
Xi Xiong, Donghai Tian and Peng Liu

The Pennsylvania State University

1

NDSS 2011

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

2

 Kernel compromise through extension
interface

 Malware: kernel-level rootkits

▪ e.g., subvert kernel meta data or control flow to hide
malicious activities

 Buggy extensions

▪ Linux drivers are seven times more likely to contain bugs
than other kernel code. [Chou, SOSP 01]

 Malicious Device Drivers

3

 Prohibit execution of untrusted code
 Secvisor [Seshadri ‘07], NICKLE [Riley ‘08]…

 Kernel control data protection

 HookSafe [Wang ‘09]…

 Monitor the behavior
 K-Tracer [Lanzi `09], Poker [Riley `09]…

 Find signatures and invariants

 Gibraltar [Baliga ‘08], Robust Signature [Dolan-Gavitt ‘09], KOP
[Carbone ‘09], SigGraph [Lin ’11]…

 Our approach: shepherd untrusted extensions

4

 How to let untrusted kernel extensions
safely run to provide desired
functionalities without harming the
integrity of the OS kernel?

5

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

6

 Kernel Code/Data Integrity

 Architectural state integrity

 Control flow integrity
 e.g., extensions jump to undesired positions of

kernel text

 Stack integrity
 e.g., inject malicious kernel stack frames
 7

 Using run-time access control to limit (shepherd)
what untrusted extensions can do.

 examples:

 untrusted extensions cannot change the kernel code

 they cannot write to high integrity data objects owned
by kernel, but kernel can

 they can only invoke a limited set of kernel APIs

 they can only write to its own stack frames

8

 In commodity OS, extensions and OS kernel
are in the same execution context (no context
switch)
 subject identification: who is running? extension

or kernel?

 Kernel and extension are in the same address

space with less meta information
 object identification: figure out which part of

physical memory contains which type of objects.

9

 Writing to kernel objects are directly through
memory operations, no existing interface to
place authorization hooks

 system calls, LSM

 mediation and enforcement challenge

 How to monitor control flow transfer and

guarantee its integrity?

10

 HUKO: a hypervisor based protection system
 mediation on kernel-extension interaction

 run-time mandatory access control
 Overview

11

Challenge Design Solution

Subject Identification Protection States

Object Identification Page-based kernel object labeling

Mediation and Enforcement VMM-level protection domains
using Hardware assisted paging

Control Flow Integrity Trusted Entry Points, call-return
consistency

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

12

13

 Who is running?

 Type-based labeling
 e.g., KERNEL_CODE, KERNEL_DATA, UNTRUSTED_CODE

 Labels are associated with corresponding physical
pages

 Need assistance from OS for
 extension loading

 dynamic page allocation and reclaiming

 Issue: Mixed pages

 Code and data, Trusted and untrusted content, superpages

14

15

 Basic idea: create hardware enforced protection domains
 address space separation

 protection state transition: implemented by domain switch

 How to achieve?

 multiple sets of page tables for different protection domains,
switch the page table upon protection state transition

 protection access rights are reflected in the page table access
permissions

 protection state transitions can be caught by setting execution
permissions

16

 Components

 Protection states

 Object labeling

 Memory isolation

17

Protection State: OS Kernel

18

Table Table

Protection State: OS Kernel

19

Table Table

Protection State: OS Kernel

20

Table Table

Protection State: OS Kernel

21

Table Table

Protection State: OS Kernel

22

Table Table

Protection State: OS Kernel

23

Table Table

Protection State: Untrusted
Extension

24

Table Table

Protection State: Untrusted
Extension

25

Table Table

Protection State: Untrusted
Extension

26

Table Table

Protection State: Untrusted
Extension

27

Table Table

Protection State: Untrusted
Extension

28

Table Table

Protection State: Untrusted
Extension

29

Table Table

Protection State: OS Kernel

30

Table Table

 Prototype built on Intel’s Extended Page
Table (EPT) and Xen hypervisor 3.4.2

 Utilize unused bits in EPT entry for page label

 a trusted Linux kernel module to gather

information from dynamic allocators and
module loader

 facilitate object labeling

 31

 In our opinion, HAP is a cleaner design
solution

 Independent layer, do not need to be consistent
with guest page tables

 Less update, easier to synchronize multiple copies

 Less unnecessary VMEXITs

▪ Do not need to trap guest CR3 and GPT modifications

 Better TLB performance

32

 Stack Integrity
 create private stack frames by leveraging Multi-HAP

 only writes in its own frames are propagated to the real
kernel stack

 Write through DMA

 IOMMU (Intel VT-d) page tables

 Architectural state integrity

 save architectural state to VMM before transition to
untrusted extension

33

 Access control for control flow transfers
between untrusted extensions and OS kernel

 All protection state transitions are intercepted by
the hypervisor.

 kernel control data (e.g., function pointer) are
protected by the isolation mechanism

 Kernel stack frames are also guarded.

34

 Trusted Entry Points are a set of addresses
specified by OS developer or administrator

 e.g., a tailored set of kernel APIs to confine certain
category of extensions

 Other issues

 Extension returns to kernel

▪ maintain call-return consistencies

 Interrupt and preemption

35

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

36

 Security Analysis
 Change kernel code
▪ detected by code integrity protection

 Modify kernel control / non-control data
▪ detected by data integrity protection

 Manipulate return addresses / kernel stack frames
▪ call-return inconsistencies

▪ Kernel stack frame protection

 Evaluated with both real-world and homegrown
malicious extensions

37

Benchmark Untrusted
Extensions

of Protection
State Transfers

Native
Performance

HUKO
Performance

Relative
Performance

Dhrystone 2 8139too,
ext3

N/A 10, 855, 484

lps

10, 176, 782

lps
0.94

Whetstone 8139too,
ext3

N/A 2, 270

MWIPS

2, 265

MWIPS

1.00

Lmbench
(pipe bandwidth)

8139too,
ext3

N/A 2, 535 MB/s 2, 213 MB/s 0.87

Apache
Bench

8139too 56, 037 2, 261 KB/s 1, 955 KB/s 0.86

Kernel
Decompression

ext3 17, 471, 989 35, 271 ms 44, 803 ms 0.79

Kernel Build ext3 148, 823, 045 2, 804 s 3, 106 s 0.90

38

 Major performance cost: protection state
transitions

 Involves guest-to-VMM switch (VMEXIT)

 The more frequent untrusted extension
interacts with the kernel, the larger
performance penalties

39

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

40

 Microkernels

 L4 [Liedtke `95], MINIX 3 [Herder `09]

 Device driver isolation

 Nooks [Swift ‘03], Mondrix [Witchel `05]

 Software fault isolation

 XFI [Erlingsson `06]

41

 Labeling Objects at the page-level
 trade-off: performance vs. security

 Kernel API not designed for isolation/sandboxing

 invoking APIs may violate integrity properties

 may need sanitizing & privilege separation

 Tune the OS Kernel

 e.g., eliminates mixed pages to improve security and
efficiency

42

Thanks!
Questions?

43

 HUKO significantly limits
the attacker’s ability to
compromise the integrity
of the kernel.

 Contemporary hardware
features may facilitate
sandboxing and reference
monitoring in the kernel
space.

44

