
1

HookFinder: Identifying and Understanding
Malware Hooking Behaviors

Heng Yin Zhenkai Liang Dawn Song
Carnegie Mellon Univ

Coll Of William and Mary
Carnegie Mellon Univ UC Berkeley

Carnegie Mellon Univ

2

What is a hook?

SSDT (System Service Descriptor Table)

NewZwOpenKey

ZwOpenKey

Install the address of NewZwOpenKeyExecution is redirected

• Malware registers its own function (i.e. hook) into the target
location (i.e. hook site)

• Later, data in the hook site is loaded into EIP, and the execution
is redirected into malware’s own function.

Sony Rootkit: an example of SSDT hooking

Hook

Hook Site

3

Why are hooks important?

• Malware needs to place hooks to achieve its
malicious intents:

– Rootkits want to intercept and tamper with critical system
states

– Network sniffers eavesdrop on incoming network traffic
– Stealth backdoors intercept network stack to establish

stealthy communication channels
– Spyware, keyloggers and password thieves …

4

Current techniques are insufficient
• Some tools detect hooks by checking known memory

regions for suspicious entries
– E.g., VICE [Butler:2004], IceSword, System Virginity

Verifier[Rukowska:2005]
– Code sections, IAT/EAT, SSDT, IRP tables
– They become futile when malware uses new hooking

mechanisms

• Malware writers strive for new hooking mechanisms
– E.g., Two kernel backdoors (Deepdoor and Uay) overwrite

only a small portion in NDIS (i.e., Network Driver Interface
Specification) data block

– All existing tools cannot detect this kind of hooks

5

Our Approach

• We propose a system to automatically detect and
analyze (previously unknown) hooks

– Given an unknown malicious binary
– Identify if it installs any hooks (with no prior knowledge)
– Understand hooking mechanism

» Provide detailed information about how it installs these hooks

• When a sample employs a novel hooking
mechanism, we can identify and understand it
instantly

– Update detection/prevention policy, to detect/prevent the
similar hooks in the future

6

Outline
• Motivation
• Approach Overview
• HookFinder Design and Implementation
• Experimental Evaluation
• Summary

7

Intuition

Malware
Impact

Hook Site

Execution jumps into Malicious code

We can detect and analyze hooks by marking and
tracking impacts.

• A hook is one of the impacts (i.e., state changes) to
the system made by malware

• This impact redirects the execution into the malicious
code.

8

Our Techniques
• Hook Detection: Fine-grained Impact Analysis

– Mark initial impacts
– Track impacts propagation (and generate Impact Trace)
– Detect affected control flow

• Hook Analysis: Semantics-aware Impact
Dependency Analysis
– Backward data dependency analysis on Impact Trace
– Combine OS-level semantics information
– Generate a dependency graph: Hook Graph

9

Outline
• Motivation
• Approach Overview
• HookFinder Design and Implementation
• Evaluation
• Summary

10

HookFinder – System Overview

Semantics
Extractor

Impact Analysis
Engine

Hook
Detector

Whole-system Emulator

Impact Trace

Hook
Analyzer

Hook Graphs

We build HookFinder on top of TEMU, which is
a dynamic binary analysis component in the BitBlaze Project

11

Semantics Extractor

• Whole-system Emulator only provides a hardware-
level view

– E.g., states of memory, registers, and I/O devices
• We need an OS-level view

– Which process/module/thread is running currently?
– What is the function name, if malware calls an external

function
– What is the symbol name, if malware reads a symbol

• TEMU provides this functionality
– See [Yin et al:2007] and this paper for more details

Semantics
Extractor

Impact Analysis
Engine

Hook
Detector

12

Impact Analysis Engine
• Mark Initial Impacts (memory and register writes)

– In malware’s module
– In external function calls
– In dynamically generated code

• Track impact propagation
– Track data dependency (like in dynamic taint analysis)

» Check propagation through disks
– Check immediate operands

» Because malware can manipulate immediate operands

Challenge: identify dynamically generated code
Observation: dynamically generated code is part of impacts

made by malware
Solution: check if the code region is marked

Semantics
Extractor

Impact Analysis
Engine

Hook
Detector

13

Hook Detector

• Detect when a hook is used
– Condition 1: Program counter (i.e, EIP in x86) is marked
– Condition 2: The execution jumps into the malicious code

Semantics
Extractor

Impact Analysis
Engine

Hook
Detector

14

How HookFinder Detects Hooks in Sony Rootkit

A hook is detected:
1) EIP is marked
2) The execution is redirected into aries.sys

...
…
aries.sys+ee6: mov ZwOpenKey, %edi
…
aries.sys+f56: mov 1(%edi), %eax
aries.sys+f59: mov KeServiceDescriptorTable, %ecx
aries.sys+f5f: mov (%ecx), %ecx
aries.sys+f61: movl aries.sys+66e, (%ecx, %eax, 4)
…
…
ntoskrnl.exe+8051: movl (%edi, %eax, 4), %ebx
ntoskrnl.exe+8069: call *%ebx
…
…

In Malicious
Code

Syntax: op src, dst

15

Hook Analyzer

• Generate hardware-level hook graph
– Perform backward dependency analysis on the impact trace

