
You Are a Game Bot!: Uncovering Game Bots
in MMORPGs via Self-similarity in the Wild

Eunjo Lee
NCSOFT

gimmesilver@ncsoft.com

Jiyoung Woo
Korea University

jywoo@korea.ac.kr

Hyoungshick Kim
Sungkyunkwan University

hyoung@skku.edu

Aziz Mohaisen
SUNY Buffalo

mohaisen@buffalo.edu

Huy Kang Kim
Korea University

cenda@korea.ac.kr

Abstract—Game bots are a critical threat to Massively Multi-
player Online Role-Playing Games (MMORPGs) because they
can seriously damage the reputation and in-game economy
equilibrium of MMORPGs. Existing game bot detection tech-
niques are not only generally sensitive to changes in game
contents but also limited in detecting emerging bot patterns
that were hitherto unknown. To overcome the limitation of
learning bot patterns over time, we propose a framework that
detects game bots through machine learning technique. The
proposed framework utilizes self-similarity to effectively measure
the frequency of repeated activities per player over time, which is
an important clue to identifying bots. Consequently, we use real-
world MMORPG (“Lineage”, “Aion” and “Blade & Soul”)
datasets to evaluate the feasibility of the proposed framework.
Our experimental results demonstrate that 1) self-similarity can
be used as a general feature in various MMORPGs, 2) a detection
model maintenance process with newly updated bot behaviors
can be implemented, and 3) our bot detection framework is
practicable.

I. INTRODUCTION

Worldwide, over 40% of Internet users play online games
in their leisure time [13]. Massively Multiplayer Online Role-
Playing Games (MMORPGs) are one of the most popular
genres of such games. In an MMORPG, each player creates
a character in the virtual game world to perform various
activities including combating other players, socializing with
other players and collecting game items. “Item-pay” is a
primary business model that offers financial incentives for
game developers [9]. In this model, users need to pay real
money to purchase in-game items that can increase their
characters’ abilities in a game.

MMORPG developers expect users to (legally) purchase
game items because their MMORPGs are generally designed
to require users to invest a significant amount of human labor
(i.e., playing time) to acquire those items. Invariably, as an
MMORPG becomes more popular, it is likely to lead to the
creation of black markets where illegally acquired items can be
freely traded in third party marketplaces outside of the game
world. Organized cyber criminals and malicious users have

also started using a tool known as game bot to automatically
collect valuable and rare game items in an economical manner.

A game bot is a computer program that plays games au-
tonomously instead of human users, typically used for in-game
cheating. Unsurprisingly, the use of game bots has become one
of the most serious security threats to MMORPGs. This is in
part because such a game tactic not only results in significant
financial losses in the short term, but also leads to fairness and
reputation damages in the long term; it causes a significant
number of game users to churn, reduces the revenue from
those subscription fees collected, influences the inflation rate
and eventually triggers the collapse of an in-game economy.
Game bots make honest users feel frustrated and dissatisfied
with the game because they monopolize virtual resources and
contents while honest users compete for limited resources and
contents. Castronova [5] studied the monetary damage caused
by game bots in World of Warcraft, an MMORPG developed
by Blizzard, via various aspects including customer service
cost, a technical cost for bot enforcement, and revenue’s
penalty. The indirect cost of game bots was estimated to be
approximately 18 million USD per year.

To address those issues, game publishers currently invest
significant efforts to develop solutions for mitigating game bot
activities [17]. The most fundamental step is to identify game
bots. Several data mining techniques have been developed
by game publishers to distinguish game bots from (normal)
human users. In those techniques, the feature construction and
selection processes are critical to enhance the detection per-
formance. However, such processes are often labor-intensive
and depend greatly on game contents or play patterns that are
genre-specific. Therefore, the efficacy of the resulting detection
model inherently decreases over time because game developers
update game contents periodically, and game bots dynamically
adjust their behaviors to such updates to evade detection. In
general, constructing a specialized detection model for each
MMORPG and maintaining the constructed model over time
are very challenging tasks for game publishers.

To overcome those problems, a more generic model is
required without the dependency on specific game contents.
Moreover, this detection model should be automatically main-
tained over time. To achieve these goals, we focus on the repet-
itive activities of game bots, which are typically found in in-
game logs. Our investigations show that game bots frequently
repeat certain routine activities activities that are significantly
different from activities of human users. Consequently, using
this analysis, we propose a new bot detection framework that
utilizes a metric called “self-similarity measure” (see §IV).

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23436

Self-similarity is a feature to show the similarity of user actions
as a function of the time lag. It is designed for finding repetitive
patterns, especially periodic patterns of the series of actions
and their frequency. We particularly consider various actions
rather than a single action such as moving pattern to provide
a strong self-similarity measure that is highly robust to the
changes of target games in their subsequent updates.

To demonstrate the feasibility of the proposed model,
we use ground truth samples from real-world MMOPRGs
(specifically “Lineage”, “Aion” and “Blade & Soul”)
that are particularly popular in South Korea. To this end, the
key contributions of this paper are as follows:

1) We analyze the characteristics of real-world game
bots using various aspects of exploratory data analy-
sis.

2) We propose self-similarity as a feature that can be
applied universally to detecting bots in MMORPGs
and demonstrate its effectiveness with real datasets.

3) We propose a bot detection framework that includes a
detection model maintenance process. The proposed
framework can be spontaneously evolved with dy-
namic changes in bot behaviors over time.

4) We implement the proposed framework and utilize
it for “Lineage” in Feb. 2015 resulting in more than
15,000 bot users being banned by our system. Our
system is being tested and will be applied soon to
“Blade & Soul” and “Aion”. To this best of our
knowledge, this is the first field deployment of bot
detection systems using data mining in large-scale
game services.

The remainder of this paper is organized as follows. In
§II, we explain various terminologies and background theories
used in this paper. In §III, we describe the characteristics and
statistics of bots via the exploratory data analysis. In §IV,
we outline the proposed methodology for detecting game bots
and maintaining the detection model. In §V, we demonstrate
the bot detection process and evaluate the performance of the
proposed model. In §VI, we discuss several important issues
for the real deployment of the proposed framework. In §VII,
we review related works. Finally, we summarize our findings
and conclude in §VIII.

II. BACKGROUND

In this section, we present the basic knowledge necessary
to understand the game bot detection problem in MMORPGs.

A. Terminology

We first define some important terminologies we will use
in the rest of this paper.

Character. In MMORPGs, a character is an entity (often
called an avatar in the virtual world) that is controlled by a user.
Characters own their unique features regarding appearance,
level, virtual goods, etc. Interestingly, most MMORPGs allow
users to create multiple characters on his or her account.

Bot. A game bot is a cheat program designed to play the game
autonomously utilizing artificial intelligence. The program is
usually made by malicious software developers who steal

the source code from online game companies or analyze the
game client program and network traffic between the game
client and server through reverse engineering without the
game company’s permission. A bot program usually provides
functions that a user can use to set up behavior rules in various
situations (see Fig. 1).

Fig. 1. Screenshot of a bot program. The main window in the background
is a game client program for playing the game and the inset (in red box) is a
bot program’s window for configuring automated in-game bot actions.

Gold farming group. The main goal of a gold farming group
(GFG) is to obtain cyber money from online games. In general,
a GFG operates numerous machines and runs multiple client
programs to minimize resource usage and cost. Most GFGs
operate game bots or use cheap laborers to play the game.

