polling. Additionally,
a brief overnight capture was collected from another substation
with a different architecture (roughly 80 devices using DNP3,
illustrated in Figure 5) to test if fingerprints learned on one
network would translate to another. The company operating
the substations provided a list of all device IP addresses on
the network organized by location, device type, and device
software configuration, and machine learning techniques were
applied to attempt to make these labeled classifications.

Further tests were conducted in the lab to study the effects
of the software configuration alone and to rule out any possible
factors related to different hardware or different round-trip
times (RTT) on the network.

In both scenarios, CLRT measurements were taken from
DNP3 polling requests for event data and were summarized
by dividing all measurements into time slices (e.g. one hour,
or one day) and calculating means, variances, and 200-bin
histograms for each time slice. Machine learning techniques
were then evaluated using two different feature vectors: a more
complex approach using the arrays of bin counts as defined in
Equation 1 and a simple approach using arrays containing only
the mean and variance for each time slice.

3) Results: Device and Software Type Fingerprinting.
To obtain a rough visualization of the separability of the
device types based on their CLRT measurements, a scatter
plot based on the mean and variances of CLRTs was produced
and the true labels of the devices were illustrated in Figure 6a.
Each point represents the mean and variance of the CLRT
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Fig. 4. Network Architecture of First Substation

Fig. 5. Network Architecture of Second Substation

measurements for one IP address over the course of one
day out of the original five month dataset. From the figure
we can tell that even using simple metrics such as means
and variances, results in the vendors and hardware device
types being highly separable. Furthermore, it suggests that
this method can also subdivide identical hardware device types
into classes based on different software configurations (Vendor
A Types 1a and 1b). For verification of this hypothesis, see
Appendix A. These conclusions were further supported when
the probability density functions (PDFs) of CLRTs over a day
were estimated for each type in Figure 6b.

Since Figure 6a illustrates that device types are clearly
separable based on simple mean and variance measurements,
virtually any choice of a properly tuned machine learning algo-
rithm would result in high accuracy classification. Therefore,
as the purpose and novelty of this work is not the use of
machine learning for fingerprinting, a sampling of the most
popular algorithms in the field were chosen as examples.

To measure the performance of our fingerprinting tech-
niques throughout this work, we calculate the standard clas-
sification metrics of accuracy, precision, and recall as defined
in Equations 2, 3, and 4 for each class separately, where TP ,
TN , FP , and FN stand for true positive, true negative, false
positive, and false negative, respectively. To summarize these
results, the average value across classes was plotted alongside
the minimum value among classes.

ACC =
TP + TN

TP + TN + FP + FN
(2)

PREC =
TP

TP + FP
(3)

REC =
TP

TP + FN
(4)

The first machine learning algorithm used in these experi-
ments to classify the labeled data was a feed forward artificial
neural network (FF-ANN) with one hidden layer trained using
the back propagation algorithm. This algorithm was chosen

(a) CLRT samples for all devices with a time slice
of one day

(b) Estimated PDFs of CLRTs for five sample devices
over one day

Fig. 6. Separability of device types based on CLRT

due to its popularity and previous use in related work [18].
The bin counts of the histograms, as defined in Equation 1,
were used as the feature vector for each sample and the time
slice they were taken over was varied. The samples were
randomly divided using 75% as training data and 25% as
testing data. The average and minimum accuracy, precision,
and recall for these experiments are shown in Figure 7, and
suggests that even with time slices as small as 5 minutes an
average accuracy of 93% can be achieved. Some devices at
this substation were being polled only once every 2 minutes,
so the 5 minute detection time is roughly equivalent to a
decision after only two samples. Furthermore, when false data
is injected into a control system catastrophic damage usually
cannot immediately occur due to built-in safety features in the
system. The most successful attacks would sabotage equipment
or product over an extended period of time, for example by
tricking a control system into heating a reactor past its limits
and causing it to explode.

To demonstrate that the exact choice of machine learning
algorithm is largely irrelevant, we also attempted supervised
learning using one of the simplest algorithms in the literature,
a multinomial naı̈ve Bayes classifier. The signature vectors
remained the same and similar experiments were conducted
to determine the required training period and detection time.
Furthermore, these tests were conducted to simulate a real
world deployment instead of randomly choosing training and
test data, the training data was taken from the beginning of the
capture and the test data was taken from the following 1000
detection time windows. After studying Figures 8a and 8b, it
is clear that the simple Bayes classifier performs even better
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Fig. 7. Fingerprint Classification Performance Using FF-ANN

(a) Accuracy, precision, and recall of
supervised Bayes classifier as a func-
tion of detection time

(b) Accuracy, precision, and recall as a
function of training time

Fig. 8. Fingerprint classification performance

than the more complex ANN and can achieve high accuracy
classification with detection times as small as a few minutes.

