
Xi Xiong, Donghai Tian and Peng Liu

The Pennsylvania State University

1

NDSS 2011

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

2

 Kernel compromise through extension
interface

 Malware: kernel-level rootkits

▪ e.g., subvert kernel meta data or control flow to hide
malicious activities

 Buggy extensions

▪ Linux drivers are seven times more likely to contain bugs
than other kernel code. [Chou, SOSP 01]

 Malicious Device Drivers

3

 Prohibit execution of untrusted code
 Secvisor [Seshadri ‘07], NICKLE [Riley ‘08]…

 Kernel control data protection

 HookSafe [Wang ‘09]…

 Monitor the behavior
 K-Tracer [Lanzi `09], Poker [Riley `09]…

 Find signatures and invariants

 Gibraltar [Baliga ‘08], Robust Signature [Dolan-Gavitt ‘09], KOP
[Carbone ‘09], SigGraph [Lin ’11]…

 Our approach: shepherd untrusted extensions

4

 How to let untrusted kernel extensions
safely run to provide desired
functionalities without harming the
integrity of the OS kernel?

5

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

6

 Kernel Code/Data Integrity

 Architectural state integrity

 Control flow integrity
 e.g., extensions jump to undesired positions of

kernel text

 Stack integrity
 e.g., inject malicious kernel stack frames
 7

 Using run-time access control to limit (shepherd)
what untrusted extensions can do.

 examples:

 untrusted extensions cannot change the kernel code

 they cannot write to high integrity data objects owned
by kernel, but kernel can

 they can only invoke a limited set of kernel APIs

 they can only write to its own stack frames

8

 In commodity OS, extensions and OS kernel
are in the same execution context (no context
switch)
 subject identification: who is running? extension

or kernel?

 Kernel and extension are in the same address

space with less meta information
 object identification: figure out which part of

physical memory contains which type of objects.

9

 Writing to kernel objects are directly through
memory operations, no existing interface to
place authorization hooks

 system calls, LSM

 mediation and enforcement challenge

 How to monitor control flow transfer and

guarantee its integrity?

10

 HUKO: a hypervisor based protection system
 mediation on kernel-extension interaction

 run-time mandatory access control
 Overview

11

Challenge Design Solution

Subject Identification Protection States

Object Identification Page-based kernel object labeling

Mediation and Enforcement VMM-level protection domains
using Hardware assisted paging

Control Flow Integrity Trusted Entry Points, call-return
consistency

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

12

13

 Who is running?

 Type-based labeling
 e.g., KERNEL_CODE, KERNEL_DATA, UNTRUSTED_CODE

 Labels are associated with corresponding physical
pages

 Need assistance from OS for
 extension loading

 dynamic page allocation and reclaiming

 Issue: Mixed pages

 Code and data, Trusted and untrusted content, superpages

14

15

 Basic idea: create hardware enforced protection domains
 address space separation

 protection state transition: implemented by domain switch

 How to achieve?

 multiple sets of page tables for different protection domains,
switch the page table upon protection state transition

 protection access rights are reflected in the page table access
permissions

 protection state transitions can be caught by setting execution
permissions

16

 Components

 Protection states

 Object labeling

 Memory isolation

17

Protection State: OS Kernel

18

Table Table

Protection State: OS Kernel

19

Table Table

Protection State: OS Kernel

20

Table Table

Protection State: OS Kernel

21

Table Table

Protection State: OS Kernel

22

Table Table

Protection State: OS Kernel

23

Table Table

Protection State: Untrusted
Extension

24

Table Table

Protection State: Untrusted
Extension

25

Table Table

Protection State: Untrusted
Extension

26

Table Table

Protection State: Untrusted
Extension

27

Table Table

Protection State: Untrusted
Extension

28

Table Table

Protection State: Untrusted
Extension

29

Table Table

Protection State: OS Kernel

30

Table Table

 Prototype built on Intel’s Extended Page
Table (EPT) and Xen hypervisor 3.4.2

 Utilize unused bits in EPT entry for page label

 a trusted Linux kernel module to gather

information from dynamic allocators and
module loader

 facilitate object labeling

 31

 In our opinion, HAP is a cleaner design
solution

 Independent layer, do not need to be consistent
with guest page tables

 Less update, easier to synchronize multiple copies

 Less unnecessary VMEXITs

▪ Do not need to trap guest CR3 and GPT modifications

 Better TLB performance

32

 Stack Integrity
 create private stack frames by leveraging Multi-HAP

 only writes in its own frames are propagated to the real
kernel stack

 Write through DMA

 IOMMU (Intel VT-d) page tables

 Architectural state integrity

 save architectural state to VMM before transition to
untrusted extension

33

 Access control for control flow transfers
between untrusted extensions and OS kernel

 All protection state transitions are intercepted by
the hypervisor.

 kernel control data (e.g., function pointer) are
protected by the isolation mechanism

 Kernel stack frames are also guarded.

34

 Trusted Entry Points are a set of addresses
specified by OS developer or administrator

 e.g., a tailored set of kernel APIs to confine certain
category of extensions

 Other issues

 Extension returns to kernel

▪ maintain call-return consistencies

 Interrupt and preemption

35

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

36

 Security Analysis
 Change kernel code
▪ detected by code integrity protection

 Modify kernel control / non-control data
▪ detected by data integrity protection

 Manipulate return addresses / kernel stack frames
▪ call-return inconsistencies

▪ Kernel stack frame protection

 Evaluated with both real-world and homegrown
malicious extensions

37

Benchmark Untrusted
Extensions

of Protection
State Transfers

Native
Performance

HUKO
Performance

Relative
Performance

Dhrystone 2 8139too,
ext3

N/A 10, 855, 484

lps

10, 176, 782

lps
0.94

Whetstone 8139too,
ext3

N/A 2, 270

MWIPS

2, 265

MWIPS

1.00

Lmbench
(pipe bandwidth)

8139too,
ext3

N/A 2, 535 MB/s 2, 213 MB/s 0.87

Apache
Bench

8139too 56, 037 2, 261 KB/s 1, 955 KB/s 0.86

Kernel
Decompression

ext3 17, 471, 989 35, 271 ms 44, 803 ms 0.79

Kernel Build ext3 148, 823, 045 2, 804 s 3, 106 s 0.90

38

 Major performance cost: protection state
transitions

 Involves guest-to-VMM switch (VMEXIT)

 The more frequent untrusted extension
interacts with the kernel, the larger
performance penalties

39

 Motivation

 Approach Overview

 Key Design & Implementation

 Evaluation

 Summary

40

 Microkernels

 L4 [Liedtke `95], MINIX 3 [Herder `09]

 Device driver isolation

 Nooks [Swift ‘03], Mondrix [Witchel `05]

 Software fault isolation

 XFI [Erlingsson `06]

41

 Labeling Objects at the page-level
 trade-off: performance vs. security

 Kernel API not designed for isolation/sandboxing

 invoking APIs may violate integrity properties

 may need sanitizing & privilege separation

 Tune the OS Kernel

 e.g., eliminates mixed pages to improve security and
efficiency

42

Thanks!
Questions?

43

 HUKO significantly limits
the attacker’s ability to
compromise the integrity
of the kernel.

 Contemporary hardware
features may facilitate
sandboxing and reference
monitoring in the kernel
space.

44

