
What You Corrupt Is Not What You Crash:
Challenges in Fuzzing Embedded Devices

Marius Muench∗, Jan Stijohann†‡, Frank Kargl‡, Aurélien Francillon∗ and Davide Balzarotti∗
∗EURECOM. {muench, francill, balzarot}@eurecom.fr

†Siemens AG. jan.stijohann@siemens.com
‡Ulm University. frank.kargl@uni-ulm.de

Abstract—As networked embedded systems are becoming
more ubiquitous, their security is becoming critical to our
daily life. While manual or automated large scale analysis of
those systems regularly uncover new vulnerabilities, the way
those systems are analyzed follows often the same approaches
used on desktop systems. More specifically, traditional testing
approaches relies on observable crashes of a program, and binary
instrumentation techniques are used to improve the detection of
those faulty states.

In this paper, we demonstrate that memory corruptions, a
common class of security vulnerabilities, often result in different
behavior on embedded devices than on desktop systems. In
particular, on embedded devices, effects of memory corruption
are often less visible. This reduces significantly the effectiveness
of traditional dynamic testing techniques in general, and fuzzing
in particular.

Additionally, we analyze those differences in several categories
of embedded devices and show the resulting impact on firmware
analysis. We further describe and evaluate relatively simple
heuristics which can be applied at run time (on an execution
trace or in an emulator), during the analysis of an embedded
device to detect previously undetected memory corruptions.

I. INTRODUCTION

Networked embedded systems are becoming a key compo-
nent of modern life and the interconnection among different
devices and their associated online services is at the core of
the so called “Internet of Things”. While it is impossible
to accurately determine the precise number of such devices
currently deployed worldwide, it is commonly agreed that this
number is continuously growing and likely to exceed 20 billion
by 2020 [39].

The rapid growth in connected devices is accompanied
by an increase of their attack surface. This is especially
daunting as those devices’ applications not only span con-
sumer electronics but also encompasses the medical sector,
autonomous vehicles, Industrial Control Systems (ICS) and
more. Although the importance of the security of those devices
is vital, recent attacks are drawing a devastating picture of

reality: Malware like Mirai was attributed to puppeteer more
than tens of millions devices in 2016 [31], subsystems in
vehicles of notable manufactures [27], [35] as well as third
party devices [17] have been proven to be vulnerable to remote
attacks, and more than 1200 attacks on ICS have been observed
in 2015 alone [33].

A large number of vulnerabilities found today on embedded
devices can still be considered as “low-hanging fruits”, such
as authentication or insecure management interfaces which
could be mitigated by enhancing the awareness of both vendors
and end-users. Another prevalent class of vulnerabilities that
affect these devices, however, is due to programming errors
leading to memory corruptions [40]. One of the most popular
techniques to discover these flaws is fuzz-testing, which, unlike
source code analysis and reverse engineering, is well suited for
large-scale automation.

In a nutshell, fuzz-testing, or “fuzzing”, describes the pro-
cess of automatically generating and sending malformed input
to the software under test, while monitoring its behavior for
anomalies [51]. Anomalies themselves are visible ramifications
of fault states, often resulting in crashes. Over the past decade,
fuzzing became a major part of software development testing
as well as a very common tool for third party software security
testing.

Unfortunately, while common desktop systems have a va-
riety of mechanisms to detect faulty states (e.g., segmentation
faults, heap hardening and sanitizers) and to analyze them (e.g.,
command-line return values or core dumps), embedded devices
often lack such mechanisms because of their limited I/O
capabilities, constrained cost, and limited computing power.
As a result, silent memory corruptions occur more frequently
on embedded devices than on traditional computer systems,
creating a significant challenge for conducting fuzzing sessions
on embedded systems software.

Because of the incredible importance that those systems
are taking, fuzzing needs to be applied to embedded devices
as it is today on software running on desktop computers. It
is therefore crucial to understand the difficulties in doing so
and to develop alternative ways to detect and analyze memory
corruptions.

Fuzzing can be performed with or without the availability
of the source code. Source code availability makes testing
more efficient as memory semantics can be used to detect
anomalies, for example, by using compile time corruption
detection techniques. However, fuzzing embedded devices –

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23166
www.ndss-symposium.org

which lack memory protections, exploit countermeasures, and
for which source code is very rarely available – becomes quite
difficult. Indeed, the only way left to identify a successful
memory corruption is to monitor the device to detect signs
of an incorrect behavior. In this paper, we show that these
“liveness” checks are insufficient to detect many classes of
vulnerabilities because it is often difficult to detect in a black-
box manner when the internal memory of the embedded device
has been corrupted.

While the aforementioned problems certainly have influ-
enced previous fuzzing experiments on embedded devices
conducted by other researchers, up to our knowledge, they
have not been independently studied to this date. In this
paper we therefore make the first comprehensive analysis of
the effects of memory corruptions on different categories of
embedded systems. The study would not be complete without
discussing possible solutions that can be adopted to mitigate
this problem. In particular, we investigate a combination of
(partial or full) emulation with a number of runtime analysis
techniques designed to replace the fault detection mechanisms
present in traditional desktop computer systems. Our experi-
ments show that the analysis techniques we propose can detect
100% of the corrupted states triggered during our fuzzing
session, and therefore can significantly improve the number of
detected vulnerabilities. We also show that partial emulation
significantly reduces the fuzzing throughput. However, when
full emulation is possible, this setup can combine the best
of both worlds and detect 100% of the corrupting inputs
while improving the fuzzing efficiency beyond what could be
obtained using the physical device.

In summary, in this paper we make the following contributions:

• we analyze the challenges of fuzzing embedded devices,
• we make a classification of embedded systems with

respect to the difficulty of detecting memory corruptions
in their software,

• we evaluate the real world effects of different memory
corruptions on those classes of embedded systems,

• we describe the techniques that can be used for improving
fuzzing on embedded devices,

• we present six heuristics that can be used to detect faults
due to the memory corruption, when the firmware of an
embedded system can be run in either a partial or full
emulation environment,

• we implemented our heuristics on top of a combination
of the Avatar [55] and PANDA [14] frameworks and we
conducted a number of tests to show their effectiveness
and their overhead in a fuzzing experiment.