The above results are extremely promising for supervised
learning when a list of IP addresses and corresponding device
types are available, but this is not the case for administrators
trying to understand what devices are on a poorly documented
legacy network. To address this scenario, unsupervised learn-
ing techniques were also applied and tested if they could
accurately cluster the devices into their true classes. Referring
back to Figure 6a, it is clear that the samples closely follow
a multivariate Gaussian distribution, so it was decided to
illustrate unsupervised learning with Gaussian mixture models
(GMM) using a full covariance matrix and a signature vector
consisting of means and variances with a time slice of one
day. Figure 9 shows the estimated clusters learned from
the GMM algorithm, which upon comparison with the true
clusters in Figure 6a, looks very similar. When the dataset
was tested against the learned clusters, the model achieved
an accuracy of 92.86%, a precision of 0.891, and a recall of
0.956. With performance as nearly as high as the supervised
learning methods, this unsupervised technique would allow
administrators to develop an accurate database of fingerprints
with very little knowledge of the network itself.

Effect of Network Architecture. While the previous ex-
periments, simulating a real-world deployment with a training
period on the target network, performed very well, we also
wanted to study how much the network architecture affects
the performance of the fingerprinting techniques. For the first
experiment to study these effects, the original substation was
revisited over a year later after the network architecture had
been upgraded and polling frequency had been increased.
When the distribution of the new architecture in Figure 10a is

Fig. 9. Randomly generated samples from the unsupervised learned clusters

(a) CLRT Distribution After network
Changes

(b) CLRT Distribution of Second Sub-
station

Fig. 10. Minor effects of network architecture on CLRT distributions

compared with the original in Figure 6b, there are only minor
differences. When the fingerprints learned from the original
capture were tested on the new data, very high accuracies in
Figure 11a were obtained suggesting that the method is stable
over long periods of time and over minor changes in the same
network.

Even though the primary defensive use-case for this tech-
nique would always involve a training period on the target
network, we also consider the rare case where an administrator
is able to learn fingerprints on one network because of known
labels, but does not have the labels for a different network. To
study this scenario, we learned fingerprints from our original
capture and tested them on a different substation over a year
later. When the different substation’s distribution in Figure
10b is compared with the original there are some small, but
noticeable changes that could be result of the different archi-
tecture affecting the timings or from the different electrical
circuit affecting the load of the devices. When the fingerprints
learned from the original capture were tested on this different
network, the average accuracy seemed to level off around 90%
suggesting that while the accuracy may be diminished across
different networks, there is still some utility in the technique.

Finally, to show that the technique performs well on
different networks when trained individually, we trained a
Bayes classifier on one hour of data from the second substation
and tested it on the remaining seventeen hours of data with the
results in Figure 12.

B. Method 2: Physical Fingerprinting

The second proposed fingerprinting approach addresses the
control half of SCADA systems by fingerprinting physical
devices based on their unique physical properties. A series of
operation time measurements are taken and used to build an
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(a) Classification Performance After
Network Changes

(b) Classification Performance Across
Substations

Fig. 11. Classification Performance Across Networks

Fig. 12. Classification Performance on Second Substation

estimated distribution and generate the signature in a similar
way as the first method. The formal definition of the signature
in this case follows the same logic as Equation 1 above, but
with M being defined as a set of operation time measurements
and H being a heuristic threshold chosen to be an estimate of
the maximum value an operation should ever take.

1) Theory: The mechanical and physical properties defin-
ing how quickly a device operates differs between devices and
produces a unique fingerprint. For example, this concept is
demonstrated by analyzing the difference in operation times of
a latching relay that uses a solenoid coil arrangement illustrated
in Figure 13. Relays were chosen for this research as they are
commonly used in ICS networks for controlling and switching
higher power circuits with low power control signals. The
electromagnetic force produced while energizing the solenoid
coil in a latching relay is directly proportional to current though
the solenoid, number of turns in the solenoid, and the cross
sectional area and type of core, as described by Equation 5.