Game log. Game logs record users’ various activities and
events that occur in the game world and also in the system.
A log consists of an event identifier (id), time, character
information and other context-related information. The event id
is unique and depends on the event type. Logs have timestamps
associated with them, indicating when activities or events
occurred. In the games investigated in this paper, the time
unit used is a millisecond. Character information encompasses
the character’s name, level, race, job, etc. Game logs have
additional information that differs according to the event id.
Such information is used to give detailed context information
about an event. For example, for the game log of an event
in which a character gives an item to another character,
additional information would include the opponent’s character
information, information of the item that the character sends,
a total number of items, and so on.

B. Ecology of game world in MMORPGs

In the world of MMORPGs, a user controls a character,
which is an avatar with a unique visual appearance and skills.
MMORPGs provide a lifelike environment with a rich set of
realistic user action types. Users explore various areas of the
game world, hunt monsters, and complete quests (i.e., given
tasks) to earn experience points or goods that make themselves
more powerful. Users can interact with other players in the
game world as well as non-player characters (NPCs), which

2

are artificial intelligence agents controlled by a game server.
Users can often collaborate or compete for their benefits. For
example, players are campaigning as a party for a short period
to complete a challenging quest for a single player. Further-
more, they can organize a guild for long-term collaboration.
In general, many MMORPGs provide contents that only guild
members can participate in (e.g., battles between opposing
guild members), and guild members are often enormously
rewarded from those contents.

There are various economic activities in most MMORPGs.
Users can trade virtual goods with each other in a game world,
and they can even manufacture items directly. For example,
there is a craft workshop in Aion, so users can make an item
instead of obtaining it through hunting monsters or completing
quests. Wealth is very important because expensive items are
typically more powerful or useful, which is similar to the
real-world economy. Users can gather valuable game items
by buying them from an online store or other users.

While users simply pursue the fulfillment of a fixed goal
in package games, they do not only want to enjoy the contents
provided but also to have a more significant presence than other
characters in online games [4]. Consequently, most online
games encourage users to compete for limited resources by
adjusting the probability of generating items because nobody
is satisfied with an equal distribution. However as the period
of game service increases so does the total wealth in the game
world. Thus, it is necessary for inflation to occur with age to
a greater or lesser degree [6]. If the inflation is very severe,
the economic balance will collapse, and users will give up
the game. Therefore, game developers design balance into the
game and update new contents periodically to reduce inflation.

C. Game bots and RMT

Game developers have designed MMOPRGs so that play-
ers have to take pre-scheduled courses to achieve high-level
characters and become rich with cyber assets. That is, users
should spend much time to complete those courses by engaging
in repetitive play. In the case of Lineage, for example, game
designers originally designed users to spend three hours per
day for 3.5 years to reach a rank of the best players. This is a
long period. Therefore, some users began to carry out various
forms of cheating to level up their characters and acquire
valuable cyber assets in a short time without sufficient effort
and time investment.

Cheating in online games is no longer a private matter
limited to individual players. Other players sustain damage
because online games maintain a massive number of players
and form social activities between players beyond a single
player game. One of the most prevalent tools for cheating
in online games is the game bot. Game bots enable users to
cheat in a convenient way by automatically performing needed
actions. An autonomous program that plays the game instead
of a human is a typical type of game bot. Some users are eager
to achieve a higher level in a short time by paying real money
to obtain virtual goods (e.g. armor, weapon, etc.).

Users obtain game items and currency through a game play
and can monetize that into real money. For real money trading
(RMT), some players do various types of cheating forbidden by
game companies. The connection between the virtual economy

and the real economy drives virtual crime in online games and
finally lead to the formation of illegal groups (so-called GFGs)
that gather virtual goods in online games primarily for real
money. For more efficient money gathering, GFGs largely use
game bots. In addition, RMT is a frequently used method for
tax evasion [11].

III. GAME BOT CHARACTERISTICS

A. Exploratory data analysis

We identified the characteristics of bots via the exploratory
data analysis. To achieve this goal, we acquired a list of banned
users from “Lineage”, “Aion” and “Blade & Soul (B&S)”.
These games had serious bot problems; as a result, they made
it a policy to ban bot programs and block their access perma-
nently. We presented the statistics of three games in Table I. We
performed a comparative analysis between bots and humans
using various pieces of data, including demographic statistics,
activity statistics, sequence, and network patterns.

TABLE I. A BRIEF SUMMARY OF GAMES.

Feature Lineage Aion B&S
Release year 1997 2008 2012

Daily active users 300K 200K 100K
Concurrent users 150K 80K 50K

1) Demographic data: Game characters have demographic
characteristics similar to humans in the real-world, such as
job, race, and gender. The features of bots differ from those of
humans. Fig. 2 illustrates several demographic data differences.
We found the significant differences between blocked and un-
blocked characters for both job and race. However, we believe
the distinction is actually owing to just the characteristics of
a job, not a race, because a race has a job constraint in Blade
& Soul, e.g., a user can choose only race B for job D.

There are different combat skills required for each job,
so a user can choose a job and enjoy different play patterns
according to their goals and preferences. In general, game
developers try to adjust the attributes of jobs and provide
different pros and cons for each job. Consequently, the jobs
that human users choose are evenly distributed because normal
users tend to have separate goals and preferences. However,
bots tend to choose a specific job in order to optimize their
productivity. In Blade & Soul, job D, which blocked users
chose the most, has benefits for hunting monsters and a
disadvantage to PvP (Players versus Players; a type of combat
within a game between two or more players). Besides, limited
skills are allowed in job D, so this job is tedious. Accordingly,
while bot programs can reduce the burden of control if they
choose job D, normal users may feel bored by choosing it for
the same reason.

Such pattern is maintained across different games, although
with varying qualities. For example, Aion has different distri-
butions of jobs, which show this trend in part; however, it is
not as clear as in Blade & Soul (see Fig. 3).

2) Activity statistics: Bot characters can conduct activities
continuously for a long time. Consequently, the frequency of
activities bots do is significantly higher than the frequency of
activities human users do. Fig. 4 shows that blocked users
play longer and conduct more activities than normal users.

3

(a) race

(b) job

Fig. 2. Comparison of demographic data between bots and humans’
characters in B&S.

Fig. 3. Comparison of job distribution in Aion.

Most blocked users spent more than eight thousand minutes
(130 hours) per week playing the game while a significant
number of unblocked users spent only less than five thousand
minutes (80 hours) (see Fig. 4-(a)). Even for a small number of
unblocked users who spent similar amounts of time compared
to blocked users, the frequency of activities conducted by
unblocked users is significantly lower than that by blocked
users (see Fig. 4-(b)). Consequently, the average activity fre-
quency per unit time of bots is noticeably higher than that
of normal users (see Fig. 4-(c)). That is, those characteristics
might be useful to distinguish bots from human users. One
interesting point is the statistics of each character’s asset (see
Fig. 4-(d)). Although blocked users play for longer time and
carry out more activities, they tend to have fewer assets than
unblocked users in a game. This is because they send their
assets to other characters to be monetized as soon as there is
a moderate accumulation of them, whereas normal users tend
to accumulate wealth to buy expensive items. These statistics

show that the ultimate goal of a bot is monetization, not the
game enjoyment through the development of a character.