II. FUZZING EMBEDDED SYSTEMS

The term fuzz-testing, or simply “fuzzing”, was first intro-
duced in 1990 by Miller et al. [34] to describe an automated
program testing technique in which the system under test was
fed with random input data. Nowadays, fuzzing is one of the
most prevalent techniques for vulnerability discovery and more
sophisticated, or “smart”, fuzzing techniques exist to guide the
test case generation process. In general, modern fuzzers can be
categorized in mutation-based fuzzers [43], [56], generation-
based fuzzers [4], [16] and guided fuzzers [18]–[21], [50],
based on the input generation strategy.

Most of the theory behind fuzzing and most of the avail-
able fuzzing tools were designed to test software running on
desktop PCs. As we will discuss later in this paper, there are a
number of relevant differences that makes fuzzing embedded
system particularly challenging. As those differences depends
on the characteristic of the device under test, we first introduce
the classification of embedded systems that we will use in the
rest of the paper. We then discuss previous experiments that
applied fuzz testing to different embedded devices, and finally
we present the challenges encountered to apply fuzzing in this
domain.

A. Classes of Embedded Devices

While a precise definition of what is an embedded system
is hard to establish [22], in this paper, we adopt the widely ac-
cepted idea that embedded devices are separated from modern
general-purpose computers by two common characteristics: a)
embedded systems are designed to fulfill a special purpose,
and b) embedded systems often interact with the physical
world through a number of peripherals1 connected to sensors
and actuators. The aforementioned two criteria cover a wide
variety of devices, ranging from hard disk controllers to smart
thermostats, from digital cameras to PLCs. These families can
be further classified according to several aspects, such as their
actual computing power, their unit cost, the field of usage, the
extent to which they interacts with the environment, or the
timing constraints imposed on the device.

Yet, these classifications tell very little about the type of
security mechanisms that are available on a given device.
Therefore, in this paper we divide embedded systems accord-
ing to the type of operating system (OS) they use. While the
operating system is certainly not the only source of security
features, it is responsible for handling the recovery from faulty
states, and it often serves as building block for additional, more
complex, security primitives.

We separate embedded devices in the following three classes:

Type-I: General purpose OS-based devices.
General purpose Operating Systems are often retrofitted
to suit embedded systems. However, in comparison to
the traditional desktop or server counterparts, embedded
systems typically follow more minimalistic approaches.
For example, the Linux OS kernel is widely used in
the embedded world, where it is typically coupled with
lightweight user space environments (e.g., busybox and
uClibc).

Type-II: Embedded OS-based devices.
In recent years, custom operating systems for embed-
ded devices have gained popularity. These systems are
particularly suitable for devices with low computational
power, and while advanced processor features such as a
Memory Management Unit (MMU) may not be present,
a logical seperation between kernel and application code
is still present. Operating systems such as uClinux,

1Note that while embedded systems can either be self-contained or consist
of several embedded devices, for the sake of simplicity, we will use the term
embedded systems analogously to embedded device, as our work is focused
on single devices, rather than on interconnected systems.

2

Study Year Sector Fuzzing Approach Type of Device
Type-I Type-II Type-III

Koscher et al. [28] 2010 Automotive Mutation-based, Blackbox - - 3
Mulliner et al. [36] 2011 GSM feature phones Generation-based, Blackbox - 3 -
Kamel et Lanet [24] 2013 SmartCards Generation-based, Blackbox - - 3
Almgren et al. [3] 2013 PLCs & SmartMeters Mut.- & gen.-based, Blackbox - 3 -
Alimi et al. [2] 2014 SmartCards Generation-based, Blackbox - - 3
Van den Broek et al. [52] 2014 Smartphones Generation-based, Blackbox 3 3 -
Kammerstetter al. [26] 2014 – Mutation-based, Dynamic Inst. 3 - -
Lee et al. [30] 2015 Automotive Random-based, Blackbox - - 3

TABLE I: Fuzzing experiments of embedded systems in the literature.

ZephyrOS or VxWorks are examples for these systems
and they are usually adopted on single-purpose user
electronics, such as IP cameras or DVD players.

Type-III: Devices without an OS-Abstraction.
These devices adopt a so called “monolithic firmware”,
whose operation is typically based on a single control
loop and interrupts triggered from the peripherals in
order to handle events from the outer world. Monolithic
approaches can be found in a large variety of controllers
of hardware components, like CD reader, WiFi cards or
GPS dongles. The code running on these devices can be
completely custom, or it can be based on operating system
libraries such as Contiki, TinyOS or mbed OS 22.
While those libraries are providing abstractions to pro-
grammers, the resulting firmware will contain both system
and application code compiled together, and, thus, forms
a monolithic software.

For better readability, we will use Type-I, Type-II, and
Type-III inter-exchangeably with the corresponding class
names. Additionally, we will use Type-0 in order to reference
to traditional multi-purpose systems.

B. Past Experiments

In recent years, fuzz-testing has become more and more
popular as a way to test the security of embedded systems.
Table I provides a short overview of some of the recent efforts
in this area. These works covered different sectors, different
input generation strategies, and different classes of embedded
devices.

For instance, Alimi et al. [2] fuzzed parts of the MasterCard
M/Chip specifications by generating test-inputs using a genetic
algorithm. The authors observed that real cards would become
unusable during comprehensive fuzz-testing, and therefore
moved the parts under test into a simulator where they could
trigger the approval of illegitimate transactions.