F =
(N ∗ I)2u0A

2g2
(5)

Fig. 13. Diagram of two different latching relays

N - Number of turns in the solenoid
I - the current, in amperes (A),running through the solenoid
A - the cross-sectional area, in meters-squared, of the
solenoidal magnet
g - the distance in meters, between the magnet and piece of
metal
µ0 - 4π ∗ 10−7 (a constant)

This electromagnetic force governs the operation time, and
modification of any one of these variables due to differing
vendor implementations results in unique signatures. In addi-
tion to proposing a specific distribution for devices based on
vendor, individual physical operations like open or close will
also produce a difference in operation times, which again can
be attributed to the different forces involved in completing the
physical action.

When a breaker or relay responds to an operate command
from the master, an event change is observed at the slave
device. With unsolicited responses enabled in the slave device,
it asynchronously responds back with a message on an event
change, which can be observed with a network tap to calculate
the operation time. The response can also contain a sequence
of event recorder (SER) timestamp indicating the time that the
event occurred. Therefore, operation times can be estimated
based on two different methods:

1) Unsolicited Response Timestamps - Calculated by the
OS at the tap point by taking the difference between
the time at which the command was observed and the
time at which the response was observed. m = t3−t1

2) SER Response Timestamps - Calculated from the
difference between the time at which the command
was observed at the tap point and the application layer
event timestamp. m = t2 − t1

Fig. 14. Timing diagram to calculate Operation times

2) Experimental Setup: To demonstrate the proposed ap-
proach, the circuit breaker operation was chosen. The exper-
imental setup consisted of a DNP3 master from a C++ open
source DNP3 implementation (OpenDNP3 version 2.0), an
SEL-751A DNP3 slave and two latching relays to demonstrate
fingerprinting based on operation time. At the tap point in
Figure 15, a C based DNP3 sniffer is used to sniff and parse the
DNP3 packets to perform deep packet inspection. At the same
tap point, the packets are timestamped by the Linux operating
system which is time synchronized by the same time source
as that of the DNP3 master and DNP3 slave.
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Fig. 15. Experimental Test Setup-fingerprinting breakers

The SEL-751A IED is a feeder protection relay supporting
Modbus, DNP3, IEC61850 protocol, time synchronization
based on SNTP protocol, and a fast SER protocol which times-
tamps events with millisecond resolution. The experimental
setup for both relays consisted of a latching circuit (Figure
16a) and a load circuit (Figure 16b).

(a) Latching circuit for Latching Relay

(b) Load circuit for Latching Relay

Fig. 16. Circuits used in lab experiments

The latching circuit works on an operating voltage of
24VDC needing about 1A to operate and load circuit is
based on 110V to be compatible with the IED’s inputs. On
a close command from the DNP3 master, the IED activates
a binary output energizing the latch coil to close the load
circuit. Once the load circuit is energized, the binary input
senses the change and a timestamped event is generated. On
an open command from the DNP3 master, the IED activates
the second binary output energizing the reset coil to open the
load circuit, which is recorded as a timestamped event. For
these experiments, 2500 DNP3 open and close commands were
issued simultaneously to both the latching relays with an idle
time of 20 seconds between operations. The commands and
responses were recorded at the tap point and operation times
were calculated using both the unsolicited response method
and SER based method. The unsolicited response method did
not produce any usable results, so the SER method results are
described below and retained as the physical fingerprint.

3) Results: Difference between Vendors. The distributions
of close operation times based on SER timestamps for devices
from two different vendors are illustrated in Figure 17a. The

times range from 16ms to 38ms for Vendor 1 and 14ms to
33ms for Vendor 2. Even though both devices have similar
ratings, the difference in operation can be attributed to the
difference in physical makeup between them. For example,
one device had a larger cross sectional area for its solenoid,
resulting in different forces produced by Equation 5 above.
When the same FF-ANN techniques as the first method were
applied to classify the latches based on SER timestamped
operations, the accuracy leveled off around 86% as shown in
Figure 18a. Note that the large fluctuations appear to be a result
of overfitting, causing one class’s performance to improve
significantly at the cost of the other.

(a) Distribution of Close Operation
times based on SER Responses

(b) Distribution of Open Operation
times based on SER Responses

Fig. 17. SER based response times

(a) FF-ANN Classifier Performance (b) Bayes Classifier Performance

Fig. 18. Classification Performance Based on Timestamped Close Operations

When the naı̈ve Bayes classifier was applied to this prob-
lem slightly better results were obtained in Figure 18b that
leveled off around 92% accuracy, again suggesting that any
properly tuned machine learning algorithm would perform
well.