3) Network analysis: There are various social interactions
in MMORPGs. Users can collaborate with other players to
complete a quest, explore a dungeon or kill a giant monster
by organizing a party. Besides, users can conduct economic
activities by interacting with each other, e.g., selling, buying,
exchanging items, participating in an auction and so on. GFGs
construct hierarchical systems for efficient economic activities.
As a result, their social network structure characteristics might
be significantly different from human users’ network charac-
teristics [16], [19] and the differences between those networks
could be used to detect bots in GFGs.

We examine bot users’ network characteristics compared
with normal human users’ network characteristics. We are
particularly interested in their item trade networks where nodes
represent users in a MMORPG and edges represent the trade
relationships between users. Fig. 5-(a) shows the network
structure of item trade between blocked users while Fig. 5-(b)
shows the network structure of item trade between unblocked
users. As shown in Fig. 5-(a), blocked users tend to trade
items with a specific character (inner circle) that collects items
from many characters (outer circle). This is because the aim
of blocked users is usually to construct an efficient system
via economic specialization. Unlike blocked users, unblocked
users tend to trade with a few users; consequently, their
network structure is moderately decentralized (see Fig. 5-(b)).

4) Sequence data: In [20], sequence mining techniques
were used to detect bots and it was found that there is
a difference in sequence patterns between bots and human
players. We also examine that same characteristics in this work.

Fig. 6 shows that blocked users generate a large quantity
of sequences, while the types of sequences are less varied
compared to the amount of data because bot characters tend
to perform repetitive actions. Fig. 7 clearly shows this charac-
teristic. We can divide characters into two groups according to
the ratio of unique count to the total count of sequence data
in Fig. 7.

Although sequence pattern is a clear feature for detecting
bots, we tried to check whether this pattern appeared in a
more coarse-grained unit of data than sequence data in order to
reduce data processing cost (which would occur if the pattern
is valid in coarse-grained data). Consequently, we grouped logs
by period, transformed them into vectors instead of sequences,
and then computed the cosine similarity between log vector
and unit vector to measure repetitiveness. For users who carry
out various activities, various vectors are generated and various
cosine similarities are measured. Fig. 8 shows the time series
plots of cosine similarity for bots and normal users. As can
be seen, bots have cosine similarities with fewer variations
than normal users; therefore, we can use log vectors instead
of sequences. Furthermore, we can measure the self-similarity
of each user using the cosine similarity. Fig. 9 shows that bots
can be effectively separated from humans using self-similarity.
§ IV-A describes this process in details.

B. Feature review

Through various forms of exploratory analysis in the previ-
ous section, we discovered several patterns for distinguishing

4

(a) play time (b) total number of logs

(c) average number of logs per unit time (d) asset

Fig. 4. Comparison of activity statistics between blocked and unblocked users: left box is blocked (bots), right is unblocked (normal users).

(a) blocked users (b) unblocked users

Fig. 5. Network structures of item trade: (a) trade with blocked users, (b) trade with unblocked users.

between bots and humans. To implement our detection system
in the target games, we reviewed the results of data analysis
and chose features using the following consideration.

1) Generality: We wish to apply features to all target
games. In Blade & Soul, bot users prefer a specific job type.
However, Aion does not exhibit such bias for job preference.
Therefore, the statistics of activity depending on contents in
a specific game are not suitable. For example, the behavior
pattern in a special dungeon (special dungeon is different in
each game), count of quest completion (Lineage only has a
few quests), and ratio of time required to make an item to the
total play time (users need no time to make items in Blade
& Soul) are not appropriate. On the other hand, bots tend to
play longer and perform more actions than humans (see Fig.
4). Thus, we can use this pattern as a common feature for all
target games. By the same reasoning, self-similarity is also a
suitable discriminative feature (see Fig. 9).

2) Stability: An online game is updated periodically and
continuously to fix bugs of client software or to maintain
the service. Major updates force users to change their play
patterns because game contents are added or the influence
of attributes on game balance may be changed. Hence, bot
programs are also updated or forced to change their behavior
rules. For this reason, a demographic pattern is not stable
because job preference would change if another job becomes
an efficient job, e.g., hunting of monsters. Statistics associated
with economic values such as the amount of money a character
trades with others or earnings per unit time is also not stable,
because of inflation in the game world.

3) On the difficulty of evasion: In practice, simple
threshold-based detection rules are straightforward and easy
to implement. However, those rules can be circumvented by
bots when threshold values are exposed. For example, if we
use the threshold-based play time as a feature to detect bots,
an attacker may play the game for less than the pre-determined
threshold time in order to evade the detection rule.

5

(a) total number of sequences per blocked user (b) total number of sequences per unblocked user

(c) number of unique sequences per blocked user (d) number of unique sequences per unblocked user

Fig. 6. Histogram of sequence data.

(a) B&S

(b) Aion

Fig. 7. Scatter plot comparing number of unique sequences with total number
of sequences per user. Almost blocked users (red) have lower ratio of number
of unique sequences to total number of sequences than unblocked users (gray).

On the other hand, the proposed self-similarity detection
system is more robust than the simple threshold-based bot
detection system. Since our technique focuses on the fre-
quency of repeated activities, rather than activities themselves,
attackers should try their best to generate a new series of
activities every time, which inherently makes their attacks
more challenging and expensive (i.e., slowing down the attack
speed). For example, to lower the self-similarity, bots cannot
simply repeat the same sequence of actions, which is a strategy
in their best economical interest. Diverging from that strategy,
however, would decrease the bots’ overall productivity. When

we analyze each user’s self-similarity and the amount of game
money that the user earned, there is a positive relationship
between them (see Fig. 10). Even when a small portion of the
total activities has random characteristics, the self-similarity
measure is not significantly affected. This is because high-
frequency activities are usually not altered, which dominate
the self-similarity measure outcomes.

Moreover, unlike exiting game bot detection solutions
using a small number of specific features, the proposed system
is designed using all of the possible user data contained in
game log files, which are automatically kept up-to-date with
software updates and patches. Such property of our system
makes it harder for the adversary to evade.

4) Ease of development: Ease of development is the impor-
tant consideration because we wish to implement a practicable
system for detecting bots. Features of the network structure
can very effectively detect bots; however, we did not use them
because they are difficult to compute in large data sets in our
development environment for data processing (using Hadoop;
iteration operations for graph algorithms cannot be simply
implemented in Hadoop [23]). Conversely, self-similarity is
highly appropriate for our system because of its simplicity. In
particular, measuring self-similarity per user can be efficiently
calculated with Hadoop in a parallel manner.

IV. METHODOLOGY

We propose a systematic and integrated framework for
game bot detection. The proposed framework comprises
generic feature extraction, feature selection, modeling, eval-
uation, and an automatic tuning process that monitors the per-
formance of the detection model and revises it autonomously
when it detect changes. In §IV-A, we elaborate on the feature
extraction and selection methods, especially the algorithm
for measuring self-similarity of game users. §IV-B introduces
the model learning and evaluation process. Finally, remaining

6

(a) bots (b) normal users

Fig. 8. Time series plot of cosine similarity.

(a) Lineage (b) Aion (c) B&S

Fig. 9. Comparison of self-similarity between bots and normal users.

Fig. 10. Productivity in relation to self-similarity. X-axis is self-similarity,
Y-axis is the maximum count of logs getting game money per user.

subsections explain the process of monitoring and maintaining
the detection model.

A. Feature extraction and selection

We introduce a self-similarity feature that measures the
degree of repetitiveness of behaviors. The main feature of our
model is a measurement of the self-similarity per game user,
with the algorithms for its calculation detailed below.