Some modern smart cards also contain a web server
implementation. Kamel et Lanet [24] designed a generation-
based fuzzer for the HTTP implementations of those web
servers and were able to trigger several flaws, including errors
in the smart cards. Koscher et al. [28] conducted a security
test of automotive systems using fuzzing in addition to reverse
engineering and packet sniffing. More specifically, the authors
fuzzed packets for the CAN bus, discovering packets to unlock

2Interestingly, and despite the name, mbed OS 2 (also referenced as ”mbed
OS classic”) is an operating system library. Later versions, on the other hand,
are actual embedded OS and would serve as building block for Type-II devices.

all doors, disable the car’s light, and permanently enable
the horn. Similar results were reported in a later study by
Lee et al. [30]. Hereby, random fuzzing of the data field in
CAN packets led at least to observable changes in the car’s
instrumentation panel.

In [3], Almgren et al. developed several mutation-based
and generational-based fuzzers which were used to test various
PLCs and smart meters. The fuzzing experiments lead to the
discovery of several known and unknown denial of service
vulnerabilities, some leading to a completely unresponsive
PLC which could only be recovered after a power cycle and
a cold restart.

Mulliner et al. [36] and Van den Broek et al. [52] de-
veloped a generation-based fuzzer in accordance to the GSM-
specification to test GSM implementations in both feature- and
smart-phones. While both studies were able to trigger a large
number of errors – including memory exhaustions, reboots,
and denial-of-service conditions – the authors concluded that
correctly monitoring the devices under test in an automated
manner is still a very challenging task.

To avoid this problem, PROSPECT [26] introduces a novel
approach that involves the partial emulation of an embedded
device’s firmware during a fuzzing experiment. The authors
were able to emulate Linux-based systems by forwarding
system calls that are likely to access peripherals to the physical
device. Using this method, the authors discovered a previous
unknown 0-day vulnerability in a fire alarm system.

C. Main Challenges of Fuzzing Embedded Devices

Based on our experience and on problems reported by other
authors while conducting fuzzing experiments in previous
works, we identified three main challenges that make fuzzing
much more complex and less efficient on embedded devices
compared to desktop systems. On top of these specific prob-
lems, embedded systems are also inheriting other challenges
which are common to fuzzing in general (e.g., test case
generation) but we consider them out the scope of this work.

[C1] – Fault Detection. The vast majority of fuzzing tech-
niques relies on observable crashes as immediate conse-
quences of faults occurring during a program’s execution.
Desktop systems offer a variety of protection measurements
which are triggering a crash upon a fault, and while some of
them are designed with security in mind (e.g., stack canaries),
others are inherent architecture artifacts, such as segmentation
faults caused by a Memory Management Unit (MMU). Un-
fortunately, these techniques are rarely present (or are very

3

limited) on embedded devices. As we will describe in more
details in Section III, this poses a significant challenge for
fuzzing embedded devices.

Moreover, even when mechanisms leading to observable
crashes are in place, monitoring those crashes can be com-
plicated. In fact, while for desktop systems crashes are often
accompanied with error messages, embedded systems may lack
equivalent I/O functionalities.

As a result, a sophisticated liveness check (or probing)
has to be deployed to check the effects of the test on the
device. In general, it is possible to adopt two types of probing.
Active probing inserts special requests into the communication
to the device or to its environment. This influences the state
of the software under test – as the state of the software is
periodically checked by providing valid input and evaluating
the corresponding response. In contrary, passive probing aims
at retrieving information about the device’s state without
altering it. This could be achieved by looking at the answers
provided by the device to the test inputs or by observing
“visible” crashes.

[C2] – Performance and Scalability. In case of desktop
systems, multiple instances of the same software can easily
be started and fuzzed in parallel, e.g., via multi-processing or
virtualization. This parallelization poses a substantial challenge
when dealing with embedded devices. Obtaining a large num-
ber of copies of the same physical device is often infeasible
due to limited resources (e.g., financial), and to infrastructure
requirements such as space and power supply.

Additionally, fuzzing frequently requires to restart the
target under test in order to re-establish a clean state for
the next test case. While this is easy to achieve for desktop
systems, e.g., via virtual machine snapshots, resetting the state
of an embedded system can take a considerable amount of
time (up to few minutes), as it often requires a full reboot of
the device. This results in a considerable slow down of the
entire testing process, as we will discuss in more details in
Section VI.

[C3] – Instrumentation. While fuzzing was originally pro-
posed as a black-box testing technique, it quickly became
evident that a more clever generation and prioritization of
the input values required access to some information about
the state of the system under test. For example, it is very
popular for desktop systems to adopt a mix of compile-time
instrumentation and run-time instrumentation to collect code-
coverage information about the provided inputs and to detect
subtle corruption of the memory of the system.

Probably the most established fuzzer which uses source
code instrumentation to collect information about retrieved
code coverage is American Fuzzing Lop (AFL) [56]. Promi-
nent examples of instrumentation to detect memory corruptions
are sanitizers like AddressSanitizer [44], ThreadSanitizer [45],
MemorySantizer [49], and UndefinedBehaviourSanitizer [11],
which also have proven to be very efficient in uncovering
vulnerabilities in combination with fuzzing [46].

While all of these components are available for the popular
compilers clang and gcc, source code is not typically
available for firmware images from embedded devices, and

in many cases its is challenging to re-compile the software.
In fact, embedded systems can span a variety of devices, each
with its own operating system, peripherals and processor –
for which a comprehensive toolchain is rarely available to the
tester. A common solution that does not require access to the
source code of the application is to resort to binary dynamic in-
strumentation frameworks such as Pin [32], Valgrind [38], and
DynamoRio [7]. AFL is also capable of retrieving coverage-
information while fuzzing binary software by adding instru-
mentation capabilities to QEMU, which has recently even be
leveraged for fuzzing full-blown Linux kernels [37].

Unfortunately, all of the above static and dynamic instru-
mentation tools are closely tied to the target operating system
and CPU architecture, and at the time of writing none of them
provides support for Type-II and Type-III embedded devices.

III. MEMORY CORRUPTIONS IN EMBEDDED SYSTEMS

In this section we investigate the effects on different classes
of embedded devices of memory corruption vulnerabilities,
a class of bugs which often leads to crashes on desktop
systems. For better readability, we first introduce a definition
for observable crash and fault states. Afterwards we will
describe our case study and the obtained results.