Figure 17b illustrates the distribution of open operation
times for the two different latches and shows little variation
between the two, thus preventing these times from being used
for accurate device fingerprinting.

Difference between Operations. The previous results
found that Close operation times help distinguish between
relays of two different vendors, but it would also be desirable
to distinguish between types of operations for a single device,
for example to determine if a device had opened or closed in
response to a command. Figure 19b shows the distribution of
open and close operations for Vendor 1’s latching relay with
noticeable differences. These differences can be attributed to
the physical construction of the components that act to open
or close the relay, as discussed in detail in Section V.

On repeating the experiments for the second vendor’s relay,
the distribution of open and close operation times (Figure 19a)

9



(a) Distribution of open and close Op-
eration times based on SER responses
for Vendor 1

(b) Distribution of open and close Op-
eration times based on SER responses
for Vendor 2

Fig. 19. Difference between open and close

again showed clear distinctions and similar conclusions can be
drawn as to the underlying causes. Therefore, even though
the Open operation does not help distinguish between two
vendors in this case, the results suggest that in the general
case operations are distinguishable from one another and could
potentially be used in other scenarios.

V. SYNTHETIC FINGERPRINT GENERATION

While the results obtained in the previous section for
both fingerprinting techniques (cross-layer fingerprinting and
physical fingerprinting) are promising, the fingerprints were
generated using black box methods that assume some access
to the target devices. The first proposed technique based on
monitoring of data packets requires a black box modeling
approach as neither the internal circuitry nor the device source
code is usually available (and thus there is no basis for
constructing a white box model). Alternatively, physical fin-
gerprinting technique may leverage a white box, black box, or
gray box modeling approach since the mechanical composition
of a device can usually be obtained from manual inspection,
available drawings/pictures, or manufacturer’s specifications.
The ability to construct white box model fingerprints for
physical fingerprinting is crucial due to the rare operation of
some devices, and the prohibitive cost of performing black
box modeling on all of the available devices on the market.
To illustrate this technique, this section describes construction
of the same fingerprint for the latch relay mechanism discussed
in Section IV-B2 using white box modeling only and then
validates it against the black box model results obtained for
the device in Section IV-B3. However, a gray box modeling
approach could be pursued as a general methodology for
physical signature generation.

Modeling and Fingerprinting of a Latch Relay. To
demonstrate the physical fingerprinting process, we consider
a standard latch relay such as the Potter and Brumfield KUL
Series relay shown in Figure 20 (Vendor 1 from the previous
section). This latch relay operates using the principle of re-
manent magnetization in which a coil magnetizes a permanent
magnet in either direction during opening and closing opera-
tions. To construct a dynamic model for the device, the latch
relay was disassembled and its basic components modeled
as shown in Figure 20. A magnetic armature of length L is
connected to the base assembly by a torsional spring of spring
constant k. The torsional spring is preloaded so that it applies
a torque which pushes the armature to the open position by

default. A permanent magnet lies at a distance l along the
armature and is assumed to exert a magnetic force Fp at a
single point along the armature. Furthermore, the permanent
magnet is surrounded by a wire coil which carries the input
current α(t), and also applies a magnetic force Fc to the
armature. The magnetic field from the coil pulse drives the
magnetic field of the permanent magnet to be in the same
direction. After the driving field is removed, the permanent
magnet holds the field in the same direction by the property
of remanent magnetization. This process is what “latches” the
relay.

Fig. 20. Potter and Brumfield Latch Relay (left), Mechanical Schematic of
Relay (right)

To switch the latch relay, a current is applied to the coil
surrounding the permanent magnet. Let this current be given
by the first-order response,

α(t) = 1− e−t/τ (6)

where t = 0 corresponds to the time the switching command
is initiated and τ is an appropriate time constant. The magnetic
field produced by the coil induces a change in the magnetic
field properties of the permanent magnetic through remanence
[7]. To model this process, consider the function φ(t) given
by,

φ(t) =
2

π
tan−1(βα(t)− γ) (7)

which approximately models the magnetic field of the perma-
nent magnet as the current in the coil changes with time (where
β and γ are tuning parameters). Given this approximation of
the magnetic field, the forces exerted on the armature by the
permanent magnet and coil are given respectively by,

Fp =
cpµ0

(r +R)2
φ(t) Fc =

ccµ0

(r +R)2
α(t) (8)

where cp and cc are constants describing the strength of
the magnet and µ0 is the magnetic permeability of air. The
equation of motion for the armature is thus,