1) Generating log vectors: We group game logs per user
and sort them by time. We then set a time interval and
transform logs in a time interval into vectors consisting of
event id and its frequency per user. Fig. 11 describes the
process of log transformation into vectors.

2) Measuring the cosine similarity between log vectors:
We measure the cosine similarity between each log vector
and the unit vector in which all elements are one. The cosine
similarity between two vectors is defined as follows:

cos(θ) =
AB

||A||||B||
=

∑n
i=1AiBi√∑n

i=1(Ai)
2
√∑n

i=1(Bi)
2
. (1)

7

Fig. 11. Process for transforming game logs to vectors. In the above, four vectors are generated: (0, 1, 1, 3), (2, 1, 1, 1), (0, 1, 1, 1), (0, 0, 0, 1).

TABLE II. LIST OF FEATURES USED IN THE PROPOSED DETECTION METHOD.

No. Feature Description
1 self sim. self-similarity
2 vector count count of a set of log vectors
3 uniq. vector count unique count of a set of log vectors
4 cosim. zero count count of data in which cosine similarity is zero in a set of log vectors
5 vector mode count of data that appears most often in a set of log vectors
6 total log count total count of logs generated by user
7 char. level character level
8 play time play time during certain period per user
9 npc kill count NPC kill count
10 trade take count count of trade in which user takes items from another
11 trade give count count of trade in which user gives items to another
12 retrieve count count of activity in which user retrieves items from warehouse
13 deposit count count of activity in which user deposits items to warehouse
14 log count per min. average count of logs are generated per minute

3) Measuring self-similarity: The logs of each user are
transformed into sets of cosine similarities following the above
steps. To measure self-similarity, we calculate the standard
deviation of the cosine similarities and then transform it using
Eq. (2). The transformed value is close to one when self-
similarity is high and close to 0.5 otherwise, which is the same
scale as the Hurst exponent [3]:

H = 1− 1

2
σ, (2)

where σ is the standard deviation of the cosine similarities and
H is the self-similarity.

4) Additional feature selection: Our proposed self-
similarity algorithm has one shortcoming. If a character only
plays for a very short period or performs no activities over
a long period of time, self-similarity for the character may
have a high value. Because that is not our intention, we added
several features to address this shortcoming. When we select
complementary features, we consider the attributes offered in
general MMORPGs. Table II lists all the features we used.

B. Modeling and evaluation

We used logistic regression to detect game bots. Our model
calculates the probability of a character being a game bot by

using the features in Table II as independent variables. We
evaluated the performance of our detection model using k-
fold cross validation. In k-fold cross-validation, ground truth
is partitioned into k subsets of the same size. A single partition
is used as the validation for the model, and the remaining
partitions are used for training. After the previous step, another
partition is selected as a test set (among the k − 1) while
others are used as the training set. After cross-validation is
repeated k times, the performance measure per partition is
averaged. We used the area under the Receiver Operating
Characteristic (ROC) curve to evaluate the performance of our
model. The ROC curve is one of the methods used to measure
the performance of binary classifiers. This is a graph that shows
the false positive rate (FPR) on the x-axis and true positive rate
(TPR) on the y-axis according to a threshold. TPR and FPR
are defined as follows:

FPR =
FP

FP + TN
and TPR =

TP

TP + FN
, (3)

where FP , FN , TP , and TN are the false positive, false neg-
ative, true positive, and true negative, respectively. In general,
if the threshold is higher, i.e., the standard for detecting game
bot is stricter, FPR and TPR become lower, and vice versa.
The performance of the model is deemed to be good when

8

the false positive rate is low, while true positive rate increases
when there is a low threshold. Accordingly, the ROC curve is
created as a curved line to the left and upper side, so the area
under curve increases.

C. Monitoring and retraining detection model

In this step, we propose a detection model maintenance
algorithm. The algorithm detects the change in performance
of the underlying model and retrains the model automatically
when the game developer updates the game contents or game
bots change their behavior. Our system calculates the game
bot probability of all users periodically. If the coefficient
of probability between two periods changes radically, the
system retrains and validates the suitability of the model. We
implemented the system to notify operators of the results of
retraining and validation. Fig. 12 outlines the maintenance
process of our system. In the process, we use the Exponential
Weighted Moving Average (EWMA) method, which was origi-
nally developed for quality management [12], to detect changes
in the model performance. The details of the algorithm using
EWMA are given below.

Fig. 12. Automated maintenance process.

1) Calculating the coefficient: The coefficient of game bot
probability between time t and t− 1 is calculated as:

xt =
n
∑
aibi −

∑
ai

∑
bi√

n
∑
a2i − (

∑
ai)2

√
n
∑
b2i − (

∑
bi)2

. (4)

In Eq. (4), ai signifies the probability of user i being a
game bot at time t and bi signifies probability of user i being
a game bot at time t− 1.

2) Calculating variance of coefficient: We calculated the
weighted moving average in the coefficient measured in the
previous step. In this equation, λ is the weighted value.

zt = λxt + (1− λ)zt−1, 0 < λ <= 1, t = 1, 2, ... (5)

3) Measuring upper and lower control limits: In this step,
we define the upper and lower control limits for evaluating a
change in the performance of the model. If zt in Eq. (5) is out
of the control limit, we consider that the behavior pattern of
the game bots has changed. The control limit has upper and
lower lines as defined in Eq. (6).

CL = µ± Lσ
√

λ

z − λ
. (6)

In Eq. (6), µ is the average of z and σ is the standard
deviation of z. L is a constant that determines the sensitivity
of the pattern’s change. If L is small, the algorithm detects
small changes and notifies operators. Otherwise, the situation
is considered as a normal state.

4) Retraining model validation: If z is beyond the control
limit, the model is retrained autonomously. The retrained
model is then validated before reapplying it to bot detection in
the system. Area Under Curve (AUC) is used for the validation
check through k-fold cross validation. If AUC is lower than
0.9, the system judges to be invalidated and notifies operators.

V. EXPERIMENTS

A. Data preprocessing

We implemented the data preprocessing modules to extract
features in three games: Lineage, Aion, and Blade & Soul.
The total number of log types was in the range of 200 to 300
per game. However, we only selected logs directly associated
with characters’ activities to measure self-similarity accurately.
The size and volume of data in each game are summarized in
Table III. The total numbers of logs and users were aggregated
over one week.

TABLE III. SUMMARY OF RAW DATA (B:BILLIONS, K:THOUSANDS).

Game Logs Types of logs Users
Lineage 28.5B 165 570K

Aion 5.0B 229 250K
B&S 6.9B 109 130K

We also determined two important parameters for process-
ing data: the period for aggregating log data, and the time unit
of log vectors for measuring self-similarity. Our target games
have down time every Wednesday morning because operators
need to check the servers and update contents. Consequently,
most users have a one-week playing cycle. As a result, we
decided to aggregate feature data over one week. If the time
unit of a log vector is too short, the amount of information in
the vector is too small. However, the converse results in the
number of vectors being so small that self-similarity cannot be
measured accurately. We tested the detection model using only
self-similarity for a feature in the range of 300–1800 seconds
and checked the AUC of each model to determine the optimal
time unit for a vector. Fig. 13 describes the results of our test.