A. Bugs, Faults, Corruptions & Crashes

In general, both firmware and software are built to solve
specific tasks, and thus they follow a – not necessarily explicit
– specification of what they are intended to do. It is also
well known that software and firmware code can contain bugs:
errors that can bring a program into an unintended state. When
such unintended state can be exploited by an attacker, a bug
is classified as a security vulnerability.

A common class of bugs that often leads to vulnerabilities
are memory corruptions or memory errors. In particular, Van
der Veen et al. [53] differentiate between spatial and temporal
memory errors. Whereas the first type denotes out of bounds
accesses of a memory object, the second type represents
accesses to a memory object that does not exist anymore.

A memory corruption itself can cause an observable crash
of a program, whereby the program is either terminated
or some recovery procedures, such as exception handlers,
are executed. Today, many common security mechanisms –
such as stack canaries or heap consistency checks – trigger
these crashes. However, under particular conditions, we can
encounter memory corruptions which do not lead to any
observable and immediate crash of the system. We call these
cases silent memory corruptions. In a silent memory corruption
the program continues its execution and enters an unintended
faulty state.

The important consequence of silent memory corruptions
is that the actual fault might only become noticeable at a later
point in time when a certain functionality is requested or when
a particular sequence of events is received. While this may not
be considered a problem as long as the device continues to
executes, it poses a significant threat for the safety and security
of embedded devices. In fact, as soon as the system enters a
faulty state, the integrity of its operation cannot be guaranteed
anymore, and wrong data could be returned or processed at
any time.

4

Platform Manufacturer & Model CPU Family Operaring System LIBC MMU

Desktop Single Board Computer Beaglebone Black Cortex A-9 Debian GNU/Linux glibc 3

Type-I Router Linksys EA6300v1 Cortex A-9 Embedded Linux uclibc 3

Type-II IP camera Foscam FI8918W ARM7TDMI-S uCLinux uclibc 7

Type-III Development Board STM Nucleo-L152RE Cortex M-3 None libmbed 73

TABLE II: Devices selected for the experiments.

While desktop systems are also subject to silent corrup-
tions, those are a lot less frequent because they are deploying
several lines of defenses. Indeed while those lines of defense
are often in fact designed for hardening programs against
attacks they also make faults more likely to lead to a crash.
Those mechanisms include memory isolation, protection mech-
anisms, and memory structures integrity checks.

Embedded systems, on the other hand, often lack similar
mechanisms. This can not only lead to devastating conse-
quences as soon as a system interacts with the exterior world,
but it also complicates the security analysis of those systems as
many black box testing techniques, and fuzzing in particular,
rely on observable effects to infer the state of the device.

B. Experimental Setup

In order to study how memory corruptions behave across
different computing systems, we conducted a number of ex-
periments. Our goal is to trigger the same memory corruption
conditions on different systems to analyze whether they yield
to observable crashes or result in silent corruptions.

For these experiments, we selected one device for each
device class presented in Section II-A, and compare the results
with a baseline system consisting of full-fledged GNU-Linux
desktop OS. All systems are ARM-based and we recompiled
each firmware image to obtain comparable results. We intro-
duced our vulnerabilities in two popular and widely used li-
braries: mbed TLS, an SSL library designed for both embedded
and desktop system, and expat, a popular XML parser. The
two are good candidates for our experiments because memory
corruptions vulnerabilities were previously publicly released in
both of them, and because they are popular, open source, and
present in many modern embedded devices.

To analyze their behavior in a realistic context, we chose
existing Commercial Off-The-Shelf (COTS) products: a router
to represent Type-I systems, and an IP camera for Type-II
devices. We compiled our vulnerable application for those
targets and then loaded it on the device. For the monolithic
class, however, obtaining a COTS device with customizable
firmware is difficult, as their firmware usually consists of only
one custom binary blob responsible for the entire operation
of the device. Therefore, we used a development board with
publicly available software for peripheral interaction. For this
device we included our test code in the firmware, compiled it
and then loaded the firmware on the device. Table II shows a
summary of our three test platforms, including information
about which C library is used and whether an MMU is
present. Besides the operating system, these properties mainly
determine the behavior of a system in case of a memory
corruption.

Listing 1: Examples of artificial vulnerabilities.
1 XML_Parse(XML_Parser parser, const char *s, int len,

int isFinal)
2 {
3 char overflowable[128];
4 [...]
5 //this returns a heap object
6 void *buff = XML_GetBuffer(parser, len);
7 [...]
8 //trigger immediate stack-based buffer overflow
9 if (len == 1222){

10 memcpy(overflowable, s, len);
11 return;
12 }
13 //this will cause a null pointer dereference
14 else if (len == 1223){
15 buff = NULL;
16 }
17 //causing a heap-based buffer overflow
18 if (len == 1225){
19 memcpy(buff, s, len);
20 memcpy(buff + 1225, s, len);
21 }
22 else{
23 memcpy(buff, s, len);
24 }
25 //cause an uncontrolled format-string

vulnerability
26 if (len == 1224){
27 printf(buff);
28 }
29

30 [...]
31 }

C. Artificial Vulnerabilities

Since our focus is not the discovery of new bugs but rather
the analysis of the effects of memory corruptions on embedded
systems, we inserted several vulnerabilities leading to memory
corruptions in our test samples. Specifically, we used stack-
based buffer overflows and heap-based buffer overflows as
examples of spatial memory corruptions, and null pointer
dereferences and double free vulnerabilities as examples of
temporal memory corruptions. Additionally, we also inserted
a format string vulnerability that can either be used for
information leakage or for arbitrary memory corruptions.