θ̈ = I−1(Fpl cos θ + Fcl cos θ + kθ) (9)

where I is the moment of inertia of the armature about
the hinge point. Physical measurements of the device can
be used to provide values for r,R, l, L, k, and I . Five other
parameters must be identified to simulate the time response of
the latch relay mechanism, namely cp, cc, β, γ, and τ . These
parameters may be estimated based on material composition
of the magnets.
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(a) Armature displacement vs time (b) Armature angular velocity vs time

Fig. 21. Armature displacement and angular velocity

(a) Simulated response times (b) Experimental response times
(from Section IV-B3)

Fig. 22. Comparison of simulated and experimental distributions for the
Potter and Brumfield KUL series latch relay

Figure 21 shows armature displacement and angular veloc-
ity time histories for an example opening and closing sequence,
where displacement is measured at the contacts. Experimental
data showed that the average opening time is longer than the
average closing time which is reflected in simulation model
outputs. Note that the simulation predicts that the opening and
closing operations will take approximately 28 ms and 24 ms
respectively under nominal conditions.

To generate a physical fingerprint (PDF), a Monte Carlo
simulation was performed randomly perturbing the nominal
values of the τ parameter using a Gaussian distribution. This
data was compared with experimental results obtained using
the setup described in Section IV-B2. Figure 22 shows a
histogram of the response times for approximately 1200 runs,
with simulated and experimental data shown on the left and
right respectively. The similarity in these distributions demon-
strates that the mechanical response characteristics can be
adequately captured with this parameterized dynamic model.
We extend this notion of white box modeling to a much larger
and realistic power system device in Appendix B.

To test how well this white box modeled “synthetic sig-
nature” could be used in fingerprinting, the same machine
learning techniques were applied as before, but trained from
the simulated distribution for one device and experimental
measurements from the other device. The FF-ANN was trained
using the same number of samples for each device, and then
performance was tested using an equal number experimental
measurements for each device. With classification accuracy
leveling off around 80% as shown in Figure 23, the white
box model expectedly does not perform quite as well as
the black box method based on true measurements due to
the various simplifications and estimations made during the
modeling process. However, the results are still very promising

Fig. 23. Performance using a combination of white box and black box
modeling

for this new class of fingerprinting. Furthermore, in a real
world scenario the white box model approach would be limited
to scenarios where there is not enough experimental data or the
integrity of the experimental data is in question. The white box
approach can then be combined with the black box approach
to enable gray box modeling where appropriate to achieve
higher accuracy. While there are a variety of techniques to
approach this problem, Bayesian learning being one, intuitively
it is similar to simply replacing synthetic samples in the white
box distribution with real samples over time as they become
available. Additional discussion of the limitations of white box
modeling is provided in Section VI-C1.

VI. DISCUSSION

A. Performance

In order for a fingerprinting method to be useful for any
situation, whether it is for intrusion detection, surveillance,
or network management, the techniques should be relatively
accurate and scalable.

Accuracy While neither method was able to obtain the
near-perfect classification accuracy needed for an effective
stand-alone intrusion detection system, both achieved high
enough accuracy to prove useful in a defense-in-breadth strat-
egy as a supplement to traditional IDS approaches. The CLRT
method achieved impressive classification accuracies as high
as 99% in some cases and the physical fingerprinting method
was able to accurately classify measurements from two nearly
identical devices around 92% of the time. For reference, all
of the previous passive fingerprinting methods described in
Section II achieved classification accuracies ranging from 86%
to 100%, so these performances are quite comparable.

Scalability The FF-ANN algorithm used in training the two
fingerprinting techniques only had one hidden layer and 200
input features, resulting in reasonable scalability for computa-
tional complexity, and the alternate Bayes classifier algorithm
is also very efficient. Furthermore, our results suggest that the
accuracy for the methods scales as well. The CLRT method
was already tested above on a full scale power substation
network and was able to achieve high accuracies. Although
the physical fingerprinting method only achieved an accuracy
of 92% for two similarly rated devices, it would be expected to
achieve even higher accuracy as more diverse types of devices

11



are added to the test set, resulting in more clear differences in
distributions.

