
VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection

Zhen Li∗†, Deqing Zou∗‡], Shouhuai Xu§, Xinyu Ou∗, Hai Jin∗,
Sujuan Wang∗, Zhijun Deng∗ and Yuyi Zhong∗

∗Services Computing Technology and System Lab, Big Data Technology and System Lab,
Cluster and Grid Computing Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology
deqingzou@hust.edu.cn

†School of Cyber Security and Computer, Hebei University
‡Shenzhen Huazhong University of Science and Technology Research Institute
§Department of Computer Science, University of Texas at San Antonio

Abstract—The automatic detection of software vulnerabilities
is an important research problem. However, existing solutions to
this problem rely on human experts to define features and often
miss many vulnerabilities (i.e., incurring high false negative rate).
In this paper, we initiate the study of using deep learning-based
vulnerability detection to relieve human experts from the tedious
and subjective task of manually defining features. Since deep
learning is motivated to deal with problems that are very different
from the problem of vulnerability detection, we need some guiding
principles for applying deep learning to vulnerability detection. In
particular, we need to find representations of software programs
that are suitable for deep learning. For this purpose, we propose
using code gadgets to represent programs and then transform
them into vectors, where a code gadget is a number of (not
necessarily consecutive) lines of code that are semantically related
to each other. This leads to the design and implementation
of a deep learning-based vulnerability detection system, called
Vulnerability Deep Pecker (VulDeePecker). In order to evaluate
VulDeePecker, we present the first vulnerability dataset for deep
learning approaches. Experimental results show that VulDeeP-
ecker can achieve much fewer false negatives (with reasonable
false positives) than other approaches. We further apply VulDeeP-
ecker to 3 software products (namely Xen, Seamonkey, and
Libav) and detect 4 vulnerabilities, which are not reported in
the National Vulnerability Database but were “silently” patched
by the vendors when releasing later versions of these products;
in contrast, these vulnerabilities are almost entirely missed by
the other vulnerability detection systems we experimented with.

I. INTRODUCTION

Many cyber attacks are rooted in software vulnerabilities.
Despite the effort that has been invested in pursuing secure pro-
gramming, software vulnerabilities remain, and will continue,
to be a significant problem. This can be justified by the fact

]Corresponding author

that the number of vulnerabilities registered in the Common
Vulnerabilities and Exposures (CVE) was approximately 4,600
in 2010, and grew to approximately 6,500 in 2016 [4]. An
alternate approach is to automatically detect vulnerabilities in
software programs, or simply programs for short. There have
been many static vulnerability detection systems and studies
for this purpose, ranging from open source tools [6], [11],
[52], to commercial tools [2], [3], [7], to academic research
projects [19], [28], [32], [37], [38], [49], [59], [60]. However,
existing solutions for detecting vulnerabilities have two major
drawbacks: imposing intense manual labor and incurring high
false negative rates, which are elaborated below.

On one hand, existing solutions for vulnerability detection
rely on human experts to define features. Even for experts,
this is a tedious, subjective, and sometimes error-prone task
because of the complexity of the problem. In other words,
the identification of features is largely an art, meaning that the
quality of the resulting features, and therefore the effectiveness
of resulting detection system, varies with the individuals who
define them. In principle, this problem can be alleviated by
asking multiple experts to define their own features, and then
select the set of features that lead to better effectiveness or use
a combination of these features. However, this imposes even
more tedious work. As a matter of fact, it is always desirable
to reduce, or even eliminate whenever possible, the reliance
on the intense labor of human experts. This can be justified
by the trend of cyber defense automation, which is catalyzed
by initiatives such as DARPA’s Cyber Grand Challenge [5].
It is therefore important to relieve human experts from the
tedious and subjective task of manually defining features for
vulnerability detection.

On the other hand, existing solutions often miss many
vulnerabilities or incur high false negative rates. For example,
two most recent vulnerability detection systems, VUDDY [28]
and VulPecker [32], respectively incur a false negative rate
of 18.2% (when detecting vulnerabilities of Apache HTTPD
2.4.23) and 38% (when applied to 455 vulnerability samples).
Our own independent experiments show that they respectively
incur a false negative rate of 95.1% and 89.8% (see Table
V in Section IV). Note that the large discrepancy between
the false negative rates reported in [28], [32] and the false
negative rates derived from our experiments is caused by the

Network and Distributed Systems Security (NDSS) Symposium 2018 
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23158
www.ndss-symposium.org



use of different datasets. These high false negative rates may
be justified by their emphasis on low false positive rates,
which are respectively 0% for VUDDY [28] and unreported
for VulPecker [32]. Our independent experiments show that
their false positive rates are respectively 0% for VUDDY and
1.9% for VulPecker (see Table V in Section IV). This suggests
that VUDDY and VulPecker are designed to achieve low false
positive rates, which appear to be inherent to the approach of
detecting vulnerabilities caused by code clones; in contrast,
when using this approach to detecting vulnerabilities that are
not caused by code clones, high false negative rates occur.

It would be fair to say that vulnerability detection systems
with high false positive rates may not be usable, vulnerability
detection systems with high false negative rates may not be
useful. This justifies the importance of pursuing vulnerability
detection systems that can achieve low false negative rates and
low false positive rates. When this cannot be achieved (because
false positive and false negative are often at odds with each
other), we may put emphasis on lowering the false negative
rate as long as the false positive rate is not too high.

The aforementioned two limitations of existing solutions
motivate the importance of designing the vulnerability detec-
tion system without asking human experts to manually define
features and without incurring high false negative rate or false
positive rate. In this paper, we propose a solution to the
following vulnerability detection problem while bearing in
mind with these limitations: Given the source code of a target
program, how can we determine whether or not the target
program is vulnerable and if so, where are the vulnerabilities?

Our contributions. The present paper represents a first step
towards ultimately tackling the aforesaid problem. Specifically,
we make three contributions.

First, we initiate the study of using deep learning for
vulnerability detection. This approach has a great potential
because deep learning does not need human experts to man-
ually define features, meaning that vulnerability detection can
be automated. However, this approach is challenging because
deep learning is not invented for this kind of applications,
meaning that we need some guiding principles for applying
deep learning to vulnerability detection. We discuss some
preliminary guiding principles for this purpose, including the
representation of software programs to make deep learning
suitable for vulnerability detection, the determination of gran-
ularity at which deep learning-based vulnerability detection
should be conducted, and the selection of specific neural
networks for vulnerability detection. In particular, we propose
using code gadgets to represent programs. A code gadget is
a number of (not necessarily consecutive) lines of code that
are semantically related to each other, and can be vectorized
as input to deep learning.

Second, we present the design and implementation of
a deep learning-based vulnerability detection system, called
Vulnerability Deep Pecker (VulDeePecker). We evaluate the ef-
fectiveness of VulDeePecker from the following perspectives:

• Can VulDeePecker deal with multiple types of vul-
nerabilities at the same time? This perspective is
important because a target program in question may
contain multiple types of vulnerabilities, meaning that

a vulnerability detection system that can detect only
one type of vulnerabilities would be too limited. Ex-
perimental results answer this question affirmatively.
This can be explained by the fact that VulDeePecker
uses vulnerability patterns (learned as deep neural
networks) to detect vulnerabilities.

• Can human expertise help improve the effectiveness of
VulDeePecker? Experimental results show that the ef-
fectiveness of VulDeePecker can be further improved
by incorporating human expertise, which is not for
defining features though. This hints that automatic
vulnerability detection systems, while being able to re-
lieve human experts from the tedious labor of defining
features, may still need to leverage human expertise
from other purposes. This poses an important open
problem for future study.

• How effective is VulDeePecker when compared with
other vulnerability detection approaches? Experimen-
tal results show that VulDeePecker is much more
effective than the other static analysis tools, which
ask human experts to define rules for detecting vul-
nerabilities, and the state-of-the-art code similarity-
based vulnerability detection systems (i.e., VUDDY
and VulPecker).

These questions may be seen as an initial effort at defining
a benchmark for evaluating the effectiveness of deep learning-
based vulnerability detection systems.

In order to show the usefulness of VulDeePecker, we fur-
ther apply it to 3 software products (namely Xen, Seamonkey,
and Libav). VulDeePecker is able to detect 4 vulnerabilities,
which are not reported in the National Vulnerability Database
(NVD) [10] but were “silently” patched by the vendors when
releasing later versions of these products. In contrast, these
vulnerabilities are almost entirely missed by the other vulnera-
bility detection systems we experimented with. More precisely,
one of those vulnerability detection systems is able to detect 1
of the 4 vulnerabilities (i.e., missing 3 of the 4 vulnerabilities),
while the other systems missed all of the 4 vulnerabilities.
We will conduct more experiments to show whether or not
VulDeePecker can detect vulnerabilities that have not been
identified, including possibly 0-day vulnerabilities.

Third, since there are no readily available datasets for
answering the questions mentioned above, we present the first
dataset for evaluating VulDeePecker and other deep learning-
based vulnerability detection systems that will be developed in
the future. The dataset is derived from two data sources main-
tained by the National Institute of Standards and Technology
(NIST): the NVD [10] and the Software Assurance Reference
Dataset (SARD) project [12]. The dataset contains 61,638 code
gadgets, including 17,725 code gadgets that are vulnerable
and 43,913 code gadgets that are not vulnerable. Among the
17,725 code gadgets that are vulnerable, 10,440 code gadgets
correspond to buffer error vulnerabilities (CWE-119) and the
rest 7,285 code gadgets correspond to resource management
error vulnerabilities (CWE-399). We have made the dataset
available at https://github.com/CGCL-codes/VulDeePecker.

Paper organization. The rest of the paper is organized as
follows. Section II presents some preliminary guiding prin-

2



ciples for deep learning-based vulnerability detection. Section
III discusses the design of VulDeePecker. Section IV describes
our experimental evaluation of VulDeePecker and results.
Section V discusses the limitations of VulDeePecker and open
problems for future research. Section VI describes the related
prior work. Section VII concludes the present paper.