Our approach of bug insertion was inspired by the one used
in LAVA [15], i.e., we ensured that each vulnerability had
its own independent trigger condition. However, as we only
had to inject a limited number of vulnerabilities, we manually
selected the vulnerable paths and the position of each bug.
Likewise, for the purpose of our experiments we did not need
“realistic” checks or path conditions particularly difficult to

3Note that Cortex M-3 microcontrollers can be equipped with an optional
Memory Protection Unit (MPU), which provides basic memory protections.
While present on this specific Type-III device, we do not utilize its features,
as this is a very common scenario and the most problematic case.

5

expat mbed TLS

Platform Desktop Type-I Type-II Type-III Desktop Type-I Type-II Type-III

Format String 3 3 7 7 3 3
7

(malfunc.)
!

(hang)

Stack-based buffer overflow 3 3
3

(opaque)
!

(hang)
3 3

3
(opaque)

!
(hang)

Heap-based buffer overflow 3 !
(late crash)

7 7 3 !
(late crash)

7 7

Double Free 3 3 7
7

(malfunc.)
3 !

(late crash)
7 7

Null Pointer Dereference 3 3
3

(reboot)
7

(malfunc.)
3 3

3
(reboot)

7

TABLE III: Observed Behaviour of triggered memory corruptions.

explore. Therefore, we simply added custom branches in the
code that triggered the various vulnerabilities based on the
length of the user-provided payload. Listing 1 shows four of
the inserted vulnerabilities inside the expat library.

D. Observed Behavior

The goal of this experiment was to observe the behavior of
each device after sending malicious inputs that trigger one of
the inserted vulnerabilities. As expected, the software running
on GNU/Linux desktop crashed each time it was provided with
a malicious input that triggered the vulnerability.

However, the embedded devices were not always able to
detect the fault and, in some cases, they even continued the
execution with no visible effects – despite the fact that the
underlying memory of the system was corrupted. To better
differentiate between the different behaviors we observed in
our experiments, we categorize our observations in six possible
results:

[R1] Observable Crash (3) – The execution of the device
under test stops and a message or other visible effect
is easily observable. In less optimal cases, no detailed
information about the causes of the crash is produced
(we mark these cases as opaque in Table III).

[R2] Reboot (3) – The device immediately reboots. For Type-
III devices there is no difference between a crash and a
reboot because they are monolithic applications. However,
for Type-I and Type-II devices a given service (e.g., a web
server) can crash while the rest of the embedded system
may still continue to work properly.

[R3] Hang (!) – The target hangs and stops responding to new
requests, possibly stuck in an infinite loop.

[R4] Late Crash (!) – The target system continues its exe-
cution for a non-negligible amount of time and crashes
afterwards (e.g., when the connection is terminated).

[R5] Malfunctioning (7) – The process continues, but reports
wrong data and incorrect results.

[R6] No Effect (7) – Despite the corrupted memory, the target
continues normally with no observable side-effects.

Immediately observable crashes and reboots (R1 and R2)

are the preferred outcomes of an experiment as during a
fuzzing session they allow to immediately identify the respon-
sible input.

Hangs and late crashes (R3 and R4) can be more difficult to
deal with, in particular when the crash is delayed long enough
that a fuzzer may have already sent multiple other inputs to
the target system and the input responsible for the corruption
will therefore be difficult to identify. However, the presence of
a fault is still observable in these cases. Things get even more
complex when a device starts malfunctioning (R5). In this case,
there are no crashes at all, but the results provided to certain
requests may be incorrect. To detect this case, a fuzzer would
need to know what is the correct output for each input it sends
to the system – something which is very seldom the case in
security testing. A possible workaround can consist in inserting
between two consecutive inputs a number of functional test
requests for which the output is known. However, even when
this solution is sufficient to detect the malfunction, it introduces
a considerable delay in the fuzzing experiment. Finally, the
worst case is when the device continues its operation with no
observable side effect (R6). In fact, since part of the device
memory has been corrupted, there may be side-effects or
unexpected behaviors in the future.

Table III shows the result of our experiments. It is clear
that the fewer features are provided by an embedded platform,
the less likely the system is to detect memory corruptions.
An interesting observation is already the difference between a
full scale GNU/Linux and an embedded Linux for heap-based
buffer overflows and double free corruptions. While on the
desktop system the inlined heap consistency checks provided
by the standard C library are triggering a verbose crash quickly
after the corruption, the embedded Linux continues and crashes
at a later point in time, often just during the exit() handler.

The table also shows that corrupting inputs for Type-II
and Type-III devices are very rarely triggering a crash. This
provides a perfect example of how common are silent memory
corruptions in real-world embedded systems.

Another important observation can be made when looking
at the devices’ behavior for the format string vulnerability.
Both the embedded and the full scale GNU/Linux are reporting
segmentation faults, due to the attempt to access unmapped

6

memory. However, uClinux and the monolithic device are
continuing execution, which is a result of the lack of an MMU.
This shows that the MMU plays a very important role when
it comes to detecting memory corruptions.

A similar behavior can be observed on the results of the
null pointer dereference test. The processes running on both the
GNU/Linux desktop and on the embedded Linux are correctly
crashing once the program tries to write memory to the NULL-
address range. With the same vulnerability, the monolithic
device will continue execution although data has been written
to the exact same address. In fact, as the execution of the
firmware is not dependent on the content of the memory at
this location, this memory corruption does not influence the
behavior of the system.

The result of the same test on the uClinux system is
particularly interesting: after the NULL write, the device hangs
for few seconds and then reboots. This is not surprising as
in uClinux the kernel is mapped in the lower part of the
memory (so writing at address 0x0 corrupts kernel memory).
The reboot, on the other hand, is possibly caused due to an
hardware watchdog that detects the hang and automatically
restarts the device as a recovery mechanism.

To summarize, while in certain conditions silent memory
corruptions can occur also in traditional desktop envoronments,
our experiments show that they are often the rule and not the
exception in the embedded world. As the use of fuzzing is
becoming prevalent to test firmware code for vulnerabilities,
and as fuzzing is relying on observable crashes to detect
bugs, the limited support for fault detection can have very
severe consequences on the effectiveness of security testing
for embedded devices.