In Fig. 13, the x-axis is a period of aggregation, and
the y-axis is the AUC of models using the k-fold cross-
validation. Each plot line depicts the AUC of a model per
time unit that we tested. In our experiments, the shorter time
unit of a vector is better. A five-day aggregation period is best.
However, we selected seven-day as a parameter because it is

9

more convenient and efficient to synchronize with the server
maintenance time. In addition, the difference in AUC between
five days and seven days is substantially small for the time
unit of 300 seconds. We decided on 300 seconds for the time
unit of a vector. We did not conduct any more tuning for the
time unit of the vector less than 300 seconds because as the
time unit decreases, the amount of system resources needed
increases, although the model performance could be better.

Fig. 13. AUC of detection model per vector period.

B. Ground truth construction

Upon establishing the game bot detection model, we con-
structed the ground truth for its learning and evaluation. In
previous studies, some researchers used data sets generated
artificially via several human and bot programs [24]. Other re-
searchers used a list of banned accounts that operators caught,
or other players reported [1]. However, these approaches may
generate false negatives. Ahmad et al. [22] proposed a capture-
recapture technique and network analysis for resolving this
problem. However their method can still be inaccurate because
of the absence of reliable ground truth.

In this work, we constructed a reliable ground truth by
sampling and coding and through thorough visual inspection
(through a time-consuming process). In practice, the game
company has game masters who monitor the game world,
detect malicious users, and deal with users’ arguments and
complaints. They use special characters, called the Game
Master (GM) character. A GM character has extra abilities
not available to a normal character. One such ability is “tele-
portation”, which allows the GM character to instantly move
to the zone where a character of interest is playing at that time.
Another ability is “invisibility”, which allows them to observe
other characters play without them being seen or noticed. For
our ground truth, we relied on those GMs. For that, they
carefully observed samples randomly selected and coded to
determine whether an individual is a game bot or not. We
provided precise instruction rules and process to avoid error
due to the GMs’ subjective bias or mistakes. The process is
detailed in the following.

First, as a baseline, we required that at least two GMs
observe a character at the same time and independently judge
whether the character was a game bot or not. We collected
the evaluation results for all samples and only used those

TABLE IV. GROUND TRUTH CONSTRUCTION RESULTS.

Game Bot Human # of inspector κ

Lineage 315 244 3 1.0
Aion 75 75 2 1.0
B&S 260 230 3 1.0
Total 650 549 - -

inspection results that were in total agreement. Second, we
asked the GMs to describe the reason for his or her judgment.
After collecting the results, we arranged and standardized the
reasons. Third, we used the Leave One Out Cross Validation
(LOOCV) method to code the results for cross-checking.
LOOCV is a technique in which a sample is used for testing
while all others are used for training the model. When the
coder leaves a wrong code for the sample, we can identify
the incorrectly coded sample using LOOCV. The first two
rules may reduce the problem of subjective bias, and the last
rule may prevent human mistakes from influencing the final
selection of ground truth.

We built ground truth data sets for Lineage, Aion, and
B&S. Our ground truth was gradually built over a period of
time for each game product from December 2013 to March
2015. The total ground truth list is summarized in Table IV.

C. Modeling and evaluation

We used logistic regression to detect game bots. Each
feature was estimated using the regression coefficient of the
regression model, and then each coefficient was applied to Eq.
(7) to calculate the game bot probability.

PBOT =
1

1 + e−(α+
∑n

i=1 βixi)
, (7)

where α and β are intercept and coefficients, which are
calculated by logistic regression, respectively.

The result of logistic regression for each game is sum-
marized in Table VI. The statistically significant feature set
applied to regression was different from all others in each game
because game contents and characteristics are determined per
individual game. However self-similarity is used as a common
feature and has statistical significance in all games.

We used k-fold cross-validation to evaluate the perfor-
mance of the detection model. We set k to 10; thus, the
AUC of our model was measured 10 times. Consequently,
we used the average of the set of AUC as a performance
measure. We constructed the detection system with the self-
similarity alone and then tried to optimize the system with
some additional features (mentioned in §IV-A-4)) The final
results of the evaluation are shown in Table V and depicted in
Fig. 14.

The size of the sample sets of players used for evaluation in
Table V and the size of the ground truth sample set in Table IV
are different. Our ground truth for each game was gradually
constructed over several months, not at once. Consequently,
we could not use the entire set of the ground truth when we
evaluate the model because some users did not play the game
at the time of the evaluation. In the case of Aion, the ground
truth we built was small, so we boosted the data by processing
game logs for users who played the Aion in several periods.

10

(a) Lineage (b) Aion (c) B&S

Fig. 14. ROC curve of detection model.

TABLE V. PERFORMANCE OF DETECTION MODEL.

Game Bot Human AUC (initial model) AUC (final model)
Lineage 128 149 0.8967 0.9455

Aion 186 160 0.9557 0.9942
B&S 131 129 0.8280 0.9399

Fig. 15. Variation of X and Z values by date.

D. Automated model maintenance

We implemented a system that calculates the game bot
probability of users and regularly tracks the number of game
bots in a game world. We believe the proposed detection
model is sufficiently reliable. However, the playing pattern of
a game bot changes for a variety of reasons. For instance,
game contents are updated, bot programs get updated, and bot
users change the setting of the bot program to evade detection.
The detection model can become invalid in such cases because
the regression coefficient of the detection model can be unfit
for new users. For this reason, the detection model should be
revised by retraining with the newest ground truth data when
the model becomes invalid. A system that detects such changes
and automatically retrains the detection model at that time is
required to do this.

The flow of the overall process is depicted in Fig. 12. The
monitoring algorithm, i.e., EWMA, for model validation is
explained in §IV-C. To implement the monitoring algorithm,
we need to define several parameters; specifically, λ, the
weighted constant for moving average in Eq. (5); L, the
constant for control limit and n, the window size for the
average and standard deviation of Z’s in Eq. (6).

TABLE VI. REGRESSION COEFFICIENT OF FEATURES.

variable regression coeff. std. error z value p value
self sim. -3.757e+00 1.399e+00 -2.686 0.00724 **

cosim. count -1.439e-02 2.006e-02 -0.717 0.47325
cosim. uniq. count -1.716e-03 3.796e-03 -0.452 0.65132
cosim. zero count -6.139e-03 5.625e-03 -1.091 0.27516

cosim. mode -8.852e-03 8.966e-03 -0.987 0.32348
total log count -9.493e-06 6.379e-06 -1.488 0.13672

main char. level -8.391e-02 2.700e-02 -3.108 0.00188 **
total use time min. 4.377e-03 4.119e-03 1.063 0.28798

npc kill count -1.176e-05 6.964e-05 -0.169 0.86585
trade get count -4.827e-02 4.298e-02 -1.123 0.26133
trade give count 1.056e-02 4.268e-02 0.247 0.80461
retrieve count 1.582e-02 5.266e-03 3.003 0.00267 **
deposit count -1.040e-02 4.779e-03 -2.175 0.02961 *

log count per min. 1.808e-02 1.547e-02 1.168 0.24267

(a) Lineage

variable regression coeff. std. error z value p value
self sim. 1.337e+03 5.041e+02 2.651 0.00802 **

cosim. count 6.678e-02 1.470e-01 0.454 0.64966
cosim. uniq. count -2.378e-02 6.557e-02 -0.363 0.71686

cosim. mode -2.444e-01 1.464e-01 -1.670 0.09494
total log count -8.542e-05 1.280e-04 -0.667 0.50470

main char. level -1.809e-01 8.013e-02 -2.257 0.02399 *
total use time min. -1.550e-04 6.382e-03 -0.024 0.98062