B. Robustness Against Forgery

When using device fingerprinting to augment traditional
IDS methods, it is also desired that the fingerprints be non-
trivial to forge (i.e., resistant to mimicry attacks). Fortunately
there are several reasons as to why the proposed methods
are not so easily broken. First, there is always going to be
inherent randomness in the attacker’s machine that makes it
non-trivial to perfectly reproduce anything based on precision
timing. Second, for the physical fingerprinting method the
adversary machine’s clock must stay synchronized with the
target device’s clock to millisecond precision. While this may
not be very difficult with modern computers and networks,
most devices in legacy control system networks have much
lower powered processors and experience significant clock
drift. For example in the observed dataset, the RTU (SCADA
master for the field devices) drifted away from our network
sniffer’s clock at a rate of 6ms per hour.

To evaluate the proposed methods against forgery, we
consider two different classes of adversary. First, we consider
the case where an adversary is unable to gain physical access
to the target network but instead is able to compromise one
of the low powered devices on an air-gapped network, as in
the case of Stuxnet [15]. Her goal is to watch the network
long enough to generate black box fingerprints and spoof the
responses of another device while matching their fingerprint.
To model this adversary, we use a BeagleBone Black with
512MB of RAM and its ARM processor clocked down to
300MHz to simulate the resources available on a high-end
PLC. Second, we consider a stronger adversary that has gained
physical access to the network and is able to use her own,
more powerful, machine to spoof the responses. This stronger
adversary was modeled by a standard desktop with a 3.4
GHz quad-core i7 processor and 16GB of RAM. In both
scenarios, the adversary is assumed to have gathered accurate
samples and therefore has perfect knowledge of the signature
she must try to mimic. However, in reality there are several
difficulties that would make this perfect knowledge unlikely.
First, since the ICS environment contains an abundance of
legacy devices, it is not certain that the compromised device
would even have a network card that supports promiscuous
mode for network sniffing. Additionally, any sniffing code
installed on a low powered, compromised device would most
likely be computationally expensive enough to skew timing
measurements on the system. Furthermore, since it was found
in Figure 11 that network architecture does have some effect
on the fingerprint, this suggests that the adversary would have
to sniff the network in the same location as the fingerprinter to
get a completely accurate distribution, or be able to determine
the effects of the network by other means.

1) Cross-Layer Response Time Forgery: To test the cross-
layer fingerprinting method, an open source implementation
of DNP3 (OpenDNP3 version 2.0.1) was modified to have
microsecond precision sleep statements using the known CLRT
distribution of one of the Vendor A Type 1b devices. The
forgery attempt by the weaker adversary in Figure 24a shows
very clear differences in the distributions due to the limited
resources slowing the distribution down and adding its own

(a) Forgery Attempt for CLRT Fingerprinting
Under Weak Adversary

(b) Forgery Attempt for CLRT Fingerprinting
Under Strong Adversary

Fig. 24. Forgery attempts against the CLRT technique

randomness. The stronger adversary’s forgery attempt can be
seen in Figure 24b. Compared with the original, the two
distributions are very similar but the forged one is slightly
slower due to the adversary’s own processing time.

When the Bayes classifier was applied to distinguish be-
tween the real device’s distribution and the attacker’s forged
distribution, the results in Figure 26 suggest high accuracy
detection of the forgery can be achieved.

2) Physical Fingerprinting Operation Time Forgery: To
study the forgery of the physical fingerprinting technique, a
DNP3 master was configured to send operate commands every
second, and the adversary machine’s modified OpenDNP3
code was programmed to send responses with timestamps
calculated from the machine’s current time, added with the
known distribution of operation times. The resulting forgery
attempt by the weaker adversary can be seen in Figure 25a.
The distributions appear completely different due to the Bea-
gleBone’s clock quickly drifting from the SCADA master’s,
thus making the forgery attempt easily detected. The forgery
attempt by the stronger adversary, illustrated in Figure 25b, is
similar to the original, but still has noticeable differences most
likely due to the high-end PC timestamping the operations
faster than the original device.

The results from the Bayes classifier in this scenario in
Figure 26 also suggest high accuracy detection of forgery is
possible.

Even though both fingerprinting techniques exhibit re-
sistance to these naı̈ve forgery attacks, we admit it is still
possible that an attacker could more intelligently shape her
response times to more closely match the true fingerprint and
implement a method of keeping better clock synchronization
with the target. However, this would require a significantly
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(a) Forgery Attempt for Physical Fin-
gerprinting Under Weak Adversary

(b) Forgery Attempt for Physical Fin-
gerprinting Under Strong Adversary

Fig. 25. Forgery attempts against the physical fingerprinting technique

(a) Forgery Detection for Weak Adver-
sary

(b) Forgery Detection for Strong Ad-
versary

Fig. 26. Forgery Detection

more knowledgeable and skilled adversary to successfully
accomplish. She would have to know beforehand the relative
speed of her machine to the target’s machine, have knowledge
of any effects the network architecture might have on the
signature, and determine how fast the target’s clock drifts, all
suggesting that these methods are robust enough to be used as
part of a defense-in-breadth IDS strategy.