IV. MITIGATIONS

In the previous section we have seen that embedded sys-
tems come in all forms and with very different characteristics.
While fuzzing a Type-I device may not present particular chal-
lenges, memory corruptions on Type-III systems rarely result
in an immediate crash, imposing a significant challenge to
automatically identify when a vulnerability has been triggered.
So how can we fuzz devices when no reliable feedback is
available? Again, the vast diversity of existing devices makes
it difficult to find a general answer to this question. Therefore,
in this section we present six different options that may be
available to the tester and we discuss both advantages and
limitations of each solution.

A) Static Instrumentation.
Prerequisites: source code and compiler toolchain

As the majority of software for embedded devices is
distributed in a binary-only manner, access to the source code
can be considered an exceptional case. In the rare cases in
which the source code is available, proprietary toolchains are
often required to recompile the firmware.

However, when testers have all the required components
(e.g., if the tester is the device manufacturer) they can instru-
ment the source code to provide better run-time information or
to introduce a crash harness functionality. Typical instrumen-
tation includes a combination of multiple techniques [46]. For

example, collecting a trace of execution to measure coverage
to mutate fuzzing inputs [56], adding checks for memory
allocations [44], or hardening the program with, e.g., Control
Flow Integrity [1]. Unfortunately, most of these tools are not
yet available for embedded systems.

B) Binary Rewriting.
Prerequisites: binary firmware image, device

When only the binary firmware is available, binary rewrit-
ing can be used to instrument the code [13]. However, there are
some difficulties in instrumenting the code. First, the firmware
needs to be fully disassembled which can be difficult when it
is provided as a raw binary [5]. Second, memory semantics,
boundaries and data structures are lost in the compilation
process and need to be recovered to add instrumentation.
This requires a very challenging partial decompilation phase.
Finally, the memory usage of embedded devices is often
optimized to reduce costs, leaving little room for adding
complex instrumentations.

C) Physical Re-Hosting.
Prerequisites: sources, compiler chain, different device

In certain cases, the analyst may be able to recompile the
code for a different target device, for example to relocate a
process from a Type-II device to a more test-friendly Type-
I device or from a Type-I device to a regular Linux desktop
system. This may also improve scalability, if the new device
is cheaper and more readily available than the original one or
if the new target is a regular computer.

However, on top of the difficult prerequisites, methods
relying on this approach have another major drawback. In fact,
it may be difficult to reproduce bugs found on the new target
system in the original device (where they may even not be
present at all due to the different architecture or due to changes
introduced by recompiling the binary) and conversely, bugs
that are present on the original target may not be present on
the new target.

D) Full Emulation.
Prerequisites: firmware image, peripherals emulation

Images of the device firmware are often available to the an-
alyst, either because they are extracted directly from the device
or because they are obtained from a firmware update package
available from the manufacturer. Costin et al. [12] and Chen et
al. [8] have shown that, under certain conditions, applications
extracted from Type-I firmwares can be virtually rehosted, i.e.,
they can be executed inside a generic operating system running
on a default emulator. Likewise, the Qemu STM32 [6] project,
which extends Qemu to emulate the STM32 chip, shows that
when complete hardware documentation is available, with a
considerable effort to implement the hardware emulation it is
also possible to fully emulate Type-III firmware images.

This solution can greatly improve fuzzing. First of all,
test experiments can be conducted without the presence of
the physical device, thus allowing for a much greater par-
allelization. Second, dynamic instrumentation techniques can
be easily applied and the emulator can be used to collect a

7

large amount of information about the running firmware. The
disadvantage of this solution is that it is only applicable when
all peripherals being accessed by the target are known and
can be successfully emulated, which is unfortunately rarely the
case. Overall, being able to run an arbitrary firmware inside
an emulator still remains an open research problem.

E) Partial Emulation.
Prerequisites: firmware image, device

If full emulation remains impractical in most circum-
stances, a partial emulation can still provide benefit while
conducting testing experiments. This approach was first pro-
posed by Avatar [55] and Surrogates [29] for Type-III devices
and then extended to Type-I systems in PROSPECT [25],
[26]. The general idea behind this solutions is to use an
emulator (in which the firmware code is executed) modified to
forward peripheral interactions to the actual physical device.
The result provides the advantages of a full emulation solution
without the burden of knowing and emulating I/O operations.
However, what this solution gains in flexibility it is sacrificed
in performances (due to the additional interaction with the real
device) and scalability (due to the current need of pairing each
emulated instance with a physical device).

F) Hardware-Supported Instrumentation.
Prerequisites: device, advanced debug feature (e.g., trace
capable debugging port and debugger)

If the tester has access to a physical device with ad-
vanced hardware instrumentation mechanisms (such as real
time tracing), it may be possible to collect enough information
to improve the fault detection during the execution of the
device. For instance, chip manufacturers often embed hardware
tracing features such as ARM’s Embedded Trace Macrocell
(ETM) and Coresight Debug and Trace, or Intel’s Processor
Trace (PT) technologies [42] 4. ARM tracing mechanisms
are optional components of processors (“IPs”), which may be
optionally included in the processor. Multiple variants tracing
exist, such as tracing only branches, all instructions, or also all
memory accesses – and different techniques rely on different
debug ports (e.g., dedicated trace ports, Single Wire Debug
(SWD) or Single Wire Output (SWO) ports). Unfortunately, the
availability of such tracing hardware is variable. In lower-end
devices (typically Type-III devices), manufacturers tend not to
include any tracing capabilities, because of the relatively large
impact on the chip surface, and therefore on the cost, that such
mechanisms would incur. Development devices may have such
facilities (sometimes when the micro-controller design is tested
on FPGA before manufacturing) but this is less frequent in
commercial production devices. Finally, in some cases debug
access may be present but not available to prevent third-party
analysis.