II. GUIDING PRINCIPLES FOR DEEP LEARNING-BASED
VULNERABILITY DETECTION

In this section, we propose some preliminary guiding
principles for using deep learning to detect vulnerabilities.
These principles are sufficient for the present study, but may
need to be refined to serve the more general purpose of deep
learning-based vulnerability detection. These principles are
centered at answering three fundamental questions: (i) How
to represent programs for deep learning-based vulnerability
detection? (ii) What is the appropriate granularity for deep
learning-based vulnerability detection? (iii) How to select a
specific neural network for vulnerability detection?

A. How to represent software programs?

Since deep learning or neural networks take vectors as
input, we need to represent programs as vectors that are
semantically meaningful for vulnerability detection. In other
words, we need to encode programs into vectors that are
the required input for deep learning. Note that we cannot
arbitrarily transform a program into vectors because the vectors
need to preserve the semantic information of the program.
This suggests us to use some intermediate representation as
a “bridge” between a program and its vector representation,
which is the actual input to deep learning. This leads to the
following:

Guiding Principle 1: Programs can be first transformed
into some intermediate representation that can preserve (some
of) the semantic relationships between the programs’ elements
(e.g., data dependency and control dependency). Then, the
intermediate representation can be transformed into a vector
representation that is the actual input to neural networks.

As we will elaborate later, Guiding Principle 1 leads us to
propose an intermediate representation dubbed code gadget.
The term code gadget is inspired by the term of gadget in the
context of code-reuse attacks (see, e.g., [18]), because a code
gadget is a small number of (not necessarily consecutive) lines
of code.

B. What is an appropriate granularity?

Since it is desirable not only to detect whether a program
is vulnerable or not, but also to pin down the locations of
the vulnerabilities, a finer granularity should be used for
deep learning-based vulnerability detection. This means that
vulnerability detection should not be conducted at the program
or function level, which are too coarse-grained because a
program or function may have many lines of code and pinning
down the locations of its vulnerability can be a difficult task
by itself. This leads to:

Guiding Principle 2: In order to help pin down the loca-
tions of vulnerabilities, programs should be represented at a

finer granularity than treating a program or a function as a
unit.

Indeed, the aforementioned code gadget representation
leads to a fine-grained granularity for vulnerability detection
because a code gadget often consists of a small number of
lines of code. This means that the code gadget representation
naturally satisfies Guiding Principle 2.

C. How to select neural networks?

Neural networks have been very successful in areas such
as image processing, speech recognition, and natural language
processing (e.g., [21], [30], [40]), which are different from
vulnerability detection. This means that many neural networks
may not be suitable for vulnerability detection, and that we
need some principles to guide the selection of neural networks
that are suitable for vulnerability detection. Our examination
suggests the following:

Guiding Principle 3: Because whether or not a line of
code contains a vulnerability may depend on the context,
neural networks that can cope with contexts may be suitable
for vulnerability detection.

This principle suggests that neural networks for natural
language processing may be suitable for vulnerability detection
because context is also important in natural language pro-
cessing [33]. Putting the notion of context into the setting
of the present paper, we observe that the argument(s) of a
program function call is often affected by earlier operations in
the program and may also be affected by later operations in
the program.

Since there are many neural networks for natural lan-
guage processing, let us start with Recurrent Neural Networks
(RNNs) [51], [53]. These neural networks are effective in
coping with sequential data, and indeed have been used for
program analysis (but not for vulnerability detection purposes)
[20], [48], [56], [57]. However, RNNs suffer from the Vanish-
ing Gradient (VG) problem, which can cause ineffective model
training [16]. Note that the VG problem is inherited by the
Bidirectional variant of RNNs, called BRNNs [47]. We would
prefer neural networks that do not suffer from the VG problem.

The VG problem can be addressed with the idea of memory
cells into RNNs, including the Long Short-Term Memory
(LSTM) cell and the Gated Recurrent Unit (GRU) cell [17],
[22]. Since the GRU does not outperform the LSTM on
language modeling [27], we select LSTM for vulnerability
detection and defer its comparison with GRU to future work.
However, even LSTM may be insufficient for vulnerability
detection because it is unidirectional (i.e., from earlier LSTM
cells to later LSTM cells). This is because the argument(s) of a
program function call may be affected by earlier statements in
the program and may be also affected by the later statements.
This suggests that unidirectional LSTM may be insufficient
and that we should use Bidirectional LSTM (BLSTM) for
vulnerability detection.

Figure 1 highlights the structure of BLSTM neural network,
which has a number of BLSTM layers, a dense layer, and
a softmax layer. The input to the learning process is in a
certain vector representation. The BLSTM layers have two
directions, forward and backward. The BLSTM layers contain

3



some complex LSTM cells, which are treated as black-boxes in
the present paper and therefore deferred to Appendix A. The
dense layer reduces the number of dimensions of the vectors
received from the BLSTM layers. The softmax layer takes
the low-dimension vectors received from the dense layer as
input, and is responsible for representing and formatting the
classification result, which provides feedback for updating the
neural network parameters in the learning phase. The output
of the learning phase is a BLSTM neural network with fine-
tuned model parameters, and the output of the detection phase
is the classification results.

.. .
Dense layer

Softmax  layer

...

...

... ... ... ...BLSTM layers

.. .
Vectors

.. .

Output: learned BLSTM with parameters/ 
classification results

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

... ... ... ...

Figure 1. A brief review of BLSTM neural network

III. DESIGN OF VULDEEPECKER

Our objective is to design a vulnerability detection system
that can automatically tell whether a given program in source
code is vulnerable or not and if so, the locations of the
vulnerabilities. This should be achieved without asking human
experts to manually define features and without incurring
high false negative rates (as long as the false positive rates
are reasonable). In this section, we describe the design of
VulDeePecker. We start with a discussion on the notion of code
gadget, because it is crucial to the representation of programs.
Then, we give an overview of VulDeePecker and elaborate its
components.

A. Defining code gadget

In order to represent programs in vectors that are suitable
for the input to neural networks, we first propose transforming
programs into a representation of code gadget, which is defined
as follows:

Definition 1: (Code gadget) A code gadget is composed of
a number of program statements (i.e., lines of code), which are
semantically related to each other in terms of data dependency
or control dependency.

In order to generate code gadgets, we propose the heuristic
concept of key point, which can be seen as a “lens” through
which we can represent programs from a certain perspective.
Intuitively, the heuristic concept of key point can be seen as,
in a sense, the “center” of a vulnerability or the piece of code
that hints the existence of a vulnerability. For vulnerabilities
that are caused by improper uses of library/API function

calls, the key points are the library/API function calls; for
vulnerabilities that are caused by improper uses of arrays, the
key points are the arrays. It is important to note that a type
of vulnerabilities may have multiple kinds of key points. For
example, buffer error vulnerabilities may correspond to the
following key points: library/API function calls, arrays, and
pointers. Moreover, the same kind of key points may exist in
multiple types of vulnerabilities. For example, both buffer error
and resource management error vulnerabilities may contain
the key points of library/API function calls. Precisely defining
the heuristic concept of key point is beyond the scope of the
present paper and is left as an interesting problem for future
research; instead, we focus on using this heuristic concept as
the “lens” to use deep learning to learn vulnerability patterns.

In this paper, we focus on using the particular key point of
library/API function calls to demonstrate its usefulness in deep
learning-based vulnerability detection. This is motivated by the
observation that many vulnerabilities are related to library/API
function calls. It is also an interesting future work to investigate
the usefulness of other kinds of key points.

Corresponding to the key point of library/API function
calls, code gadgets can be generated by the means of data flow
or control flow analysis of program, for which there are well
known algorithms [23], [50] and readily usable commercial
products such as Checkmarx [2]. It is worth mentioning that
Checkmarx also detects vulnerabilities based on some rules
that are manually defined by human experts. However, we do
not use its rules for vulnerability detection; instead, we will
compare the effectiveness of VulDeePecker against it.

B. Overview of VulDeePecker

As highlighted in Figure 2, VulDeePecker has two phases:
a learning (i.e., training) phase and a detection phase. The
input to the learning phase is a large number of training
programs, some of which are vulnerable and the others are
not. By “vulnerable” we mean that a program contains one
or multiple known vulnerabilities. The output of the learning
phase is vulnerability patterns, which are coded into a BLSTM
neural network.

1) The learning phase: As highlighted in Figure 2(a), the
learning phase has 4 steps.

Step I: Extracting the library/API function calls and the
corresponding program slices. This has two sub-steps, which
are highlighted below and elaborated in Section III-C.

• Step I.1: Extracting library/API function calls from
the training programs, while noting that the current
version of VulDeePecker focuses on vulnerabilities
related to the key point of library/API function calls.

• Step I.2: Extracting one or multiple program slices for
each argument (or variable) of a library/API function
call that is extracted in Step I.1. In this paper, a
program slice represents the statements of a program
(i.e., lines of code) that are semantically related to
an argument of a library/API function call, while
noting that the notion of program slice was originally
introduced to represent the statements of a program
with respect to a program point or variable [55].

4



Step II: Generating code 
gadgets and their ground 

truth labels

Input Step III: Transforming code 
gadgets into vectors

Step II.2: Each code 
gadget   is labeled 

as “1” or “0”

Step IV: Training BLSTM 
neural network

Output

BLSTM neural 
network with 

fine-tuned 
model 

parameters

Code gadget 
Code gadget 1

Label
1

Code gadget 2 0
Code gadget 3 1
Code gadget 4 0
Code gadget 5 0

... ...

Step III.2: Encoding the 
symbolic representations of 

code gadgets into vectors

...Dense
 layer

Softmax
 layer

...

...

..
. ..
.

..
.

..
.

BLSTM 
layers

...

Token Vector
main vi1

( vi2
int vi3

argc vi4
... ...

 [vi1,vi2, …, viτ]

The symbolic 
representation of 

the ith code gadget vi1 vi2 vi(τ-1) viτ[ ]...