Although the fingerprinting techniques proposed here are
completely passive and require no changes to the target net-
work or devices, better defenses against mimicry attacks could
be implemented if this assumption is removed. For example,
the SCADA master or the fingerprinter could be configured
to randomly send extra requests or commands that have no
effect on the operation of the network, but would increase the
knowledge requirement of the adversary and the complexity
of the behavior she has to mimic. For the CLRT method,
this could involve changing from polling for event data to
polling for different numbers of specific measurements each
time, which on the low powered embedded systems should
theoretically result in measurable timing differences. For the
physical fingerprinting method this could take the form of
sending redundant commands, for example by sending a Close
command when the breaker is already closed.

C. Limitations

While both proposed fingerprinting methods perform well
under certain conditions, there are some limitations. The cross-
layer fingerprinting method first requires a SCADA protocol
using “Read” and “Response” messages, which all of the
most popular SCADA protocols implement. Furthermore, the
SCADA protocol must sit on top of a TCP implementation
that uses at least a minimum amount of “quick ACKs” (im-
mediately ACKing a packet instead of delaying in the hopes

of piggybacking). For example, modern Linux systems use
quick ACKs to accelerate TCP slow start at the beginning of
connections and after retransmissions, but every vendor in the
observed power substation dataset used quick ACKs for every
packet, presumably to reduce latency. Therefore, the amount
of quick ACKs used by a device would determine how quickly
a fingerprint could be generated.

The physical fingerprinting method requires high resolution
timing of when operations take place, so it must be used with
protocols that include operation timestamps in their responses.
Not all SCADA protocol support this functionality, but the
ones used in time-critical environments, such as the power
grid, do include such timestamps. Requiring timestamps in
the network traffic is a limitation in the sense that it can
make it easier for an adversary to generate and forge the
device fingerprints, but it can also be a defensive strength
in another. If the network traffic is encrypted, an adversary
would have to resort to white box modeling to attempt to
generate any fingerprints, which is non-trivial and becomes
more difficult as the devices modeled become more complex
(e.g., Appendix B gives a coarse model of a more complex
mechanical operation).

The highest classification accuracies achieved in this work,
99% and 92% for CRLT and physical fingerprinting respec-
tively, are impressive but would result in an impractical number
of false alarms (1% and 8%) if each mis-classification was
treated directly as an intrusion. Therefore, any practical appli-
cation of these fingerprinting techniques to detect intrusions
would leverage the significant body of work [22] [8] on IDS
alert correlation to manage the number of alarms.

1) Limitations of White Box Modeling: Clearly, the pro-
posed white box modeling approach requires detailed knowl-
edge of the mechanical construction of the ICS device. To
construct a physics-based model, the devices basic mechanical
functionality must be derived from either available schematics,
drawings, or a physical example of the device itself. In some
cases, the material composition of certain components (i.e.,
magnetic materials, etc) may also be important in the modeling
process. For many devices this information is widely available
and thus building a model is feasible. However, in some cases
it is possible that mechanical design data will be difficult to
obtain, for instance due to intellectual property concerns. For
a given device, there is certain device-specific mechanical data
that is required to build a physical model, and if this data is
not available then white box modeling is likely infeasible.

Another consideration in white box modeling arises from
process variation or model error. If the white box model
exhibits parametric error only, Monte Carlo simulation can be
used as in the above examples to generate a realistic response
distribution by randomly varying model parameters. However,
non-parametric modeling errors (or structural modeling errors)
may pose significant problems as these can lead to bias errors
in the resulting response distributions. Non-parametric errors
may stem from unmodeled components or incorrect modeling
assumptions. These biases in the model response can in turn
lead to misclassification problems.