npc kill count -2.551e-04 1.002e-04 -2.546 0.01091 *
trade get count 3.648e-03 1.522e-02 0.240 0.81056
trade give count -8.576e-03 3.674e-02 -0.233 0.81541

log count per min. -1.371e+00 1.028e+00 -1.334 0.18235

(b) Aion

variable regression coeff. std. error z value p value
self sim. -6.469e+00 2.874e+00 -2.251 0.02439 *

cosim. count -3.923e-02 5.063e-01 -0.077 0.93824
cosim. uniq. count -4.157e-02 5.051e-01 -0.082 0.93442
cosim. zero count -6.110e-01 3.413e-01 -1.790 0.07345

cosim. mode 7.520e-01 6.426e-01 1.170 0.24190
total log count 1.026e-04 3.265e-05 3.143 0.00167 **
main char. level 1.002e+00 2.661e+01 0.038 0.96995

total use time min. 3.965e-05 7.415e-04 0.053 0.95735
npc kill count 1.540e-05 1.538e-04 0.100 0.92023
trade get count -7.175e-04 1.525e-03 -0.471 0.63796
trade give count -3.292e-04 9.725e-03 -0.034 0.97300

log count per min. -2.050e-02 2.671e-02 -0.768 0.44278

(c) B&S

11

(a) variations of SSE by λ (b) variations of Z’s average by window
size

(c) variations of Z’s std. deviation by
window size

(d) variations of Z and control limit by
date

Fig. 16. EWMA parameter tuning.

Z is the weighted moving average of X (see Fig. 15) and
is used to estimate correlation coefficient, i.e., X at time t+1
in this algorithm. Consequently, we selected the λ value so
that λ minimizes the Sum of Squared Error (SSE) between
Xt and Zt−1. In Fig. 16-(a), SSE decreases at the outset, but
increases after a certain point. Therefore, the inflection point
is the most suitable value for λ, which we used.

For window size n, we observed the average and standard
deviations of Zt, Zt−1,· · · , Zt−(n−1) by n changing incre-
mentally as shown in Figs. 16-(b) and (c). As n gets larger,
indicating that the control limit considers the longer period,
the average and standard deviation increase and converge
eventually. We aimed to design the robust control limit, so
we determined n where the average and standard deviation
converge. Based on experiments, we found that n = 60 is a
reasonable value to use.

Finally, we optimized the control limit constant L. For that,
we observed the changes in Z for optimal λ and n (see Fig.
16-(d)). We could fix L at a minimum integer value under the
maximum variance of Z.

Table VII describes optimal values for the parameters for
EWMA of the target games.

TABLE VII. EWMA PARAMETERS.

Game λ n L

Lineage 0.15 60 20
Aion 0.95 60 4
B&S 0.15 60 38

E. Ethical considerations

Before installation of a game client program, participants
were asked to acknowledge a consent form under the End
User License Agreement (EULA) and domestic laws, which
informed them that their data may be used in improving the
quality of the installed game. Anonymous data samples were
collected confidentially only for the purposes of conducting
statistical analyses. Ethical compliance of our research was
also validated through an ethics committee at our universities
(IRB and equivalents).

VI. REAL-WORLD DEPLOYMENT

We have implemented and ran this proposed detection
system in multiple commercial MMORPGs for more than two
years, from Feb. 2013 to date. As a result, we were able to
detect and block more than 15,000 bot users. We note that a
part of bot users were just banned for business decisions.

Fig. 17 is the screenshot of our bot detection system to
monitor three large commercial MMORPGs (about 280,000
concurrent users). It automatically detects bot players and gives
useful statistics (bot growth trend, in-game currency, etc.).

Fig. 17. Screenshot of the bot detection system.

In the following, we provide a postmortem report based on
our two year’s detecting and banning operation.

Generality. To implement this system, we had one year of
observational period for each game. After we implemented the
detection system for Lineage, we expanded our work to other
games. When we applied our techniques to Lineage, we needed
one year to develop the system and tune its parameters. With
the gained experience, the implementation of the detection
system for Aion and Blade & Soul took only two months. Main
algorithms are reused and only a few game specific features are
updated for each implementation case. Such reusability shows
that our proposed system can be widely applied to the same
genre of MMORPGs.

Ground truth and model maintenance. For model main-
tenance, we try to generate new ground truth data steadily.
Whenever our detection model is not working well (e.g., due to
the update of game contents), we need to retrain the detection
model with the ground truth data. This process can automat-
ically be performed without substantial user intervention. In
addition, we realized that inspecting task for creating ground
truth does not have to be performed by highly-skilled GMs
if the inspection process that is described in §V-B is well
operated. Consequently, we can reduce the cost of establishing
a new ground truth.

12

GFG economy. Based on our deployment, we can estimate
GFG’s economic scale. For example, in the case of Aion, the
average GFG has 83 bot users. We summarize the data of the
detected bots that belong to GFGs in Table VIII. This table
shows GFGs in a sample Aion server. For this analysis, our
observational period was one month. First, the findings show
that the size of the various GFGs varies, and ranges between
six and 590 characters (with an average of 83 characters),
thus highlighting a variety of actors and business sizes in this
ecosystem. Furthermore, findings show that assets of smaller
GFGs are non-negligible; for example, the smallest GFGs can
earn more than 12, 000 USD worth of assets, while the largest
earns more than 107, 000 USD in a month.

TABLE VIII. GFGS AND THEIR MONEY POSSESSION.

Nodes Edges Game Money Real Money Value
Mean 83 295 20,977,234,225 $41,954

Std. dev 95 316 12,044,804,616 $24,090
Max 590 1,964 53,699,776,093 $107,400
Min 6 13 6,171,466,805 $12,343

Extreme cases and anomalies. As we mentioned earlier, the
self-similarity algorithm cannot detect bot users who play for
a short period, which is a shortcoming of our system. This
shortcoming is not a problem, in general, where the more
common cases of bots have their models of incentives, where
(almost always) bots’ play time is longer than humans’ (see
Fig. 4-(a)). This behavioral feature shows that our criteria for
distinguishing between bots and humans using similarity, in
general, is reasonable to detect most bots.

However, one operational incident that goes against the
above criteria is worth mentioning, highlighting the shortcom-
ing. In our evaluation period of our system, we observed a
massive number of bots utilizing a single game server. Those
bots were particularly playing for less than 10 hours per week
(on average), while the average bots play time was about 160
hours for that week. In general, such anomaly (with respect to
the expected behavior of bots) would make them undetectable.
However, we believe that those bot behaviors are not common
in practice. When bots run for less than 10 hours per week,
they may not produce sufficient cyber assets for their benefits.
For example, the subscription fee of Lineage is 25 USD per
month, which is a value of approximately 6 millions gold units.
If we assume that a bot can earn 50,000 gold units per hour,
GFGs have to run their bots at least 120 hours per month
(i.e., about 30 hours per week) to get some benefits. In fact,
our assumption is reasonable because the maximum amount
earned by a bot is less than 50,000 gold units in our data sets.

The only exception is the case when a new game is released
or a new server is added to mature service. In this case, a
market price of RMT is very high. For example, a market price
of the new server in which short time playing bots were found
was at least ten times higher than in other mature servers.
Therefore, it seems enough for GFGs to run their bots for only
a few hours to collect those items. Surely, this phenomenon
diminishes as the economy grows, and the market value goes
down over time (see Fig. 18).