Vector of symbolic 
representation

Training 
programs 

(i.e., 
software  
programs 

for training 
deep 

learning 
neural 

networks)

Step II.1: 
Assembling 

program slices into 
code gadgets

Step III.1: Transforming 
code gadgets into 

symbolic representations

Step I: Extracting library/API 
function calls and the

corresponding program slices 
from training programs

Step I.1: Extracting 
library/API function 

calls from the training 
programs

Step I.2: Extracting 
program slices 

corresponding to the 
arguments of the 

library/API function calls

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

(a) Learning phase

Step V.3: Assembling 
program slices into 

code gadgets
(similar to Step II.1) 

Step V.4: Transforming 
code gadgets into 

symbolic 
representations 

(similar to Step III.1)

Step VI: Applying the trained 
BLSTM neural network to 

classify the code gadgets of 
target programs in vector 

representation Code gadgets 
are vulnerable 

or not

Input Output

Trained BLSTM 
neural network 
with fine-tuned 

model 
parameters

Step V: Transforming target programs into code gadgets and vectors Step VI: Detection

Step V.5: Encoding 
the symbolic 

representations 
into vectors 

(similar to Step III.2)

Step V.1: Extracting  
library/API function 
calls from the target 

programs 
(similar to Step I.1) 

Step V.2: Extracting 
program slices 

corresponding to 
the function calls

(similar to Step I.2) 

Target 
programs

(b) Detection phase

Figure 2. Overview of VulDeePecker: the learning phase generates vulnerability patterns, and the detection phase uses these vulnerability patterns to determine
whether a target program is vulnerable or not and if so, the locations of the vulnerabilities (i.e., the corresponding code gadgets).

Step II: Generating code gadgets of the training programs
and their ground truth labels. This step has two sub-steps,
which are highlighted below and elaborated in Section III-D.

• Step II.1: Assembling the program slices obtained
in Step I.2 into code gadgets, one code gadget per
library/API function call. A code gadget does not
necessarily correspond to some consecutive lines of
code. Instead, it consists of multiple lines of code that
are semantically related to each other (i.e., inheriting
the semantic relation that is encoded in those program
slices).

• Step II.2: Labeling the ground truth of code gadgets.
This step labels each code gadget as “1” (i.e., vulner-
able) or “0” (i.e., not vulnerable). The ground truth
labels of code gadgets are available because we know
whether a training program is vulnerable or not and
if it is vulnerable, we also know the locations of the
vulnerabilities.

Step III: Transforming code gadgets into vector represen-
tations. This step has two sub-steps, which are highlighted
below and elaborated in Section III-E.

• Step III.1: Transforming code gadgets into certain
symbolic representations, which will be elaborated
later. This step aims to preserve some semantic in-
formation of the training programs.

• Step III.2: Encoding code gadgets in the symbolic rep-
resentation obtained in Step III.1 into vectors, which
are the input for training a BLSTM neural network.
This is necessary in order to use neural networks in
general.

Step IV: Training a BLSTM neural network. Having en-
coded the code gadgets into vectors and obtained their ground
truth labels, the training process for learning a BLSTM neural
network is standard.

2) The detection phase: Given one or multiple target
programs, we extract library/API function calls from them as
well as the corresponding program slices, which are assembled
into code gadgets. The code gadgets are transformed into
their symbolic representations, which are encoded into vectors
and used as input to the trained BLSTM neural network.
The network outputs which vectors, and therefore which code
gadgets, are vulnerable (“1”) or not (“0”). If a code gadget is
vulnerable, it pins down the location of the vulnerability in the
target program. As highlighted in Figure 2(b), this phase has
two steps.

Step V: Transforming target programs into code gadgets
and vectors. It has five sub-steps.

• Step V.1: Extracting library/API function calls from
the target programs (similar to Step I.1).

• Step V.2: Extracting program slices according to the
arguments of the library/API function calls (similar to
Step I.2).

• Step V.3: Assembling the program slices into code
gadgets (similar to Step II.1).

• Step V.4: Transforming the code gadgets to their
symbolic representations (similar to Step III.1).

• Step V.5: Encoding the symbolic representations of
code gadgets into vectors (similar to Step III.2).

Step VI: Detection. This step uses the learned BLSTM neural
network to classify the vectors corresponding to the code

5



1    void 
2    test(char *str)
3    {
4       int MAXSIZE=40;
5       char buf[MAXSIZE];
6
7       if(!buf)
8             return;
9       strcpy(buf, str); /*string copy*/
10    }
11
12    int
13    main(int argc, char **argv)
14    {
15      char *userstr;
16
17      if(argc > 1) {
18             userstr = argv[1];
19             test(userstr);
20       }
21       return 0;
22    }

Program source code 

str

str

str

str

buf

15

18

19

2

99

5

Step I.2: Generating 
slices  of  arguments in 

library/API function calls

Step II.1 Assembling slices  
into code gadgets

Step I.1: Extracting 
library/API function 

calls

13  main(int argc, char **argv)
15  char *userstr;
18  userstr = argv[1];
19  test(userstr);
2    test(char *str)
4    int MAXSIZE=40;
5    char buf[MAXSIZE];
9    strcpy(buf, str); /*string copy*/

9  strcpy(buf, str); 
/*string copy*/

test()

test()

main()

main()

test()

Backward 
function call

The backward function call strcpy has two arguments, 
buf and str, each of which leads to a backward slice. 

The slice corresponding to buf consists of statements 
belonging to the user-defined function test (indicated 
by a dashed rectangle). 

The slice corresponding to str consists of statements 
scattered in two user-defined functions, main and 
test, which are also indicated by dashed rectangles.

str

13

buf

4

Figure 3. Illustrating the extraction of library/API function calls (Step I.1) from a (training) program, which contains a backward function call (i.e., strcpy)
that is also used as an example to demonstrate the extraction of program slices (Step I.2) and the assembly of program slices into code gadgets (Step II.1).

gadgets that are extracted from the target programs. When a
vector is classified as “1” (i.e., vulnerable), it means that the
corresponding code gadget is vulnerable and the location of
the vulnerability is pinned down. Otherwise, the corresponding
code gadget is classified as “0” (i.e., not vulnerable).

Steps I-III are respectively elaborated in the following
subsections. Steps IV and VI are standard and Step V is similar
to some of Steps I-III.

C. Step I: Extracting library/API function calls and program
slices

1) Step I.1: Extracting library/API function calls: We
classify library/API function calls into two categories: forward
library/API function calls and backward library/API function
calls. Forward library/API function calls are the function calls
that receive one or multiple inputs directly from the external
input, such as the command line, a program, a socket, or a file.
For example, the recv function call is a forward library/API
function call because it receives data from a socket directly.
Backward library/API function calls are the function calls that
do not receive any external input directly from the environment
in which the program runs.

Figure 3 shows an example of a backward library/API
function call strcpy (line 9). It is a backward library/API
function call because it does not receive any external input
directly.

We highlight a distinction between forward and backward
library/API function calls. For forward library/API function
calls, the statements influenced by the input arguments are crit-
ical because they may be vulnerable to improper (e.g., sophis-
ticatedly crafted) argument values; for backward library/API
function calls, the statements influencing the values of the
arguments are critical because they could make the library/API
function calls vulnerable. This insight will be leveraged to
guide the heuristic padding of the vector representations of
code gadgets.

2) Step I.2: Extracting program slices: This step gener-
ates program slices corresponding to the arguments of the
library/API function calls that are extracted from the training
programs. We define two kinds of slices: forward slices and
backward slices, where a forward slice corresponds to the
statements that are affected by the argument in question and a
backward slice corresponds to the statements that can affect the
argument in question. We take advantage of the commercial
product Checkmarx [2], more specifically its data dependency
graph, to extract these two kinds of slices. The basic idea is
the following:

• For each argument in a forward library/API function
call, one or multiple forward slices are generated,
with the latter corresponding to the case that the slice
related to the argument is branched at, or after, the
library/API function call.

• For each argument in a backward library/API function
call, one or multiple backward slices are generated,
with the latter corresponding to the case that multiple
slices related to the argument are merged at, or prior
to, the library/API function call.

Note that a program slice consists of multiple statements
that may belong to multiple user-defined functions. That is, a
slice can go beyond the boundary of user-defined functions in
question.

Figure 3 shows an example program that contains the
library function call strcpy, which has two arguments buf and
str. Since strcpy is a backward function call, for each of its
arguments we will generate a backward slice. For argument
buf , the slice consists of three statements, namely lines 4,
5, and 9 of the program, which belong to the user-defined
function test. For argument str, the slice consists of six
statements, namely lines 13, 15, 18, 19, 2, and 9 of the
program, where the first 4 belong to the user-defined function
main and the last 2 belong to the user-defined function test.

6



The two slices are chains (i.e., a linear structure) because
Checkmarx uses chains to represent slices, while noting that
slices can also be represented by trees [23], [50]. Since the
linear structure can only represent one individual slice, a
library/API function call often corresponds to multiple slices.

D. Step II: Extracting code gadgets and labeling their ground
truth

1) Step II.1: Assembling program slices into code gadgets:
The program slices generated in the previous step can be
assembled into code gadgets as follows.

First, given a library/API function call and the correspond-
ing program slices, we combine the statements (i.e., pieces of
code) belonging to the same, user-defined function into a single
piece according to the order of the statements’ appearance
in the user-defined function. If there is a duplication of any
statement, the duplication is eliminated.

In the example shown in Figure 3, three statements (i.e.,
lines 4, 5, and 9) belonging to the user-defined function test
consists the program slice corresponding to the argument buf ,
and two statements (i.e., lines 2 and 9) belonging to the
user-defined function test are a piece of the program slice
corresponding to the argument str. Therefore, we need to
assemble them into a single piece because they are related to
the same function test. According to the line numbers of these
statements’ appearance in the function test, this would lead to
2 → 4 → 5 → 9 → 9. Since the statement corresponding
to line 9 is duplicated, we eliminate the duplication to derive
a piece of assembled statements 2 → 4 → 5 → 9, which
correspond to the function test.

Second, assembling the statements belonging to different,
user-defined functions into a single code gadget. If there is
already an order between two pieces of statements belonging to
these user-defined functions, this order is preserved; otherwise,
a random order is used.

In the example shown in Figure 3, when assembling the
piece of statements belonging to the user-defined function
main (i.e., lines 13, 15, 18, and 19) and the assembled piece of
statements belonging to user-defined function test (i.e., lines
2, 4, 5, and 9), we obtain 13 → 15 → 18 → 19 → 2 → 4 →
5 → 9, which is a code gadget corresponding to the library
function call strcpy. This code gadget preserves the order of
user-defined functions that are contained in the program slice
corresponding to the argument str.