The most attractive method to mitigate structural model
error is to employ a gray box modeling approach, which
combines white box model predictions with black box data as
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it becomes available. For example, this can be accomplished
by replacing synthetic samples with measured samples in the
response distribution. The accuracy would then be expected
to converge to black box model accuracy over time. It is
important to note that, due to the accuracy limitations of
white box modeling, use of this approach would be limited
to scenarios where equipment is operated so infrequently that
sufficient black box data is difficult to immediately obtain.
White box modeling does, however, serve as a valuable tool
in such scenarios by providing a starting guess for the response
distribution that can be updated opportunistically as additional
data is gathered.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented two novel methods for passively
fingerprinting devices on ICS networks. After evaluating the
methods using real world datasets and controlled lab exper-
iments, fingerprint classification accuracies as high as 99%
and 92% were achieved for the first and second methods
respectively. Both techniques exhibited resistance to simple
forgery attacks and could feasibly be implemented alongside
more traditional IDS solutions to augment the security of
critical ICS networks.

For future work, we plan to improve on the white box
modeling and extend these methods to fingerprinting embed-
ded devices in the “Internet of Things” and also investigate
the possibility of developing active fingerprinting techniques
to increase classification accuracy.
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APPENDIX

A. Software Configuration Fingerprinting

To verify the suggestions from the large scale experiments
that the software configuration was observable through CLRT
measurements, lab experiments were performed on the same
exact IED with different settings enabled and disabled. Ap-
proximately 700 CLRT measurements were taken for each
of three cases: all extra settings enabled, only overcurrent
protection enabled, and all extra settings disabled. When
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TABLE I. VACUUM INTERRUPTER PARAMETERS

Parameter Name Variable Estimate
Viscous damping coefficient [kg/s] c varied
Contact separation [m] d 0.010
Spring constant [N/m] k 200.0
Contact to pivot distance [m] lcon 0.0508
Spring to pivot distance [m] lspr 0.106
Spring offset [m] loffset 0.050
Total bar length [m] lbar 0.1568
Mass of contact [kg] mcon 0.850
Mass of bar [kg] mbar 0.200
Normalized center of gravity [nd] NCG 0.500

comparing the distributions for all extra settings enabled versus
disabled in Figure 27, there are several noticeable differences.
In fact, when the same FF-ANN from the previous experiments
was trained on these two cases, perfect classification accuracy
was achieved. Figure 28 shows only minor differences between
the ‘free’ case and the overcurrent case, and consequently, the
FF-ANN only achieves roughly 66% classification accuracy.

Fig. 27. Effect of multiple settings enabled on CLRT distribution

Fig. 28. Effect of one extra setting enabled on CLRT distribution

B. Modeling of a vacuum interrupter

The previous example in Section V highlights the modeling
process for a small-scale relay for which laboratory data can be
easily obtained. To demonstrate how this methodology scales
to common ICS devices, the physical modeling approach is
applied to a medium voltage vacuum circuit-breaker commonly
found in power distribution stations. Vacuum interrupters typ-
ically employ contacts located inside a vacuum tube (used
to mitigate arcing during operation). The breaker itself is a
mechanical device operated by a preloaded spring so that open-
ing and closing of the breaker happens rapidly. A picture of
the Siemens GMSG vacuum circuit breaker and a mechanical
schematic of the relevant moving parts are shown in Figure
29.

(a) Siemens GMSG
medium voltage
vacuum interrupter

(b) Schematic derived from the basic me-
chanical drawing

Fig. 29. Vacuum interrupter

With this schematic, the relevant equations of motion are
found to be:

Iθ̈ = ∓(Flcosθ)contact − (Flcosθ)spring

I =
1

12
mbarl

2
bar +mbar(NCGlbar − lcon)2 +mconl

2
con

Fcontact = clconcosθθ̇

Fspring,close = k
[
lsprsinθ + loffset

]
Fspring,open = k

[
lsprsin(θcontact − θ) + loffset

]
(10)

After estimating the values of the parameters and varying
the value of c in Monte Carlo simulations, the synthetic distri-
bution in Figure 30 was generated. One interesting difference
to note is that the open and close sequences are more similar
to each other for the vacuum interrupter than they were for
the latches. More importantly, it should be noted that this
distribution is clearly distinguishable from the latches due to
the significantly larger response times (centered around 60ms
as opposed to 25ms).

Fig. 30. Simulated open and close response distributions for vacuum
interrupter

The purpose of the above example is not to provide a
detailed mathematical analysis of a vacuum interrupter, but
rather to demonstrate that a high-fidelity dynamic model of
a real-world ICS component can be developed without re-
quiring access to or operation of the device itself. Instead,
available technical drawings and manufacturer’s specifications
are sufficient in many cases to estimate model parameters and
generate a reasonable prediction of the device’s response time
distribution.
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