• Transform into OS-level graph
– Combine OS-level semantic information

• Simplify hook graph
– If two adjacent nodes belong to the same external function

call, merge them into one node
– If two adjacent nodes are direct copy instructions (e.g., mov,

push, pop), merge them into one node

16

Hook Graph for Sony Rootkit

aries.sys+ee6:
mov ZwOpenKey, %edi

aries.sys+f56:
mov 1(%edi), %eax

aries.sys+f59:
mov KeServiceDescriptorTable, %ecx

aries.sys+f5f:
mov (%ecx), %ecx

Impacted Address

aries.sys+f61:
movl aries.sys+66e, (%ecx, %eax, 4)

ntoskrnl.exe+8051:
movl (%edi, %eax, 4), %ebx

ntoskrnl.exe+8069: call *%ebx This hook is activated

This hook is installed

17

Outline
• Motivation
• Approach Overview
• HookFinder Design and Implementation
• Evaluation
• Summary

18

Summarized Results

Sample Category Runtime Impact
Trace

Hooks

Online Offline Total Malicious
Troj/Keylogg-LF Keylogger 6min 9min 3.7G 2 1

Troj/Thief Password
Thief

4min <1min 143M 1 1

AFXRootkit Rootkit 6min 33min 14G 4 3

CFSD Rootkit 4min 2min 2.8G 5 4

Sony Rootkit Rootkit 4min <1min 25M 4 4

Vanquish Rootkit 6min 12min 4.4G 11 11

Hacker Defender Rootkit 5min 27min 7.4G 4 1

Uay Backdoor Backdoor 4min <1min 117M 5 2

Legitimate hooks: PsCreateSystemThread, CreateThread,

CreateRemoteThread, StartServiceDispatcher

19

Detailed Analysis of Uay

NDIS.sys+22faa: call *0x40(%eax)

uay.sys+fcd: mov %eax, (%edi)

NDIS.sys+115b: mov %eax, (%ecx)
Call: NdisAllocateMemoryWithTag

uay.sys+1589: lea 0x40(%esi), %eax

uay.sys+16a0: mov 0x10(%esi), %esi

uay.sys+16a0: mov 0x10(%esi), %esi

…

…

…

NdisRegisterProtocol arg2 Static Point: Protocol Handler (h)
returned from NdisRegisterProtocol

Uay walks through a list of
registered protocols and
places the hook into one
entry (with offset 0x40)

Hook Site = MEM[MEM[h+10]+10]+40

20

Related Work
• Hook Detection

– VICE [Butler:2004], IceSword, System Virginity
Verifier[Rukowska:2005]

• Dynamic Taint Analysis
– Detect exploits [Costa:sosp05] [Crandall et al:2004]

[Newsome et al:2005], [Portokalidis et al:2006],
[Suh et al:2004]

– Data lifetime analysis [Chow et al:2004]
– Dynamic spyware analysis [Egele et al:2007]
– Detect and analyze privacy-breaching malware

[Yin et al:2007]
– Extract protocol format [Caballero et al:2007]
– Prevent cross-site scripting [Vogt et al:2007]

21

Summary
• We proposed fine-grained impact analysis

– Characterize malware’s impacts on the system environment
– Observe if one of the impacts is used to redirect the

execution into the malicious code
– Capture intrinsic characteristics of hooking behavior, and

thus it can identify novel hooks
• We devised semantics-aware impact dependency

analysis
– Extract hooking mechanism in form of hook graphs

• We developed HookFinder
• We analyzed 8 representative malware samples

– HookFinder is able to identify and analyze new hooks in Uay

22

Thanks!

For more information and related projects,
please visit our BitBlaze website at

http://bitblaze.cs.berkeley.edu

23

Discussion 1
• Exploit control dependency

switch(a) {
case 1: b=1; break; case 2: b=3; break; …}

– Not feasible, since we track all initial impacts

24

Discussion 2
• Not exhibit hooking behavior when tested

– Bypass redpill test by feeding in fake inputs
– Slow down the frequency of PIT to disguise the performance

slowdown
– Explore multiple execution paths [Moser:2007,

Brumley:2007]

25

Discussion 3
• “Return-into-libc” attacks: register an address of a

system function
– Hard to find a candidate function
– Hard to prepare compatible call stack
– Will consider it in the future work

26

Key Factors in Hooking Mechanism

• Hook Type
– Data Hook: interpreted as data (e.g., jump target)
– Code Hook: interpreted as code (e.g., jump instruction)

• Implanting methods
– Direct write

» What is the static point?
• Global symbol, or result of a function call

» How to infer the hook site?
– Call an external function

» Which function is called?
• E.g., SetWindowsHookEx, memcpy, WriteProcessMemory

» What is the argument list?

	HookFinder: Identifying and Understanding Malware Hooking Behaviors
	What is a hook?
	Why are hooks important?
	Current techniques are insufficient
	Our Approach
	Outline
	Intuition
	Our Techniques
	Outline
	HookFinder – System Overview
	Semantics Extractor
	Impact Analysis Engine
	Hook Detector
	How HookFinder Detects Hooks in Sony Rootkit
	Hook Analyzer
	Hook Graph for Sony Rootkit
	Outline
	Summarized Results
	Detailed Analysis of Uay
	Related Work
	Summary
	Thanks!
	Discussion 1
	Discussion 2
	Discussion 3
	Key Factors in Hooking Mechanism