2) Step II.2: Labeling the ground truth: Each code gadget
needs to be labeled as “1” (i.e., vulnerable) and “0” (i.e., not
vulnerable). If a code gadget corresponds to a vulnerability that
is known in the training dataset, it is labeled as “1”; otherwise,
it is labeled as “0”. In Section IV-C, we will discuss the
labeling of ground truth in details, when dealing with programs
related to specific vulnerability data sources.

E. Step III: Transforming code gadgets into vectors

1) Step III.1: Transforming code gadgets into their sym-
bolic representations: This step aims to heuristically capture
some semantic information in the programs for training a
neural network. First, remove the non-ASCII characters and
comments because they have nothing to do with vulnerability.

Second, map user-defined variables to symbolic names (e.g.,
“VAR1”, “VAR2”) in the one-to-one fashion, while noting that
multiple variables may be mapped to the same symbolic name
when they appear in different code gadgets. Third, map user-
defined functions to symbolic names (e.g., “FUN1”, “FUN2”)
in the one-to-one fashion, while noting that multiple functions
may be mapped to the same symbolic name when they appear
in different code gadgets.

13  main(int argc, char **argv)
15  char *userstr;
18  userstr = argv[1];
19  test(userstr);
2    test(char *str)
4    int MAXSIZE=40;
5    char buf[MAXSIZE];
9   strcpy(buf, str); /*string copy*/

13  main(int argc, char **argv)
15  char *VAR1;
18  VAR1 = argv[1];
19  FUN1(VAR1);
2    FUN1(char *VAR2)
4    int VAR3=40;
5    char VAR4[VAR3];
9   strcpy(VAR5, VAR2); 

13  main(int argc, char **argv)
15  char *VAR1;
18  VAR1 = argv[1];
19  test(VAR1);
2    test(char *VAR2)
4    int VAR3=40;
5    char VAR4[VAR3];
9   strcpy(VAR5, VAR2); 

Inp ut: code gadget (from Step II.1)

13  main(int argc, char **argv)
15  char *userstr;
18  userstr = argv[1];
19  test(userstr);
2    test(char *str)
4    int MAXSIZE=40;
5    char buf[MAXSIZE];
9   strcpy(buf, str); 

(1) Remove non-ASCII 
characters and comments

(2) Map user-defined variables (3) Map user-defined functions

Figure 4. Illustration of Step III.1: transforming code gadgets into their
symbolic representations

Figure 4 highlights the above process by using the code
fragment generated by Step II.1 as shown in Figure 3.

2) Step III.2: Encoding the symbolic representations into
vectors: Each code gadget needs to be encoded into a vector
via its symbolic representation. For this purpose, we divide
a code gadget in the symbolic representation into a sequence
of tokens via lexical analysis, including identifiers, keywords,
operators, and symbols. For example, a code gadget in the
symbolic representation,

“strcpy(VAR5, VAR2); ”

is represented by a sequence of 7 tokens:

“strcpy”, “(”, “VAR5”, “,”, “VAR2”, “)”, and “;”.

This leads to a large corpus of tokens. In order to transform
these tokens into vectors, we use the word2vec tool [14], which
is selected because it is widely used in text mining [58]. This
tool is based on the idea of distributed representation, which
maps a token to an integer that is then converted to a fixed-
length vector [43].

Since code gadgets may have different numbers of tokens,
the corresponding vectors may have different lengths. Since
BLSTM takes equal-length vectors as input, we need to make
an adjustment. For this purpose, we introduce a parameter τ
as the fixed length of vectors corresponding to code gadgets.

• When a vector is shorter than τ , there are two cases: if
the code gadget is generated from a backward slice or
generated by combining multiple backward slices, we
pad zeros in the beginning of the vector; otherwise,
we pad zeros to the end of the vector.

• When a vector is longer than τ , there are also two
cases: if the code gadget is generated from one

7



backward slice, or generated by combining multiple
backward slices, we delete the beginning part of the
vector; otherwise, we delete the ending part of the
vector.

This ensures that the last statement of every code gadget
generated from a backward slice is a library/API function call,
and that the first statement of every code gadget generated
from a forward slice is a library/API function call. As a result,
every code gadget is represented as a τ -bit vector. The length
of vectors is related to the number of hidden nodes at each
layer of the BLSTM, which is a parameter that can be tuned
to improve the accuracy of vulnerability detection (see Section
IV-C).

IV. EXPERIMENTS AND RESULTS

Our experiments are centered at answering the following
three research questions (RQs):

• RQ1: Can VulDeePecker deal with multiple types of
vulnerabilities at the same time?
A vulnerability detection system should be able to
detect multiple types of vulnerabilities at the same
time, because multiple detection systems need to be
maintained otherwise. For answering this question, we
will conduct experiments involving one or multiple
types of vulnerabilities.

• RQ2: Can human expertise (other than defining fea-
tures) improve the effectiveness of VulDeePecker?
For answering this question, we will investigate the
effectiveness of using some manually-selected li-
brary/API function calls vs. the effectiveness of using
all of the library/API function calls.

• RQ3: How effective is VulDeePecker when compared
with other vulnerability detection approaches?
For answering this question, we will compare
VulDeePecker with other approaches, including some
static analysis tools and code similarity-based vulner-
ability detection systems.

A. Metrics for evaluating vulnerability detection systems

We use the widely used metrics false positive rate (FPR),
false negative rate (FNR), true positive rate or recall (TPR),
precision (P ), and F1-measure (F1) to evaluate vulnerabil-
ity detection systems [39]. Let TP be the number of samples
with vulnerabilities detected correctly, FP be the number of
samples with false vulnerabilities detected, FN be the number
of samples with true vulnerabilities undetected, and TN be
the number of samples with no vulnerabilities undetected.
The false positive rate metric FPR = FP

FP+TN measures the
ratio of false positive vulnerabilities to the entire population
of samples that are not vulnerable. The false negative rate
metric FNR = FN

TP+FN measures the ratio of false negative
vulnerabilities to the entire population of samples that are
vulnerable. The true positive rate or recall metric TPR =

TP
TP+FN measures the ratio of true positive vulnerabilities to the
entire population of samples that are vulnerable, while noting
that TPR = 1 − FNR. The precision metric P = TP

TP+FP
measures the correctness of the detected vulnerabilities. The

F1-measure metric F1 = 2·P ·TPR
P+TPR takes consideration of

both precision and true positive rate.

It would be ideal that a vulnerability detection system
neither misses vulnerabilities (i.e., FNR ≈ 0 and TPR ≈ 1)
nor triggers false alarms (i.e., FPR ≈ 0 and P ≈ 1), which
means F1 ≈ 1. However, this is difficult to achieve in practice,
and often forces one to trade the effectiveness in terms of one
metric for the effectiveness in terms of another metric. In this
study, we prefer to achieving low FNR and low FPR.

B. Preparing input to VulDeePecker

Collecting programs. There are two widely used sources of
vulnerability data maintained by the NIST: the NVD [10]
which contains vulnerabilities in production software, and
the SARD project [12] which contains production, synthetic,
and academic security flaws or vulnerabilities. In the NVD,
each vulnerability has a unique Common Vulnerabilities and
Exposures IDentifier (CVE ID) and a Common Weakness
Enumeration IDentifier (CWE ID) that indicates the type of
the vulnerability in question. We collect the programs that
contain one or multiple vulnerabilities. In the SARD, each
program (i.e., test case) corresponds to one or multiple CWE
IDs because a program can have multiple types of vulnerabil-
ities. Therefore, programs with one or multiple CWE IDs are
collected.

In the present paper, we focus on two types of vulnerabil-
ities: buffer error (i.e., CWE-119) and resource management
error (i.e., CWE-399), each of which has multiple subtypes.
These vulnerabilities are very common, meaning that we can
collect enough data for using deep learning. We select 19
popular C/C++ open source products, including the Linux
kernel, Firefox, Thunderbird, Seamonkey, Firefox esr, Thun-
derbird esr, Wireshark, FFmpeg, Apache Http Server, Xen,
OpenSSL, Qemu, Libav, Asterisk, Cups, Freetype, Gnutls,
Libvirt, and VLC media player, which contain, according to
the NVD, these two types of vulnerabilities. We also collect
the C/C++ programs in the SARD that contain these two
types of vulnerabilities. In total, we collect from the NVD
520 open source software programs related to buffer error
vulnerabilities and 320 open source software programs related
to resource management error vulnerabilities; we also collect
from the SARD 8,122 programs (i.e., test cases) related to
buffer error vulnerabilities and 1,729 programs related to
resource management error vulnerabilities. Note that program
containing a vulnerability may actually consist of multiple
program files.

Training programs vs. target programs. We randomly
choose 80% of the programs we collect as training programs
and the remaining 20% as target programs. This ratio is applied
equally when dealing with one or both types of vulnerabilities.

C. Learning BLSTM neural networks

This corresponds to the learning phase of VulDeePecker.
We implement the BLSTM neural network in Python using
Theano [24] together with Keras [8]. We run experiments on
a machine with NVIDIA GeForce GTX 1080 GPU and Intel
Xeon E5-1620 CPU operating at 3.50GHz.

Step I: Extracting library/API function calls and cor-
responding program slices. We extract C/C++ library/API

8



function calls from the programs. There are 6,045 C/C++
library/API function calls that involve standard library function
calls [1], basic Windows API and Linux kernel API function
calls [9], [13]. In total, we extract 56,902 library/API function
calls from the programs, including 7,255 forward function calls
and 49,647 backward function calls.

In order to answer the RQs, we also manually select 124
C/C++ library/API function calls (including function calls with
wildcard) related to buffer error vulnerabilities (CWE-119)
and 16 C/C++ library/API function calls related to resource
management error vulnerabilities (CWE-399). These function
calls are selected because the aforementioned commercial
tool Checkmarx [2] claims, using their own rules written by
human experts, that they are related to these two types of
vulnerabilities. The list of these function calls are deferred
to Table VII in the Appendix B. Correspondingly, we extract
40,351 library/API function calls from the training programs,
including 4,012 forward function calls and 36,339 backward
function calls. For each argument of the library/API function
calls, one or multiple program slices are extracted.

