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 Kernel compromise through extension 
interface 

 Malware: kernel-level rootkits 

▪ e.g., subvert kernel meta data or control flow to hide 
malicious activities 

 Buggy extensions 

▪ Linux drivers are seven times more likely to contain bugs 
than other kernel code. [Chou, SOSP 01] 

 Malicious Device Drivers 
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 Prohibit execution of untrusted code  
 Secvisor [Seshadri ‘07], NICKLE [Riley ‘08]… 

 
  Kernel control data protection 

 HookSafe [Wang ‘09]… 
 

 Monitor the behavior 
 K-Tracer [Lanzi `09], Poker [Riley `09]… 

 
 Find signatures and invariants 

 Gibraltar [Baliga ‘08], Robust Signature [Dolan-Gavitt ‘09 ], KOP 
[Carbone ‘09], SigGraph [Lin ’11]… 
 

 Our approach: shepherd untrusted extensions  
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 How to let untrusted kernel extensions 
safely run to provide desired 
functionalities without harming the 
integrity of the OS kernel? 
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 Kernel Code/Data Integrity 
 

 Architectural state integrity 
 

 Control flow integrity 
 e.g., extensions jump to undesired positions of 

kernel text 
 

 Stack integrity 
 e.g., inject malicious kernel stack frames 
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 Using run-time access control to limit (shepherd) 
what untrusted extensions can do.  
 

 examples: 

 untrusted extensions cannot change the kernel code 

 they cannot write to high integrity data objects owned 
by kernel, but kernel can 

 they can only invoke a limited set of kernel APIs 

 they can only write to its own stack frames  
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 In commodity OS, extensions and OS kernel 
are in the same execution context (no context 
switch) 
 subject identification: who is running? extension 

or kernel? 

 
 Kernel and extension are in the same address 

space with less meta information 
  object identification: figure out which part of 

physical memory contains which type of objects. 
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 Writing to kernel objects are directly through 
memory operations, no existing interface to 
place authorization hooks  

 system calls, LSM  

 mediation and enforcement challenge 

 
 How to monitor control flow transfer and 

guarantee its integrity? 
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 HUKO: a hypervisor based protection system 
 mediation on kernel-extension interaction 

 run-time mandatory access control  
 Overview 
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Challenge Design Solution 

Subject Identification Protection States 

Object Identification Page-based kernel object labeling 

Mediation and Enforcement VMM-level protection domains 
using Hardware assisted paging 

Control Flow Integrity Trusted Entry Points, call-return 
consistency 
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 Who is running? 



 Type-based labeling 
 e.g., KERNEL_CODE, KERNEL_DATA, UNTRUSTED_CODE 
 

 Labels are associated with corresponding physical 
pages 
 

 Need assistance from OS for  
 extension loading 

 dynamic page allocation and reclaiming 

  
 Issue: Mixed pages 

 Code and data, Trusted and untrusted content, superpages 
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 Basic idea: create hardware enforced protection domains 
 address space separation 

 protection state transition: implemented by domain switch 

 
 How to achieve? 

 multiple sets of page tables for different protection domains, 
switch the page table upon protection state transition 

 

 protection access rights are reflected in the page table access 
permissions 

 

 protection state transitions can be caught by setting execution 
permissions 
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 Components 

 Protection states 

 Object labeling 

 Memory isolation 
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Protection State: OS Kernel  
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 Prototype built on Intel’s Extended Page 
Table (EPT) and Xen hypervisor 3.4.2 
 

 Utilize unused bits in EPT entry for page label 
 
 a trusted Linux kernel module to gather 

information from dynamic allocators and 
module loader 

 facilitate object labeling   
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 In our opinion, HAP is a cleaner design 
solution 

 Independent layer, do not need to be consistent 
with guest page tables 

 Less update, easier to synchronize multiple copies 

 Less unnecessary VMEXITs 

▪ Do not need to trap guest CR3 and GPT modifications 

 Better TLB performance 
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 Stack Integrity 
 create private stack frames by leveraging Multi-HAP 

 only writes in its own frames are propagated to the real 
kernel stack  

 
 Write through DMA 

 IOMMU (Intel VT-d) page tables 

 
 Architectural state integrity 

 save architectural state to VMM before transition to 
untrusted extension 
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 Access control for control flow transfers 
between untrusted extensions and OS kernel 

 All protection state transitions are intercepted by 
the hypervisor. 

 kernel control data (e.g., function pointer) are 
protected by the isolation mechanism 

 Kernel stack frames are also guarded. 
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 Trusted Entry Points are a set of addresses 
specified by OS developer or administrator 

 e.g., a tailored set of kernel APIs to confine certain 
category of extensions 

 

 Other issues 

 Extension returns to kernel 

▪ maintain call-return consistencies  

 Interrupt and preemption 
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 Security Analysis 
 Change kernel code 
▪ detected by code integrity protection 

 Modify kernel control / non-control data 
▪ detected by data integrity protection 

 Manipulate return addresses / kernel stack frames 
▪ call-return inconsistencies 

▪ Kernel stack frame protection 

 

 Evaluated with both real-world and homegrown 
malicious extensions 
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Benchmark Untrusted 
Extensions 

# of Protection 
State Transfers 

Native 
Performance 

HUKO 
Performance 

Relative 
Performance 

Dhrystone 2 8139too, 
ext3 

N/A 10, 855, 484 

lps 

10, 176, 782 

lps 
0.94 

Whetstone 8139too, 
ext3 

N/A 2, 270 

MWIPS 

2, 265 

MWIPS 

1.00 

Lmbench 
(pipe bandwidth) 

8139too, 
ext3 

N/A 2, 535 MB/s 2, 213 MB/s 0.87 

Apache 
Bench 

8139too 56, 037 2, 261 KB/s 1, 955 KB/s 0.86 

Kernel 
Decompression 

ext3 17, 471, 989 35, 271 ms 44, 803 ms 0.79 

Kernel Build ext3 148, 823, 045 2, 804 s 3, 106 s 0.90 
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 Major performance cost: protection state 
transitions 

 Involves guest-to-VMM switch (VMEXIT) 

 

 The more frequent untrusted extension 
interacts with the kernel, the larger 
performance penalties 
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 Microkernels 

 L4 [Liedtke `95], MINIX 3 [Herder `09] 

 Device driver isolation 

 Nooks [Swift ‘03], Mondrix [Witchel `05]  

 Software fault isolation 

 XFI [Erlingsson `06] 
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 Labeling Objects at the page-level 
 trade-off: performance vs. security 

  
 Kernel API not designed for isolation/sandboxing 

 invoking APIs may violate integrity properties 

 may need sanitizing & privilege separation 

 
 Tune the OS Kernel 

 e.g., eliminates mixed pages to improve security and 
efficiency 
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Thanks!  
Questions? 
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 HUKO significantly limits 
the attacker’s ability to 
compromise the integrity 
of the kernel. 
 

 Contemporary hardware 
features may facilitate 
sandboxing and reference 
monitoring in the kernel 
space. 
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