Although this issue was an isolated case of anomaly, we
believe that we need to complement our system to capture
and detect such case early. We believe that network analysis

(a) market price of real money trading in new server

(b) short time playing bot’s size

Fig. 18. The dynamics of the market price against the number of bots that
play for a fewer number of hours.

is a strong complement to the methods we provided in this
work. As Fig. 19 shows, short time playing bots tend to have
a star-shaped trading network structure. Such structure as a
feature could be used to detect those anomalies earlier in
evaluation. The description of the detailed process of such
combined process is left as a future work.

Fig. 19. Trading network of short time playing bots where nodes represent
bot players and edges represent trading transactions between bot players.

Hacks detection. Our system does not address the ‘hacks
detection’ issue. Although game hacks are one of serious se-
curity problems, they are not as prevalent as bots. In a nutshell,
hacks are malicious software which make a character strong,
fast or immortal via techniques like RAM or network traffic
modification. Hacks have various functions to enable users

13

to possess game items and game money without purchase,
speed up the game play, see through the wall, teleport illegally,
give a fake report as a winner to the game company and
so on. For this case, the network-side detection is a primary
solution rather than the server-side detection that analyzes
the user log. The network-side detection can identify network
traffic burstiness and anomalies in the timing of commands
and activities, response time, and traffic interval and timing
channels by looking into packet-level network artifacts. For
this type of cheating, we need a different model that focuses
on understanding and investigating the network traffic and
artifacts as a feature. Further, the detection model based on log
analysis should be devised to identify the intermittent anomaly
of users behaviors comparing their usual behaviors as well as
others’ behaviors. We believe that this issue is out of the scope
of this work, although a worthwhile future work.

False positive issue. False positive should be avoided for the
system to be practical. Banning innocent players causes users’
churn, and may raise legal issues and concerns. To reduce false
positives, we include additional filter to our system. While we
mainly rely on in-game features (i.e. repetitive action, user’s
game playing behavior, etc.) in our model, we found that out of
game information are very helpful in reducing false positives
and the cost of these. For example, we can filter just bot users
who have IP address that are used by other bots, or who have
low business profile (e.g. payment’s history).

Individuals using bots. Some individuals operate bots. The
certain portion of bot usage is distributed among individual
players. A human player is playing for several hours a day
and then turns on a bot to farm for a few hours. Because these
users show legitimate and fraudulent behaviors at the same
time, and given that we consider the short aggregation period
(e.g. twelve hours) for self-similarity, the self-similarity may
go beyond the threshold value at times as shown in Fig. 20.
However, in our system, and considering the 7 day aggregation
period and the high threshold value, this type of users may
evade our detection. In this study, we are only concerned with
gold farming groups rather than individual bot players, and
mainly because gold farming groups are more harmful to the
system. However we believe that individual bot players also
can be detected if we consider a variation of self-similarity for
shorter period than shown Fig 20. We will study the approach
for addressing those users in a future work.

Fig. 20. Time series of self-similarity (upper) and cosine similarity (lower)
of a human player who is suspected of using a game bot in part.

VII. RELATED WORK

Much research has been conducted on constructing game
bot detection methods using machine learning techniques.

Ahmad et al. [1] conducted a pioneering study by eval-
uating the performance of various classification algorithms
to detect bots in the game named “EverQuest II” (https:
//www.everquest2.com/). They coined the terms “gatherers”,
“bankers”, “dealers”, and “marketers” for categorizing bots
with several features such as demographic data, characters’
sequential activities, statistical properties, virtual item transac-
tions and network centrality measures. However, their chosen
features were not well developed and the used ground truth
was not sufficiently reliable. Consequently, their detection
performance was lower than our expectations.

Thawonmas et al. [24] also conducted an early study that
tried to detect game bots using bots’ inherent behaviors such
as repeating the same activities more often than normal human
users. Their proposed detection rules, however, were based on
simple threshold values that cannot be easily determined in
practice.

Bethea et al. [2] presented a defence technique using
symbolic execution to analyze the client output and determine
whether that output could have been produced by a valid
game client. The effectiveness of the technique was verified
through two case studies of customized games. However, their
proposed technique cannot detect cheats that are permitted by
the sanctioned client software due to bugs or modified game
clients that do not change their behaviors as seen at the server.

Inherently, the performance of classification algorithms can
be dynamically changed with the selected features. Unsurpris-
ingly, using general features have relatively low performance
compared with the classification algorithms with features spe-
cific to games and/or genre. Kang et al. [14] proposed a bot
detection model based on the difference in chatting patterns
between bots and human users. Kang et al. [15] also proposed
a game bot detection method based on the players’ network
characteristics. Those proposed methods can detect bots with
a high accuracy. However, the costs for building detection
rules are expensive and an additional tuning process is needed
because the methods generally depend on game contents and
are sensitive to the configuration settings of bot programs.

In addition to individual game bot detection, researchers
have also tried applying several different techniques to identify
bot groups. Chung et al. [8] proposed a method that groups
characters by behavioral similarities using the K-means clus-
tering algorithm and then detecting bots in each group using
Support Vector Machine (SVM). However, it may incur high
costs to build a detection model and update it with dynamic
changes in users’ playing patterns. Mitterhofer et al. [21], Chen
et al. [7] and Kesteren et al. [25] proposed similar methods
with general features such as the moving paths of characters,
respectively. Those proposals use the characteristic tendency
of bots to move with fixed routes set up by bot programs.
Unlike the classification algorithms using specific features,
those methods can be applied to most MMORPGs. In their
approaches, however, the log resolution of moving paths has to
be increased in order to obtain a high accuracy. Consequently,
the system has a large burden to process logs with a high
resolution. In addition, it is easy to avoid detection by using

14

https://www.everquest2.com/
https://www.everquest2.com/

randomized moving paths which can be easily controlled by
bot programs.

In this paper, we extend their works into a more generalized
model; while their approaches [7], [25], [21] simply used the
single feature of moving path, we build a generalized frame-
work with various features by designing a self-similarity al-
gorithm to effectively measure bots’ repeated activity patterns,
which was previously used as a means of analyzing network
traffic [10] or developing intrusion detection systems [18]. We
note that the proposed method is significantly robust to changes
in the configuration settings of bot programs compared with
existing approaches (e.g. [7], [25], [21]) because our method
focuses on all behaviors and long-term activities.

VIII. CONCLUSION

In this paper, we introduced the first study on deploying an
automated model for detecting game bots in real MMORPG
services. Our evaluation results show that a practically effective
classification algorithm can be constructed by identifying game
bots’ repeated activity patterns which are clearly distinguished
from normal human users’ patterns. We validated the effec-
tiveness of the proposed framework by evaluating the perfor-
mance of the classification algorithm with ground-truth data
and deploying it on real MMORPGs (“Lineage”, “Aion”
and “Blade & Soul”). Although, we currently limited our
experiments in those three MMORPGs, we believe that the
proposed detection system can also be an efficient tool to fight
game bots in other MMORPGs. The analysis and ground-truth
collection are naturally facilitated by the operation of the three
studied MMORPGs, and the system can be easily extended to
other games. In the future, and along with extending the work
to other games, we will explore using network features for
more robust bot detection. We will also consider transaction-
based activities as discriminatory features.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Ko-
rea(NRF) funded by the Ministry of Science, ICT & Future
Planning(2014R1A1A1006228). We would like to thank both
the reviewers and our shepherd, Guofei Gu, for their insightful
comments and feedback which greatly improved the paper.