For example, while looking for test devices to conduct
our experiments we encountered devices where the tracing
support was deactivated for security reasons, multiplexed on
pins which are used for another purpose, not routed on the
circuit board (PCB), or where the silicon supported the feature
but the pins were not available. In summary, when testing real

4However, only available on recent high performance processors.

E
xe

cu
tio

n

R
eg

is
te

r
st

at
e

M
em

or
y

A
cc

es
se

s

M
em

or
y

M
ap

A
nn

ot
at

ed
Pr

og
ra

m

Segment Tracking 7 7 3 3 7
Format Specifier Tracking 3 3 7 3 3

Heap Object Tracking 3 3 3 7 3
Call Stack Tracking 3 7 7 7 7

Call Frame Tracking 3 3 3 7 7
Stack Object Tracking 3 3 3 7 3

TABLE IV: Deployed live analysis techniques and their re-
quirements.

world devices, the chances of finding an available and usable
hardware tracing support are quite low.

To summarize, the first three solutions (A, B, and C)
require the tester to modify the firmware image, either stat-
ically through recompilation or dynamically through runtime
instrumentation. Unfortunately, as we already explained above,
this is rarely an option when conducting a third party security
testing. At the other end of the spectrum, the last three
techniques (D, E, and F) have the advantage of not requiring
any firmware modification, but they require instead additional
technologies (either a software emulator or an hardware tracing
support) to collect information about the running firmware.

In this paper we show that this information can be used
to detect the presence of faults during the execution of an
embedded system, by replacing the role of memory protection
or other crash harness mechanisms usually provided by the
hardware or by the operating system on desktop computers.
However, this require the development of dedicated analysis
routines specifically designed to identify the signs of memory
corruption.

V. FAULT DETECTION HEURISTICS

In this section we present a set of heuristics that we
implemented to mimic existing compile-time, and run-time,
techniques, and which are already able to detect all the
memory corruption vulnerabilities showcased in Section III.
These heuristics are inspired by techniques that have already
been in use for detecting or mitigating memory corruptions
in other settings, such as shadow stacks, compiler warnings
for unsafe function calls, and run-time verifications as imple-
mented by instrumentation tools like Address Sanitizer [44] or
Valgrind [38]5.

It is also important to mention that we selected heuristics
to be implementation independent, in order to not only work
in a live analysis setting (as it is the case if the firmware is
run in an emulator) but also to be applicable “post-mortem”
on previously collected execution traces (as in the case of an

5While the underlying algorithms of the heuristics are based on
known principles, we implemented them as external monitors (cf. Sec-
tion VI). The interested reader can find the implementations at
https://github.com/avatartwo/ndss18_wycinwyc.

8

hardware-based tracing mechanism). As a result, they only rely
on information extracted from the execution of the binary code
and additional annotations provided by the analyst.

In the following we introduce briefly six heuristics and
discuss their role, their limitations, and the information they
require in order to be applied in our scenario.

Segment Tracking:
Segment tracking is possibly the simplest technique that
aims to detect illegitimate memory accesses. The core
idea is to observe all memory reads and writes and verify
if they occur in valid locations, thus somehow imitating
an MMU at detecting segmentation faults. This technique
only requires knowledge about the memory accesses and
the memory mappings of the target. Both are easily
accessible in an emulator, however, when only traces are
available the memory map can be obtained by reverse
engineering.

Format Specifier Tracking:
Tracking format string specifiers is a naı̈ve technique to
discover insecure calls to printf()-style functions and
is inspired by the printf protection outlined in [47]. In
essence, this protection validates that the format string
specifier points to a valid location upon entry in a function
of the printf() family. In the simplest case, without
presence of dynamic generated format string specifier,
those valid locations would have to lie within read-
only segments. All in all, this technique requires not
only knowledge about the location of format handling
functions, but also the register state while entering one of
those functions and the argument order. Both the location
of the according function and their argument order can
be obtained by reverse engineering or automated static
analysis of the firmware.

Heap Object Tracking:
This technique is designed to detect both temporal and
spatial heap related bugs and is influenced by the instru-
mentation and run-time verification approaches presented
in [44]. It achieves its goal by evaluating the arguments
and return values of allocation and deallocation functions
and bookkeeping the location and sizes of heap objects.
This allows to easily detect out-of-bounds memory ac-
cesses or access to a freed object. However, this heuristic
depends on a variety of information: executed instruc-
tions, the state of the registers, memory accesses, and
knowledge about allocation and deallocation functions.
The latter could be retrieved by reverse engineering, or by
using advanced methods for discovering custom allocators
as demonstrated by MemBrush [9].

Call Stack Tracking:
Call stack tracking is replicating traditional shadow stack
protections [54], therefore aiming at detecting functions
that do not return to the callee. This can help to identify
stack-based memory corruptions that overwrite the return
address of a function. It does so by monitoring all
direct and indirect function calls and return instructions.
However, as embedded devices are often interrupt-driven,
this heuristic can lead to false negatives. Nevertheless, it

is especially appealing as it requires the least amount of
information: only the knowledge of the executed instruc-
tions.

Call Frame Tracking:
Call frame tracking is a more advanced version of the
call stack tracking technique which detects coarse grained
stack-based buffer overflows, without false negatives,
right when they occur. In essence, stack frames are lo-
cated by tracking function calls, then contiguous memory
accesses are checked not to cross stack frames. Hereby,
this requires to identify the executed instructions as well
as register values to extract the stack pointer values
upon function entries. Then, memory accesses have to
be observed to detect the actual corruptions.

Stack Object Tracking:
Stack objects tracking consists in a fine-grained detection
of out-of-bound accesses to stack variables, which is
inspired by the heap object tracking approach proposed
by Serebryany et al. [44]. Hereby, memory reads and
writes observed during execution are checked against
the individual variable size and position in the stack.
Obviously, this requires to track executed instructions and
memory accesses, as well as elaborate information about
the stack variables. For the sake of simplicity, we use
variables information which is present in debug symbols.
However, in the general case, it is possible to retrieve such
information in an automated manner from binary code, as
proposed by several previous studies [23], [48].

