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What is a hook?

SSDT (System Service Descriptor Table)

NewZwOpenKey

ZwOpenKey

Install the address of NewZwOpenKeyExecution is redirected

• Malware registers its own function (i.e. hook) into the target 
location (i.e. hook site)

• Later, data in the hook site is loaded into EIP, and the execution 
is redirected into malware’s own function.

Sony Rootkit: an example of SSDT hooking

Hook

Hook Site
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Why are hooks important?

• Malware needs to place hooks to achieve its 
malicious intents:

– Rootkits want to intercept and tamper with critical system 
states

– Network sniffers eavesdrop on incoming network traffic
– Stealth backdoors intercept network stack to establish  

stealthy communication channels
– Spyware, keyloggers and password thieves …
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Current techniques are insufficient
• Some tools detect hooks by checking known memory 

regions for suspicious entries
– E.g., VICE [Butler:2004], IceSword, System Virginity 

Verifier[Rukowska:2005]
– Code sections, IAT/EAT, SSDT, IRP tables
– They become futile when malware uses new hooking 

mechanisms

• Malware writers strive for new hooking mechanisms
– E.g., Two kernel backdoors (Deepdoor and Uay) overwrite 

only a small portion in NDIS (i.e., Network Driver Interface 
Specification) data block

– All existing tools cannot detect this kind of hooks
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Our Approach

• We propose a system to automatically detect and 
analyze (previously unknown) hooks

– Given an unknown malicious binary
– Identify if it installs any hooks (with no prior knowledge)
– Understand hooking mechanism

» Provide detailed information about how it installs these hooks

• When a sample employs a novel hooking 
mechanism, we can identify and understand it 
instantly

– Update detection/prevention policy, to detect/prevent the 
similar hooks in the future
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Outline
• Motivation
• Approach Overview
• HookFinder Design and Implementation
• Experimental Evaluation
• Summary
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Intuition

Malware
Impact

Hook Site

Execution jumps into Malicious code

We can detect and analyze hooks by marking and 
tracking impacts.

• A hook is one of the impacts (i.e., state changes) to 
the system made by malware

• This impact redirects the execution into the malicious 
code.
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Our Techniques
• Hook Detection: Fine-grained Impact Analysis

– Mark initial impacts
– Track impacts propagation (and generate Impact Trace)
– Detect affected control flow

• Hook Analysis: Semantics-aware Impact 
Dependency Analysis
– Backward data dependency analysis on Impact Trace
– Combine OS-level semantics information
– Generate a dependency graph: Hook Graph
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Outline
• Motivation
• Approach Overview
• HookFinder Design and Implementation
• Evaluation
• Summary
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HookFinder – System Overview

Semantics
Extractor

Impact Analysis
Engine

Hook
Detector

Whole-system Emulator

Impact Trace

Hook
Analyzer

Hook Graphs

We build HookFinder on top of TEMU, which is
a dynamic binary analysis component in the BitBlaze Project
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Semantics Extractor

• Whole-system Emulator only provides a hardware- 
level view

– E.g., states of memory, registers, and I/O devices
• We need an OS-level view

– Which process/module/thread is running currently?
– What is the function name, if malware calls an external 

function
– What is the symbol name, if malware reads a symbol

• TEMU provides this functionality
– See [Yin et al:2007] and this paper for more details

Semantics
Extractor

Impact Analysis
Engine

Hook
Detector



12

Impact Analysis Engine
• Mark Initial Impacts (memory and register writes)

– In malware’s module
– In external function calls
– In dynamically generated code

• Track impact propagation
– Track data dependency (like in dynamic taint analysis)

» Check propagation through disks
– Check immediate operands

» Because malware can manipulate immediate operands

Challenge: identify dynamically generated code
Observation: dynamically generated code is part of impacts 

made by malware
Solution: check if the code region is marked

Semantics
Extractor

Impact Analysis
Engine

Hook
Detector
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Hook Detector

• Detect when a hook is used 
– Condition 1: Program counter (i.e, EIP in x86) is marked
– Condition 2: The execution jumps into the malicious code

Semantics
Extractor

Impact Analysis
Engine

Hook
Detector
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How HookFinder Detects Hooks in Sony Rootkit

A hook is detected:
1) EIP is marked
2) The execution is redirected into aries.sys

...
…
aries.sys+ee6: mov ZwOpenKey, %edi
…
aries.sys+f56:  mov 1(%edi), %eax
aries.sys+f59:  mov KeServiceDescriptorTable, %ecx
aries.sys+f5f:   mov (%ecx), %ecx
aries.sys+f61:  movl aries.sys+66e, (%ecx, %eax, 4)
…
…
ntoskrnl.exe+8051: movl (%edi, %eax, 4), %ebx
ntoskrnl.exe+8069: call  *%ebx 
…
…

In Malicious
Code

Syntax: op src, dst
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Hook Analyzer