Step II.1: Generating code gadgets. Code gadgets are gener-
ated from program slices. We obtain a Code Gadget Database
(CGD) of 61,638 code gadgets, among which 48,744 code
gadgets are generated from program slices of training pro-
grams, and 12,894 code gadgets are generated from program
slices of target programs. The time complexity for generating
gadgets mainly depends on the data flow analysis tool. For
example, it takes 883 seconds to generate 2,494 code gadgets
from 100 programs (99,232 lines) that are randomly selected
the SARD, meaning an average of 354 milliseconds per code
gadget. For answering the RQs mentioned above, we use the
CGD to derive the following 6 datasets.

• BE-ALL: The subset of CGD corresponding to Buffer
Error vulnerabilities (CWE-119) and ALL library/API
function calls (i.e., extracted without human expert).

• RM-ALL: The subset of CGD corresponding to Re-
source Management error vulnerabilities (CWE-399)
and ALL library/API function calls.

• HY-ALL: The subset of CGD corresponding to the
HYbrid of (i.e., both) buffer error vulnerabilities
(CWE-119) and resource management error vulner-
abilities (CWE-399) and ALL library/API function
calls. That is, it is the same as the CGD.

• BE-SEL: The subset of CGD corresponding to Buffer
Error vulnerabilities (CWE-119) and manually SE-
Lected function calls (rather than all function calls).

• RM-SEL: The subset of CGD corresponding to Re-
source Management error vulnerabilities (CWE-399)
and manually SELected function calls.

• HY-SEL: The subset of CGD corresponding to the
HYbrid of buffer error vulnerabilities (CWE-119) and
resource management error vulnerabilities (CWE-399)
and manually SELected function calls.

Table I summarizes the number of code gadgets in these
datasets.

Step II.2: Labeling code gadgets. Code gadgets are labeled
as follows. For the code gadgets extracted from the programs

Table I. DATASETS FOR ANSWERING THE RQS

Dataset #Code
gadgets

#Vulnerable
code gadgets

#Not vulnerable
code gadgets

BE-ALL 39,753 10,440 29,313
RM-ALL 21,885 7,285 14,600
HY-ALL 61,638 17,725 43,913
BE-SEL 26,720 8,119 18,601
RM-SEL 16,198 6,573 9,625
HY-SEL 42,918 14,692 28,226

of the NVD, we focus on the vulnerabilities whose patches
involve line deletions or modifications. This process has two
steps. In the first step, a code gadget is automatically labeled
as “1” (i.e., vulnerable) if it contains at least one statement that
is deleted or modified according to the patch, and labeled as
“0” otherwise (i.e., not vulnerable). However, this automatic
process may mislabel some code gadgets, which are not
vulnerable, as “1”. In order to remove these mislabels, the
second step is to manually check the code gadgets that are
labeled as “1” so as to correct the mislabels (if any).

Recall that each program in the SARD is already labeled
as good (i.e., no security defect), bad (i.e., containing security
defects), or mixed (i.e., containing functions with security
defects and their patched versions) with corresponding CWE
IDs. For the code gadgets extracted from the programs with
respect to the SARD, a code gadget extracted from a good
program is labeled as “0” (i.e., not vulnerable), and a code
gadget extracted from a bad or mixed program is labeled as “1”
(i.e., vulnerable) if it contains at least one vulnerable statement
and “0” otherwise. Since we used heuristics in the labeling
process for the SARD program, we looked at the labels of
1,000 random code gadgets and found that only 6 of them (i.e.
0.6%) were mislabeled. These mislabeled samples are caused
by the fact that a statement in a piece of code that is not
vulnerable is the same as a statement in a piece of code that
is vulnerable. As the mislabeled code gadgets are very few
and the neural networks are robust against a small portion of
mislabeled samples, it is unnecessary to check manually all
labels of the code gadgets that are extracted for the SARD
programs.

It is possible to encounter the situation that the same code
gadget is labeled with both “1” and “0” (i.e., conflicting labels).
One cause of this phenomenon is the imperfection of the data
flow analysis tool. In this case, we simply delete these code
gadgets. As a result, 17,725 code gadgets are labeled as “1”
and 43,913 code gadgets are labeled as “0”. Among the 17,725
code gadgets labeled as “1”, 10,440 code gadgets correspond
to the buffer error vulnerabilities and 7,285 code gadgets
correspond to the resource management error vulnerabilities.
Table I shows the number of code gadgets that are vulnerable
(Column 3) and the number of code gadgets that are not
vulnerable in each dataset (Column 4).

Step III: Transforming code gadgets into vectors. The CGD
contains a total number of 6,166,401 tokens, of which 23,464
are different. After mapping user-defined variable names and
function names to some symbolic names, the number of
different tokens is further reduced to 10,480. These symbolic
representations are encoded into vectors, which are used as the
input for training a BLSTM neural network.

Step IV: Training BLSTM neural network. For each dataset

9



described in Table I, we adopt a 10-fold cross validation to
train a BLSTM neural network, and select the best parameter
values corresponding to the effectiveness for vulnerability
detection. For example, we vary the number of hidden layers
for each BLSTM neural network and observe the influence
on the resulting F1-measure. When we adjust the number of
hidden layers, we set the parameters to their default values
when such default values are available, and set the parameters
to the values that are widely used by the deep learning
community otherwise. The number of tokens in the vector
representation of code gadgets is set to 50, the dropout is set
to 0.5, the batch size is set to 64, the number of epochs is set
to 4, the minibatch stochastic gradient descent together with
ADAMAX [29] is used for training with the default learning
rate of 1.0, and 300 hidden nodes are chosen.

0 5 1 0 1 5 2 0
0

2 0

4 0

6 0

8 0

1 0 0

F1
 (%

)

N u m b e r  o f  h i d d e n  l a y e r s

 F 1  ( B E - S E L )
 F 1  ( B E - A L L )
 F 1  ( R M - S E L )
 F 1  ( R M - A L L )
 F 1  ( H Y - S E L )
 F 1  ( H Y - A L L )

Figure 5. F1-measure of VulDeePecker for the 6 datasets with different
number of hidden layers

Figure 5 plots the F1-measure of VulDeePecker with re-
spect to the 6 datasets with different number of hidden layers,
each of which leads to a different neural network. We observe
that the F1-measure of the 6 BLSTM neural networks reaches
the maximum at 2 or 3 layers, and the F1-measure of most of
these BLSTM neural networks declines when the number of
layers is greater than 6. Note that the other parameters of the
BLSTM neural network can be tuned in a similar fashion.

D. Experimental results & implications

1) Experiments for answering RQ1: In order to test
whether VulDeePecker can be applied to multiple types of
vulnerabilities, we conduct experiments on three datasets: BE-
ALL, RM-ALL, and HY-ALL. This respectively leads to three
neural networks, whose effectiveness is reported in Table II.

Table II. RESULTS FOR ANSWERING RQ1, INDICATING THAT
VULDEEPECKER CAN DETECT MULTIPLE TYPES OF VULNERABILITIES.

Dataset FPR(%) FNR(%) TPR(%) P(%) F1(%)
BE-ALL 2.9 18.0 82.0 91.7 86.6
RM-ALL 2.8 4.7 95.3 94.6 95.0
HY-ALL 5.1 16.1 83.9 86.9 85.4

We observe that the neural network trained from the RM-
ALL dataset outperforms the neural network trained from the
BE-ALL dataset in terms of all five metrics. This can be
explained by the fact that the number of library/API function

calls that are related to resource management error vulnera-
bilities (i.e., 16) is far smaller than the number of library/API
function calls that are related to buffer error vulnerabilities
(i.e., 124). We also observe that, in terms of the FPR and P
metrics, the neural network trained from the HY-ALL dataset
is not as good as the neural network trained from the BE-ALL
or RM-ALL dataset. We further observe that the TPR and
FNR of the neural network trained from the HY-ALL dataset
reside in between that of the neural network trained from the
RM-ALL dataset and that of the neural network trained from
the BE-ALL dataset. The F1-measure of the neural network
trained from the HY-ALL dataset is 1.2% lower than that
of the neural network trained from the BE-ALL dataset, and
9.6% lower than that of the neural network trained from the
RM-ALL dataset. This can be explained by the fact that the
number of library/API function calls that are related to the
vulnerabilities of the hybrid dataset (i.e., 140) is larger than
the number of library/API function calls that are related to a
single type of vulnerabilities. We speculate this is caused by the
following: it is more difficult to extract vulnerability patterns
for a large number of library/API function calls that are related
to vulnerabilities than to extract vulnerability patterns for a
small number of library/API function calls that are related to
vulnerabilities.

Table III summarizes the training time and detection time
corresponding to the HY-ALL dataset, where the second col-
umn represents the number of code gadgets for training (i.e.,
extracted from the training programs) and the third column
represents the number of code gadgets for detection (i.e.,
extracted from the target programs). We observe that the
training time of VulDeePecker, as implied by the deep learning
technology in general, is large, but the detecting time is small.

Table III. TIME COMPLEXITY OF TRAINING AND DETECTION

Dataset
#Training

code gadgets
#Detection

code gadgets
Training
time (s)

Detection
time (s)

HY-ALL 48,744 12,894 36,372.2 156.2
HY-SEL 33,813 9,105 25,242.3 76.6

In summary, we answer RQ1 affirmatively with the follow-
ing:

Insight 1: VulDeePecker can simultaneously detect multi-
ple types of vulnerabilities, but the effectiveness is sensitive to
the number of library/API function calls related to vulnerabil-
ities (i.e., the fewer the better).

2) Experiments for answering RQ2: In order to answer
whether VulDeePecker can be improved by incorporating hu-
man expertise, we conduct the experiment using all library/API
function calls that are automatically extracted vs. using some
library/API function calls that are manually selected under the
guidance of vulnerability rules written by Checkmarx’s human
experts.

Table IV. RESULTS FOR ANSWERING RQ2, INDICATING THAT USING
MANUALLY-SELECTED LIBRARY/API FUNCTION CALLS CAN INDEED

IMPROVE THE EFFECTIVENESS OF VULDEEPECKER.