REFERENCES

[1] M. A. Ahmad, B. Keegan, J. Srivastava, D. Williams, and N. Contractor,
“Mining for Gold Farmers: Automatic Detection of Deviant Players
in MMOGS,” in Computational Science and Engineering International
Conference, vol. 4, pp. 340-345, Aug, 2009.

[2] D. Bethea, R. A. Cochran, and M. K. Reiter, “Server-side verification
of client behavior in online games,” in Proceedings of the 17th Network
and Distributed System Security Symposium, 2010.

[3] A. Carbone, G. Castelli, and H. Stanley, “Time-dependent hurst expo-
nent in financial time series,” Physica A: Statistical Mechanics and its
Applications, vol. 344, no. 1, pp. 267–271, 2004.

[4] E. Castronova, “Synthetic worlds: The buisiness and culture of online
games,” in University of Chicago Press, 2005.

[5] ——, “Effects of botting on world of warcraft,” http://virtuallyblind.
com/files/mdy/blizzard msj exhibit 7.pdf, 2007.

[6] E. Castronova, D. Williams, C. Shen, R. Ratan, L. Xiong, Y. Huang,
and B. Keegan, “As real as real? macroeconomic behavior in a large-
scale virtual world,” in New Media & Society, vol. 11, no. 5, pp. 685,
2009.

[7] K.-T. Chen, A. Liao, H.-K. K. Pao, and H.-H. Chu, “Game Bot
Detection Based on Avatar Trajectory,” in Entertainment Computing
ICEC 2008, vol. 5309, pp. 94-105, 2009.

[8] Y. Chung, C. yong Park, N. ri Kim, H. Cho, T. Yoon, H. Lee, and J.-H.
Lee, “Game Bot Detection Approach Based on Behavior Analysis and
Consideration of Various Play Styles,” in Journal of ETRI, vol. 35, no.
6, pp. 1058-1067, Dec. 2013.

[9] A. Conda, “Exclusive: A primer on monetiza-
tion of f2p games,” http://www.alistdaily.com/news/
exclusive-a-primer-on-monetization-of-f2p-games, 2012.

[10] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web
traffic: evidence and possible causes,” in IEEE/ACM Transactions on
Networking, vol. 5, no. 6, pp. 835-846, 1997.

[11] E. Digital, “Group laundered $38m in virtual currencies in
18 months,” http://www.engagedigital.com/blog/2008/10/27/
group-laundered-38m-in-virtual-currencies-in-18-months/, 2008.

[12] J. Hunter, “The Exponentially Weighted Moving Average,” in Quality
Techno, vol. 18, no. 4, pp. 203-210, 1986.

[13] Infiniti Research Limited, “Global online gam-
ing market 2014,” http://www.marketwatch.com/story/
global-online-gaming-market-2014-2014-06-25, 2014.

[14] A. R. Kang, H. K. Kim, and J. Woo, “Chatting Pattern Based Game
Bot Detection: Do They Talk Like Us,” in KSII Transactions on Internet
and Information Systems, vol. 6, no. 11, pp. 2866-2879, Nov. 2012.

[15] A. R. Kang, J. Woo, J. Park, and H. K. Kim, “Online Game Bot
Detection Based on Party-Play Log Analysis,” in Computers and
Mathematics with Applications, vol. 65, no. 9, pp. 1384-1395, May.
2013.

[16] B. Keegan, M. A. Ahmad, J. Srivastava, D. Williams, and N. Contractor,
“Dark Gold: Statistical Properties of Clandestine Networks in Massively
Multiplayer Online Games,” in Social Computing(SocialCom), IEEE
Second International Conference, pp. 201-208, Aug. 2010.

[17] D. Kushner, “Steamed: Valve software battles video-game
cheaters,” http://spectrum.ieee.org/consumer-electronics/gaming/
steamed-valve-software-battles-videogame-cheaters, 2010.

[18] H. Kwon, T. Kim, S. J. Yu, and H. K. Kim, “Self-similarity Based
Lightweight Intrusion Detection Method for Cloud Computing,” in
Intelligent Information and Database Systems, Springer Berlin Heidel-
berg, pp. 353-362, 2011.

[19] H. Kwon, K. Woo, and H. chul Kim, “Surgical strike: A novel
approach to minimize collateral damage to game bot detection,” in ACM
NetGames 2013, Dec. 2013.

[20] J. Lee, J. Lim, W. Cho, and H. K. Kim, “I know what the bots
did yesterday: full action sequence analysis using naive bayesian
algorithm,” in NetGames’13, Annual Workshop on Network and Systems
Support for Games, Dec. 2013.

[21] S. Mitterhofer, C. Kruegel, E. Kirda, and C. Platzer, “Server-Side Bot
Detection in Massively Multiplayer Online Games,” Security Privacy,
IEEE, vol. 7, no. 3, pp. 29–36, May 2009.

[22] A. Roy, M. A. Ahmad, C. Sarkar, B. Keegan, and J. Srivastava, “The
Ones That Got Away: False Negative Estimation Based Approaches for
Gold Farmer Detection,” in IEEE PASSAT and SocialCom, pp. 328-337,
Sep, 2012.

[23] S. Salihoglu and J. Widom, “GPS: A Graph Processing System,” in
Proceedings of the 25th International Conference on Scientific and
Statistical Database Management, 2013.

[24] R. Thawonmas, Y. Kashifuji, and K.-T. Chen, “Detection of MMORPG
Bots Based on Behavior Analysis,” in Advances in Computer Enter-
tainment Technology Conference, pp. 91-94, Dec. 2008.

[25] M. van Kesteren, J. Langevoort, and F. Grootjen, “A Step in the Right
Detecting: Bot Detection in MMORPGs using Movement Analysis,” in
The 21st Benelux Conference on Artificial Intelligence, 2009.

15

http://virtuallyblind.com/files/mdy/blizzard_msj_exhibit_7.pdf
http://virtuallyblind.com/files/mdy/blizzard_msj_exhibit_7.pdf
http://www.alistdaily.com/news/exclusive-a-primer-on-monetization-of-f2p-games
http://www.alistdaily.com/news/exclusive-a-primer-on-monetization-of-f2p-games
http://www.engagedigital.com/blog/2008/10/27/group-laundered-38m-in-virtual-currencies-in-18-months/
http://www.engagedigital.com/blog/2008/10/27/group-laundered-38m-in-virtual-currencies-in-18-months/
http://www.marketwatch.com/story/global-online-gaming-market-2014-2014-06-25
http://www.marketwatch.com/story/global-online-gaming-market-2014-2014-06-25
http://spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-videogame-cheaters
http://spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-battles-videogame-cheaters

	Introduction
	Background
	Terminology
	Ecology of game world in MMORPGs
	Game bots and RMT

	Game bot characteristics
	Exploratory data analysis
	Demographic data
	Activity statistics
	Network analysis
	Sequence data

	Feature review
	Generality
	Stability
	On the difficulty of evasion
	Ease of development

	Methodology
	Feature extraction and selection
	Generating log vectors
	Measuring the cosine similarity between log vectors
	Measuring self-similarity
	Additional feature selection

	Modeling and evaluation
	Monitoring and retraining detection model
	Calculating the coefficient
	Calculating variance of coefficient
	Measuring upper and lower control limits
	Retraining model validation

	Experiments
	Data preprocessing
	Ground truth construction
	Modeling and evaluation
	Automated model maintenance
	Ethical considerations

	Real-world deployment
	Related Work
	Conclusion
	References