• Generate hardware-level hook graph
– Perform backward dependency analysis on the impact trace

• Transform into OS-level graph
– Combine OS-level semantic information

• Simplify hook graph
– If two adjacent nodes belong to the same external function 

call, merge them into one node
– If two adjacent nodes are direct copy instructions (e.g., mov, 

push, pop), merge them into one node
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Hook Graph for Sony Rootkit

aries.sys+ee6: 
mov ZwOpenKey, %edi

aries.sys+f56: 
mov 1(%edi), %eax

aries.sys+f59:
mov KeServiceDescriptorTable, %ecx

aries.sys+f5f: 
mov (%ecx), %ecx

Impacted Address

aries.sys+f61: 
movl aries.sys+66e, (%ecx, %eax, 4)

ntoskrnl.exe+8051: 
movl (%edi, %eax, 4), %ebx

ntoskrnl.exe+8069: call  *%ebx This hook is activated

This hook is installed



17

Outline
• Motivation
• Approach Overview
• HookFinder Design and Implementation
• Evaluation
• Summary
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Summarized Results

Sample Category Runtime Impact
Trace

Hooks

Online Offline Total Malicious
Troj/Keylogg-LF Keylogger 6min 9min 3.7G 2 1

Troj/Thief Password
Thief

4min <1min 143M 1 1

AFXRootkit Rootkit 6min 33min 14G 4 3

CFSD Rootkit 4min 2min 2.8G 5 4

Sony Rootkit Rootkit 4min <1min 25M 4 4

Vanquish Rootkit 6min 12min 4.4G 11 11

Hacker Defender Rootkit 5min 27min 7.4G 4 1

Uay Backdoor Backdoor 4min <1min 117M 5 2

Legitimate hooks: PsCreateSystemThread, CreateThread,

CreateRemoteThread, StartServiceDispatcher
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Detailed Analysis of Uay

NDIS.sys+22faa: call  *0x40(%eax)

uay.sys+fcd: mov %eax, (%edi)

NDIS.sys+115b: mov %eax, (%ecx)
Call: NdisAllocateMemoryWithTag

uay.sys+1589: lea  0x40(%esi), %eax

uay.sys+16a0: mov 0x10(%esi), %esi

uay.sys+16a0: mov 0x10(%esi), %esi

…

…

…

NdisRegisterProtocol arg2 Static Point: Protocol Handler (h)
returned from NdisRegisterProtocol

Uay walks through a list of 
registered protocols and 
places the hook into one 
entry (with offset 0x40)

Hook Site = MEM[MEM[h+10]+10]+40
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Related Work
• Hook Detection

– VICE [Butler:2004], IceSword, System Virginity 
Verifier[Rukowska:2005]

• Dynamic Taint Analysis
– Detect exploits [Costa:sosp05] [Crandall et al:2004] 

[Newsome et al:2005], [Portokalidis et al:2006],               
[Suh et al:2004]

– Data lifetime analysis [Chow et al:2004]
– Dynamic spyware analysis [Egele et al:2007]
– Detect and analyze privacy-breaching malware 

[Yin et al:2007]
– Extract protocol format [Caballero et al:2007]
– Prevent cross-site scripting [Vogt et al:2007]
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Summary
• We proposed fine-grained impact analysis

– Characterize malware’s impacts on the system environment
– Observe if one of the impacts is used to redirect the 

execution into the malicious code
– Capture intrinsic characteristics of hooking behavior, and 

thus it can identify novel hooks
• We devised semantics-aware impact dependency 

analysis
– Extract hooking mechanism in form of hook graphs

• We developed HookFinder
• We analyzed 8 representative malware samples

– HookFinder is able to identify and analyze new hooks in Uay
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Thanks!

For more information and related projects, 
please visit our BitBlaze website at 

http://bitblaze.cs.berkeley.edu
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Discussion 1
• Exploit control dependency

switch(a) {
case 1: b=1; break; case 2: b=3; break; …}

– Not feasible, since we track all initial impacts
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Discussion 2
• Not exhibit hooking behavior when tested

– Bypass redpill test by feeding in fake inputs
– Slow down the frequency of PIT to disguise the performance 

slowdown
– Explore multiple execution paths [Moser:2007, 

Brumley:2007]
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Discussion 3
• “Return-into-libc” attacks: register an address of a 

system function
– Hard to find a candidate function
– Hard to prepare compatible call stack
– Will consider it in the future work
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Key Factors in Hooking Mechanism

• Hook Type
– Data Hook: interpreted as data (e.g., jump target)
– Code Hook: interpreted as code (e.g., jump instruction)

• Implanting methods
– Direct write

» What is the static point? 
• Global symbol, or result of a function call

» How to infer the hook site? 
– Call an external function

» Which function is called?
• E.g., SetWindowsHookEx, memcpy, WriteProcessMemory

» What is the argument list?
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