Dataset FPR(%) FNR(%) TPR(%) P(%) F1(%)
HY-ALL 5.1 16.1 83.9 86.9 85.4
HY-SEL 4.9 6.1 93.9 91.9 92.9

As shown in Table IV, the BLSTM network trained from
the HY-SEL dataset is more effective than the BLSTM network

10



trained from the HY-ALL dataset. Although the improvement
in FPR is small (0.2%), the improvement in each of the other
metrics is substantial: 10% in FNR and TPR, 5% in precision,
and 7.5% in F1-measure. Moreover, Table III shows that the
training time of using manually selected library/API function
calls can be smaller than that of using all library/API function
calls, because a smaller number of code gadgets need to be
processed. This leads to the following preliminary understand-
ing regards the usefulness of human expertise in improving the
effectiveness of deep learning-based vulnerability detection:

Insight 2: Human expertise can be used to select li-
brary/API function calls to improve the effectiveness of
VulDeePecker, especially the overall effectiveness in F1-
measure.

3) Experiments for answering RQ3: In order to answer
RQ3, we compare the effectiveness of VulDeePecker with
other pattern-based and code similarity-based vulnerability
detection systems. We here report the comparison between
their effectiveness in detecting buffer error vulnerabilities (i.e.,
BE-SEL dataset), while noting that a similar phenomenon
is observed when comparing their effectiveness in detect-
ing resource management error vulnerabilities (i.e., RM-SEL
dataset) — the details are omitted due to the lack of space.

For comparison with other pattern-based vulnerability de-
tection systems, which use rules defined by human experts,
we consider a commercial product called Checkmarx [2] and
two open source tools called Flawfinder [6] and RATS [11].
These systems are chosen because we have access to them
and to the best of our knowledge, they have been widely
used. For comparison with code similarity-based vulnerability
detection systems, which are mainly geared towards clone-
caused vulnerabilities, we consider the two state-of-the-art
systems called VUDDY [28] and VulPecker [32]. We use
VUDDY’s open service, and use the original implementation
of VulPecker provided to us by its authors. For fair comparison,
we need to address some subtle issues. We observe that
VulPecker uses diffs as an input, where a diff describes the
difference between a vulnerable piece of code and its patched
version, we divide the BE-SEL dataset of target programs
into two subsets, namely BE-SEL-NVD (266 samples derived
from the NVD) and BE-SEL-SARD (the rest samples derived
from the SARD). We use BE-SEL-NVD for the comparison
study because VUDDY and VulPecker were designed to detect
vulnerabilities with CVE IDs or vulnerabilities with diffs, but
are unable to detect vulnerabilities in BE-SEL-SARD.

Table V summarizes the comparison. We make the fol-
lowing observations. First, VulDeePecker substantially outper-
forms the other pattern-based vulnerability detection systems,
because VulDeePecker incurs a FPR of 5.7% and a FNR
of 7.0%, which are respectively much smaller than their
counterparts in the other detection systems. By looking into
the other systems, we find that Flawfinder and RATS do not
use data flow analysis and therefore miss many vulnerabilities.
Although Checkmarx does use data flow analysis, its rules for
recognizing vulnerabilities are defined by human experts and
are far from perfect. This further highlights the importance of
relieving human experts from tedious tasks (similar to task of
manually defining features). This observation leads to:

Insight 3: A deep learning-based vulnerability detection

Table V. RESULTS FOR ANSWERING RQ3: VULDEEPECKER ACHIEVES
A MUCH SMALLER OVERALL FNR OF 7.0% CORRESPONDING TO THE

ENTIRE BE-SEL DATASET (THE LARGER FNR OF 16.9% CORRESPONDING
TO THE SMALL SUB-DATASET DERIVED FROM THE NVD AND THE

SMALLER FNR OF 5.1% CORRESPONDING TO THE SUB-DATASET DERIVED
FROM THE SARD), WHILE NOTING THAT THE OVERALL FPR OF 5.7% IS

REASONABLY SMALL. “N/C” MEANS THAT THE SYSTEM IS NOT CAPABLE
OF DETECTING VULNERABILITIES IN THE CORRESPONDING DATASET.

System Dataset FPR
(%)

FNR
(%)

TPR
(%)

P
(%)

F1
(%)

VulDeePecker vs. Other pattern-based vulnerability detection systems
Flawfinder BE-SEL 44.7 69.0 31.0 25.0 27.7

RATS BE-SEL 42.2 78.9 21.1 19.4 20.2
Checkmarx BE-SEL 43.1 41.1 58.9 39.6 47.3

VulDeePecker BE-SEL 5.7 7.0 93.0 88.1 90.5

VulDeePecker vs. Code similarity-based vulnerability detection systems
VUDDY BE-SEL-NVD 0 95.1 4.9 100 9.3

VulPecker BE-SEL-NVD 1.9 89.8 10.2 84.3 18.2
VulDeePecker BE-SEL-NVD 22.9 16.9 83.1 78.6 80.8

VUDDY BE-SEL-SARD N/C N/C N/C N/C N/C
VulPecker BE-SEL-SARD N/C N/C N/C N/C N/C

VulDeePecker BE-SEL-SARD 3.4 5.1 94.9 92.0 93.4

system can be more effective by taking advantage of the data
flow analysis. (This hints us to speculate that a system can be
even more effective by taking advantage of the control flow
analysis. It is an interesting future work to validate or invalidate
this speculation.)

Second, for the BE-SEL-NVD sub-dataset, VUDDY and
VulPecker trade high FNRs (95.1% and 89.8%, respectively)
for low FPRs (0% and 1.9%, respectively), which lead to very
low F1-measures (9.3% and 18.2%, respectively). The large
FNRs can explained by the following facts: VUDDY can only
detect the vulnerabilities related to functions, which are nearly
identical to the vulnerable functions in the training programs
(i.e., vulnerabilities caused by Types I and II code clones [42]);
VulPecker can only detect vulnerabilities caused by Type I,
Type II, and some Type III code clones [42] (e.g., deletion,
insertion, and rearrangement of statements), which explains
why VulPecker incurs a lower FNR than VUDDY. However,
these systems cannot detect vulnerabilities that are not caused
by code clones, which explains why they incur high FNRs.

In contrast, VulDeePecker has a much higher F1-measure
(i.e., 80.8% vs. 9.3% for VUDDY and 18.2% for VulPecker)
because it has a much higher TPR (i.e., much lower FNR),
while noting that its FPR is 22.9% (vs. 0% for VUDDY and
1.9% for VulPecker). We suspect that this high FPR of 22.9%
corresponding to the BE-SEL-NVD dataset is caused by a
small number of training code gadgets from NVD. This can
be justified by the small FPR of 3.4% corresponding to a large
number of training code gadgets from SARD, which is about
18 times larger than the number of training code gadgets from
NVD. Moreover, the FPR of 5.7% corresponding to the entire
BE-SEL dataset resides some where in between them. The
high FNR of 16.9% can be explained similarly.

The high FPR and FNR of VulDeePecker with respect to
the BE-SEL-NVD sub-dataset should not be used as evidence
against VulDeePecker, simply because for the BE-SEL-SARD
sub-dataset, VulDeePecker incurs an even smaller FPR of 3.4%
and a FNR of 5.1%, while noting that VUDDY and VulPecker
are not applicable (i.e., not capable of detecting vulnerabilities
in this sub-dataset). Moreover, VulDeePecker incurs a FPR of
5.7% and a FNR of 7.0% over the entire BE-SEL dataset,

11



Table VI. VULDEEPECKER DETECTED 4 VULNERABILITIES IN 3 PRODUCTS, WHICH ARE NOT PUBLISHED IN THE NVD BUT HAVE BEEN “SILENTLY”
PATCHED BY THE VENDORS IN THE LATER RELEASES OF THESE PRODUCTS.THESE VULNERABILITIES ARE ENTIRELY MISSED BY THE OTHER

VULNERABILITY DETECTION SYSTEMS, EXCEPT THAT FLAWFINDER DETECTED ONLY ONE VULNERABILITY WHILE MISSING THE OTHER THREE.

Target product CVE ID
Vulnerable product

published in the NVD
Vulnerability
publish time

Vulnerable file in target product
Library/API
function call

1st patched version
of target product

Xen 4.6.0 CVE-2016-9104 Qemu 12/09/2016 .../qemu-xen/hw/9pfs/virtio-9p.c memcpy Xen 4.9.0
Seamonkey CVE-2015-4517 Firefox 09/24/2015 .../system/gonk/NetworkUtils.cpp snprintf Seamonkey 2.38

2.31 CVE-2015-4513 Firefox 11/05/2015 .../protocol/http/Http2Stream.cpp memset Seamonkey 2.39
Libav 10.2 CVE-2014-2263 FFmpeg 02/28/2014 libavformat/mpegtsenc.c strchr, strlen Libav 10.4

which is the more practical case because one would use all
data available in practice.

Therefore, it is fair to say that VulDeePecker substantially
outperforms two state-of-the-art code similarity-based vulnera-
bility detection systems, simply because VulDeePecker incurs
a FPR of 5.7% and a FNR of 7.0% over the entire dataset.
Nevertheless, it is important to note that deep learning-based
vulnerability detection largely rely on the amount of data. This
leads to:

Insight 4: VulDeePecker is more effective than code
similarity-based vulnerability detection systems, which cannot
detect vulnerabilities that are not caused by code clones and
thus often incur high false negative rate. Nevertheless, the
effectiveness of VulDeePecker is sensitive to the amount of
data, which appears to be inherent to the nature of deep
learning.

Using VulDeePecker in practice. In order to further show
the usefulness of VulDeePecker, we collected 20 versions
of 3 software products: Xen, Seamonkey, and Libav. These
products are different from the target programs mentioned
above. We use VulDeePecker and the other vulnerability
detection systems to detect the vulnerabilities in those software
products. As highlighted in Table VI, VulDeePecker detected
4 vulnerabilities that have not been published in the NVD.
We manually checked and confirmed these vulnerabilities,
and found that they have been published for other products
and have been “silently” patched by the product vendors
in the subsequent versions. In contrast, these vulnerabilities
are missed by almost all of the other vulnerability detection
systems mentioned above, except that Flawfinder detects the
vulnerability corresponding to CVE-2015-4517 while missing
the other three.

V. LIMITATIONS

The present design, implementation, and evaluation of
VulDeePecker have several limitations, which suggest inter-
esting open problems for future research. First, the present
design of VulDeePecker is limited to dealing with vulnerability
detection by assuming source code of programs is available.
The detection of vulnerabilities in executables is a different
and more challenging problem.

Second, the present design of VulDeePecker only deals
with C/C++ programs. Future research needs to be conducted
to adapt it to deal with other kinds of programming languages.

Third, the present design of VulDeePecker only deals with
vulnerabilities related to library/API function calls. We will
investigate how to detect the other kinds of vulnerabilities by
leveraging the other kinds of key points mentioned above.

Fourth, the present design of VulDeePecker only accommo-
dates data flow analysis (i.e., data dependency), but not control
flow analysis (i.e., control dependency), despite the fact that the
notion of code gadgets can accommodate data dependency and
control dependency. It is an important future work to improve
the leverage of data flow analysis and accommodate control
flow analysis to enhance vulnerability detection capabilities.

Fifth, the present design of VulDeePecker uses some
heuristics in labeling the ground truth of code gadgets, trans-
forming code gadgets into their symbolic representations,
transforming variable-length vector representations of code
gadgets into fixed-length vectors. While intuitive, further re-
search needs to be conducted to characterize the impact of
these heuristics on the effectiveness of VulDeePecker.

Sixth, the present implementation of VulDeePecker is
limited to the BLSTM neural network. We plan to conduct
systematic experiments with other kinds of neural networks
that could be used for vulnerability detection.

Seventh, the present evaluation of VulDeePecker is limited
because the dataset only contains buffer error vulnerabili-
ties and resource management error vulnerabilities. We will
conduct experiments on all available types of vulnerabilities.
Although we further tested VulDeePecker against 3 software
products (i.e., Xen, Seamonkey, and Libav) and found 4 vulner-
abilities that were not reported in the NVD and were “silently”
patched by the vendors when releasing later versions of these
products, these vulnerabilities were known rather than 0-day
ones. Extensive experiments need to be conducted against more
software products to check whether VulDeePecker has the
capability in detecting 0-day vulnerabilities. In principle, this is
possible because VulDeePecker uses pattern-based approach.

VI. RELATED WORK

We classify the related prior work into two categories:
vulnerability detection (in relation to the purpose of the present
paper), and program analysis (in the relation to the means for
vulnerability detection).

A. Prior work in vulnerability detection

Pattern-based approach. This approach can be further di-
vided to three categories. In the first category, patterns are
generated manually by human experts (e.g., open source tools
Flawfinder [6], RATS [11], and ITS4 [52], commercial tools
Checkmarx [2], Fortify [7], and Coverity [3]). These tools
often have high false positive rate or false negative rate. In
the second category, patterns are generated semi-automatically
from pre-classified vulnerabilities ( e.g., missing check vulner-
abilities [62], taint-style vulnerabilities [61], and information
leakage vulnerabilities [15]) and a pattern is specific to a type

12



of vulnerabilities. In the third category, patterns are generated
semi-automatically from type-agnostic vulnerabilities (i.e., no
need to pre-classify them into different types). These methods
use machine learning techniques, which rely on human experts
for defining features to characterize vulnerabilities [19], [37],
[38], [49], [59], [60]. Moreover, these methods cannot pin
down the precise locations of vulnerabilities because programs
are represented in coarse-grained granularity (e.g., program
[19], package [37], component [38], [46], file [35], [49], and
function [59], [60]).

VulDeePecker falls into the pattern-based approach to vul-
nerability detection. In contrast to the studies reviewed above,
VulDeePecker has two advantages. First, it does not need
human experts to define features for distinguishing vulnerable
code and non-vulnerable code. Second, it uses a fine-grained
granularity to represent programs, and therefore can pin down
the precise locations of vulnerabilities.

Code similarity-based approach. This approach has three
steps. The first step is to divide a program into some code
fragments [25], [28], [31], [41], [44]. The second step is to
represent each code fragment in the abstract fashion, including
tokens [25], [28], [44], trees [26], [41], and graphs [31], [41].
The third step is to compute the similarity between code
fragments via their abstract representations obtained in the
second step.

Compared with any pattern-based approach to vulnerability
detection (including VulDeePacker), the code similarity-based
approach has the advantage that a single instance of vulnerable
code is sufficient for detecting the same vulnerability in target
programs. But it can only detect vulnerabilities in the Type
I and Type II code clones [42] (i.e., identical or almost-
identical code clones), and some Type III code clones [42]
(e.g., deletion, insertion, and rearrangement of statements).
In order to achieve a higher effectiveness of vulnerability
detection, human experts need to define features in order
to automatically select the right code similarity algorithms
for different kinds of vulnerabilities [32]. However, even the
enhanced approach with expert-defined features [32] cannot
detect vulnerabilities that are not caused by code clones. In
contrast, VulDeePecker can detect vulnerabilities that may or
may not caused by code clones, in an automatic fashion (i.e.,
no need of human expert to define features).

B. Prior work related to using deep learning for program
analysis

To the best of our knowledge, we are the first to use deep
learning to detect software vulnerabilities, as inspired by the
success of deep learning in image processing, speech recogni-
tion, and natural language processing [21], [30], [40]. In order
to use deep learning for detecting software vulnerabilities,
programs need to be represented in vectors. There are two
approaches for this purpose. One is to map the tokens extracted
from programs, such as data types, variable names, function
names, and keywords, to vectors [57]; the other is to map
the nodes of abstract syntax trees extracted from programs,
such as function definitions, function invocations, identifier
declarations, and control flow nodes, to vectors [36], [54].
VulDeePecker maps the tokens extracted from code gadgets
to vectors, while taking it into consideration that the lines of
code in the code gadget is not necessarily consecutive.

Somewhat related work is the use of deep learning for soft-
ware defect prediction [54], [63]. However, software defects
are different from software vulnerabilities (i.e., methods for
detecting defects cannot be used for detecting vulnerabilities
in general) [34], and the file-level representation of programs
in [54] is too coarse-grained to pin down the locations of
vulnerabilities. Moreover, the defect prediction method pre-
sented in [63] is geared towards code changes rather than target
programs as a whole. Remotely related work is the use of
deep learning for purposes, like software language modeling
[57], code cloning detection [56], API learning [20], binary
function boundary recognition [48], and malicious URLs, file
paths detection and registry keys detection [45].

VII. CONCLUSION

We have presented VulDeePecker, the first deep learning-
based vulnerability detection system, which aims to relieve
human experts from the tedious and subjective work of man-
ually defining features and reduce the false negatives that are
incurred by other vulnerability detection systems. Since deep
learning is invented for applications that are very different from
vulnerability detection, we have presented some preliminary
principles for guiding the practice of applying deep learning
to vulnerability detection. These principles should be further
refined because deep learning has great potential in solving
the problem of vulnerability detection. We have collected, and
made publicly available, a useful dataset for evaluating the
effectiveness of VulDeePecker and other deep learning-based
vulnerability detection systems that will be developed in the
future. Systematic experiments show that VulDeePecker can
achieve much lower false negative rate than other vulnerability
detection systems, while relieving human experts from the
tedious work of manually defining features. For the 3 software
products we experimented with (i.e., Xen, Seamonkey, and
Libav), VulDeePecker detected 4 vulnerabilities, which were
not reported in the NVD and were “silently” patched by the
vendors when they released later versions of these products.
In contrast, the other detection systems missed almost all of
these vulnerabilities, except that one system detected 1 of these
vulnerabilities and missed the other three vulnerabilities.

Open problems for future research are abundant, including
the limitations of the present study discussed in Section
V. In particular, precisely characterizing the capabilities and
limitations of deep learning-based vulnerability detection is an
exciting research problem.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their comments
that helped us improve the paper, and Marcus Pendleton for
proofreading the paper. This paper is supported by the Na-
tional Basic Research Program of China (973 Program) under
grant No.2014CB340600, the National Science Foundation of
China under grant No. 61672249, the Shenzhen Fundamental
Research Program under grant No. JCYJ20170413114215614,
and the Natural Science Foundation of Hebei Province under
grant No. F2015201089. Shouhuai Xu is supported in part
by NSF Grant #1111925 and ARO Grant #W911NF-17-1-
0566. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not
reflect the views of the funding agencies.

13



REFERENCES

[1] C/C++ standard library functions, http://en.cppreference.com/w.

[2] Checkmarx, https://www.checkmarx.com/.

[3] Coverity, https://scan.coverity.com/.

[4] CVE, http://cve.mitre.org/.

[5] Cyber Grand Challenge, https://www.cybergrandchallenge.com/.

[6] FlawFinder, http://www.dwheeler.com/flawfinder.

[7] HP Fortify, https://www.hpfod.com/.

[8] Keras, https://github.com/fchollet/keras.

[9] Linux kernel API functions, https://www.kernel.org/doc/htmldocs/
kernel-api/.

[10] NVD, https://nvd.nist.gov/.

[11] Rough Audit Tool for Security, https://code.google.com/archive/p/
rough-auditing-tool-for-security/.

[12] Software Assurance Reference Dataset, https://samate.nist.gov/SRD/
index.php.

[13] Windows API functions, https://msdn.microsoft.com/en-us/library/
windows/desktop/ff818516(v=vs.85).aspx\#user interface.

[14] word2vec, http://radimrehurek.com/gensim/models/word2vec.html.

[15] M. Backes, B. Köpf, and A. Rybalchenko, “Automatic discovery and
quantification of information leaks,” in Proceedings of the 30th IEEE
Symposium on Security and Privacy. IEEE, 2009, pp. 141–153.

[16] Y. Bengio, “Learning deep architectures for AI,” Foundations and
Trends in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[17] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[18] L. V. Davi, “Code-reuse attacks and defenses,” Ph.D. dissertation,
Darmstadt University of Technology, Germany, 2015.

[19] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier,
“Toward large-scale vulnerability discovery using machine learning,”
in Proceedings of the 6th ACM Conference on Data and Application
Security and Privacy. ACM, 2016, pp. 85–96.

[20] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[21] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, no. 1, pp. 26–60, 1990.

[24] B. James, B. Olivier, B. Frédéric, L. Pascal, and P. Razvan, “Theano: A
CPU and GPU math expression compiler,” in Proceedings of the Python
for Scientific Computing Conference (SciPy), 2010.

[25] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Finding unpatched
code clones in entire OS distributions,” in Proceedings of the 33th IEEE
Symposium on Security and Privacy. IEEE, 2012, pp. 48–62.

[26] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
International Conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96–105.

[27] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Proceedings of the 32nd Inter-
national Conference on Machine Learning, 2015, pp. 2342–2350.

[28] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A scalable approach
for vulnerable code clone discovery,” in Proceedings of the 38th IEEE
Symposium on Security and Privacy, 2017.

[29] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1097–1105.

[31] J. Li and M. D. Ernst, “CBCD: Cloned buggy code detector,” in Pro-
ceedings of the 34th International Conference on Software Engineering.
IEEE, 2012, pp. 310–320.

[32] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker: An
automated vulnerability detection system based on code similarity
analysis,” in Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACM, 2016, pp. 201–213.

[33] S. Montemagni and V. Pirelli, “Augmenting WordNet-like lexical re-
sources with distributional evidence. an application-oriented perspec-
tive,” in Proceedings of the COLING/ACL Workshop on Use of WordNet
in Natural Language Processing Systems, 1998, pp. 87–93.

[34] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with
applying vulnerability prediction models,” in Proceedings of the 2015
Symposium and Bootcamp on the Science of Security. ACM, 2015,
pp. 1–9.

[35] S. Moshtari and A. Sami, “Evaluating and comparing complexity,
coupling and a new proposed set of coupling metrics in cross-project
vulnerability prediction,” in Proceedings of the 31st Annual ACM
Symposium on Applied Computing. ACM, 2016, pp. 1415–1421.

[36] L. Mou, G. Li, Y. Liu, H. Peng, Z. Jin, Y. Xu, and L. Zhang,
“Building program vector representations for deep learning,” arXiv
preprint arXiv:1409.3358, 2014.

[37] S. Neuhaus and T. Zimmermann, “The beauty and the beast: Vulner-
abilities in Red Hat’s packages.” in Proceedings of the 2009 USENIX
Annual Technical Conference. USENIX, 2009, pp. 527–538.

[38] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
conference on Computer and communications security. ACM, 2007,
pp. 529–540.

[39] M. Pendleton, R. Garcia-Lebron, J. Cho, and S. Xu, “A survey on
systems security metrics,” ACM Comput. Surv., vol. 49, no. 4, pp. 62:1–
62:35, 2017.

[40] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, vol. 14, 2014, pp.
1532–1543.

[41] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2010, pp. 447–456.

[42] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[43] D. Rumelhart, J. McClelland, and G. Hinton, “Distributed representa-
tions,” Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, vol. 1, pp. 77–109, 1986.

[44] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
erCC: Scaling code clone detection to big-code,” in Proceedings of the
38th International Conference on Software Engineering. ACM, 2016,
pp. 1157–1168.

[45] J. Saxe and K. Berlin, “eXpose: A character-level convolutional neural
network with embeddings for detecting malicious URLs, file paths and
registry keys,” arXiv preprint arXiv:1702.08568, 2017.

[46] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions
on Software Engineering, vol. 40, no. 10, pp. 993–1006, 2014.

[47] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[48] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks.” in Proceedings of the 24th USENIX
Security Symposium. USENIX Associatioin, 2015, pp. 611–626.

[49] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,
vol. 37, no. 6, pp. 772–787, 2011.

14



[50] S. Sinha, M. J. Harrold, and G. Rothermel, “System-dependence-
graph-based slicing of programs with arbitrary interprocedural control
flow,” in Proceedings of the 1999 International Conference on Software
Engineering. IEEE, 1999, pp. 432–441.

[51] J. Su, Z. Tan, D. Xiong, and Y. Liu, “Lattice-based recurrent neural
network encoders for neural machine translation,” in Proceedings of the
31st AAAI Conference on Artificial Intelligence, 2017, pp. 3302–3308.

[52] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “ITS4: A static
vulnerability scanner for C and C++ code,” in Proceedings of the 16th
Annual Computer Security Applications Conference. IEEE, 2000, pp.
257–267.

[53] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 3156–3164.

[54] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic fea-
tures for defect prediction,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 297–308.

[55] M. Weiser, “Program slicing,” IEEE Transactioins on Software Engi-
neering, vol. 10, no. 4, 1984.

[56] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2016, pp. 87–98.

[57] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Proceedings of the
12th Working Conference on Mining Software Repositories. IEEE,
2015, pp. 334–345.

[58] L. Wolf, Y. Hanani, K. Bar, and N. Dershowitz, “Joint word2vec
networks for bilingual semantic representations,” International Journal
of Computational Linguistics and Applications, vol. 5, no. 1, pp. 27–44,
2014.

[59] F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapolation:
Assisted discovery of vulnerabilities using machine learning,” in Pro-
ceedings of the 5th USENIX Conference on Offensive Technologies.
USENIX Association, 2011, pp. 13–13.

[60] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability
extrapolation using abstract syntax trees,” in Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012, pp.
359–368.

[61] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic inference
of search patterns for taint-style vulnerabilities,” in Proceedings of the
2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
797–812.

[62] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
Exposing missing checks in source code for vulnerability discovery,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security. ACM, 2013, pp. 499–510.

[63] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-in-
time defect prediction,” in Proceedings of the 2015 IEEE International
Conference on Software Quality, Reliability and Security. IEEE, 2015,
pp. 17–26.

APPENDIX

A. LSTM cells

The BLSTM layers in the BLSTM neural network contain
a complex structure called LSTM cells, which are briefly
reviewed below and referred to [22] for greater details.

Let � denote the element-wise multiplication, tanh denote
the hyperbolic tangent function exp(x)−exp(−x)

exp(x)+exp(−x) , and σ denote
the sigmoid function 1

1+exp(−x) .

Each LSTM cell, denoted by c, uses an input gate i (i.e.,
the input data), a forget gate f (i.e., the state flow of the cell),
and an output gate o (i.e., the output of module) to control
the data flow through the neural network. The output hlt of the

layer l at the time t is:

hlt = olt � tanh(clt),

where the output gate olt of the layer l at the time t is:

olt = σ(W l
xox

l
t +W l

hoh
l
t−1 +W l

coc
l
t + blo)

and the state of LSTM cell clt of the layer l at the time t is:

clt = f lt � clt−1 + ilt � tanh(W l
xcx

l
t +W l

hch
l
t−1 + blc).

The forget gate f lt and the input gate ilt of the layer l at
the time t are calculated as follows:

f lt = σ(W l
xfx

l
t +W l

hfh
l
t−1 +W l

cfc
l
t−1 + blf ),

ilt = σ(W l
xix

l
t +W l

hih
l
t−1 +W l

cic
l
t−1 + bli),

where xl
t is the input to layer l − 1 (l > 1) or the input of

the network (l = 1), W l
xi, W

l
xf , W l

xo, W l
xc are the weight

matrices connecting xl
t with the input gate, the forget gate, the

output gate, and the LSTM cell input, W l
hi, W

l
hf , W l

ho, W l
hc

are the weight matrices connecting hl
t−1 with the input gate,

the forget gate, the output gate, and the LSTM cell input, and
bli, b

l
f , blo, blc are the bias items of the input gate, the forget

gate, the output gate, and the LSTM cell input.

B. Library/API function calls selected by Checkmarx

Table VII summarizes the C/C++ library/API function calls
related to the two types of vulnerabilities, buffer error (CWE-
119) and resource management error (CWE-399), where “*”
represents the wildcard. These library/API function calls are
generated by the commercial product Checkmarx [2].

Table VII. LIBRARY/API FUNCTION CALLS RELATED TO TWO TYPES
OF VULNERABILITIES

CWE ID C/C++ library/API function calls related to vulnerabilities
CWE-119 cin, getenv, getenv s, wgetenv, wgetenv s, catgets, gets, getchar,

getc, getch, getche, kbhit, stdin, getdlgtext, getpass, scanf,
fscanf, vscanf, vfscanf, istream.get, istream.getline, istream.peek,
istream.read*, istream.putback, streambuf.sbumpc, streambuf.sgetc,
streambuf.sgetn, streambuf.snextc, streambuf.sputbackc,
SendMessage, SendMessageCallback, SendNotifyMessage,
PostMessage, PostThreadMessage, recv, recvfrom, Receive,
ReceiveFrom, ReceiveFromEx, Socket.Receive*, memcpy, wmemcpy,

memccpy, memmove, wmemmove, memset, wmemset, memcmp,
wmemcmp, memchr, wmemchr, strncpy, strncpy*, lstrcpyn,
tcsncpy*, mbsnbcpy*, wcsncpy*, wcsncpy, strncat, strncat*,
mbsncat*, wcsncat*, bcopy, strcpy, lstrcpy, wcscpy, tcscpy,
mbscpy, CopyMemory, strcat, lstrcat, lstrlen, strchr, strcmp,

strcoll, strcspn, strerror, strlen, strpbrk, strrchr, strspn, strstr, strtok,
strxfrm, readlink, fgets, sscanf, swscanf, sscanf s, swscanf s, printf,
vprintf, swprintf, vsprintf, asprintf, vasprintf, fprintf, sprint, snprintf,

snprintf*, snwprintf*, vsnprintf, CString.Format, CString.FormatV,
CString.FormatMessage, CStringT.Format, CStringT.FormatV,
CStringT.FormatMessage, CStringT.FormatMessageV, syslog, malloc,
Winmain, GetRawInput*, GetComboBoxInfo, GetWindowText,
GetKeyNameText, Dde*, GetFileMUI*, GetLocaleInfo*, GetString*,
GetCursor*, GetScroll*, GetDlgItem*, GetMenuItem*

CWE-399 free, delete, new, malloc, realloc, calloc, alloca, strdup, asprintf,
vsprintf, vasprintf, sprintf, snprintf, snprintf, snwprintf, vsnprintf

15