Table IV lists the six presented heuristics and summarizes
what type information is required for the analysis.

VI. IMPLEMENTATION

In the previous section we introduced six heuristics which
can aid fuzzing when applied during emulation or when used to
analyze execution traces. In order to show their effectiveness,
we implemented them as part of distinct proof of concept
trace analysis and live analysis systems. However, as the
availability of hardware trace capabilities is uncommon and the
live analysis scenario presents more engineering challenges,
we focus our experiments on performing live detection while
fuzzing a firmware that is either partially or fully emulated.

The experimental live analysis system we created combines
PANDA [14], a dynamic analysis platform, and Avatar [55],
an orchestration framework for dynamic analysis of embedded
devices. Our implementation required modifications to both
frameworks and we released both the modifications and the
implemented heuristics as open source 6, to help future fuzzing
campaigns and motivate additional research in this field.

Live analysis system description: The three core compo-
nents of the experimental system are Avatar, PANDA, and a set
of PANDA analysis plugins which implements the heuristics
described above. Avatar allows dynamic binary analysis of
embedded devices by enabling partial emulation of Type-III
devices, as described in section IV. In essence, it orchestrates
the execution of the firmware on a target embedded device and

6Available at https://github.com/avatartwo/ndss18 wycinwyc.

9

on an emulator, by providing the possibility to automatically
transfer state between device and emulator and by forwarding
I/O accesses. Avatar was originally designed to use S2E [10]
as backend emulator. As part of our work, we modified it to
replace S2E with PANDA, as this solution allows not only
to perform analysis during the execution, but also to create
lightweight records of the execution which can be used to
identify the root cause of a crash.

Like S2E, PANDA is based on the full system emula-
tor QEMU and its plugin systems allows to hook various
events, such as physical accesses to memory, translation,
and execution of translated blocks. Additionally, the base
implementation of PANDA provides already several analysis
plugins, whereas one of them is of special use for our heuris-
tics: callstack_instr. This plugin allows to register
further callbacks on function calls and returns, and provides
information about the current call stack, which simplify the
implementation of several of our heuristics. However, as this
plugin would return wrong information when the state of the
application is corrupted, we only use its on_call event
to detect the beginning of a function, while information of
function returns are retrieved by analyzing the executed blocks.

In summary, we use PANDA to emulate the firmware and
rely on its plugin system to obtain live feedback over the
execution of a partial or fully emulated firmware. All this
while Avatar orchestrates the execution and selectively redirect
execution and memory accesses to the physical device.

State caching: Avatar also plays another important role
in our system, allowing the tester to save and replay the
device state after it is initialized. In fact, since the initialization
procedures of embedded systems usually set up all peripherals,
this phase imposes a significant overhead every time the fuzzer
needs to restart the device. Moreover, these procedures involve
a large amount of I/O operations that have a negative impact
on the execution of a partial emulator (that needs to forward
every access to the physical device). However, as long as the
peripheral interaction only concerns stateless peripherals, this
overhead can be removed by taking advantage of the ability of
emulators to execute from an initial snapshot. Therefore, our
system can benefit from the ability of Avatar to save a snapshot
of the device state after the its initialization is completed and
reuse it to initialize the emulator.

VII. EXPERIMENTS

In this section we present a number of experiments we
conducted to test our heuristics both in a partial and in a full
emulation scenario. Our goal is to show that it is possible
to integrate such heuristics in a live fuzzing experiment, thus
providing fault detection to mitigate the lack of equivalent
mechanisms in the embedded system’s platform and operating
system.

However, our approach may introduce a non negligible
overhead on the performance of the system, effectively increas-
ing the time required to perform the testing session. Therefore,
we also decided to measure the effects of our solution on the
fuzzing throughput under different setup configurations.

A. Target Setup

For our tests, we compiled the expat application presented
in Section III-B for a Type-III device7 and conducted a number
of fuzzing sessions against the target using four different
configurations, covering both optimal and worst case scenarios:

• NAT: Native. Fuzzing is performed directly against the
actual device – therefore without using any fault detection
heuristic. We use this case as the baseline to compare the
results of other experiments.

• PE/MF: Partial Emulation with Memory Forwarding.
The firmware is emulated and access to the peripherals is
implemented by forwarding I/O memory accesses to the
actual device.

• PE/PM: Partial Emulation with Peripheral Modeling.
The firmware is emulated and peripheral interaction is
handled by mimicking peripherals behavior with ded-
icated scripts inside Avatar, which allows to conduct
experiments without having a physical device present.

• FE: Full Emulation. Both the firmware and its periph-
erals are fully emulated inside PANDA.

For configurations PE/MF, PE/PM, and FE we use a
snapshot of the device’s state taken after initialization as
starting point for the emulation, as described in section VI.
The execution then continues inside the emulator where we
implemented the different heuristics presented in section V.
To estimate the performance impact imposed by each scenario,
we conducted experiments in which we selectively enable one
heuristic at a time.

In all our tests, the inputs to the vulnerable software are
provided on a simple textual protocol which is communicated
over a serial connection. On configurations NAT and PE/MF
we used the real device serial port, while in PE/PM and FE
the serial port of the device is either modeled or emulated, and
the input is provided to the emulator with a TCP connection
and written directly in the corresponding (emulated hardware)
buffer.

B. Fuzzer Setup

We built our experiments on top of boofuzz [41], an
open source fuzzer and successor to Sulley [4], which is a
popular Python-based fuzzing framework. Boofuzz does not
only generate and send malformed inputs, but it also allows
to define target monitoring and reset hooks. In comparison to
its predecessor, it allows to fuzz over user-defined communi-
cation channels and provides ready implementations for both
serial and TCP-connections, making it an ideal match for our
evaluation purposes.

Obviously, inputs that triggers a fault introduces a larger
overhead than those that do not. Therefore, to remove this
bias and make sure we can compare the results of different
experiments, we instrumented the fuzzer to forcefully gener-
ate inputs which would trigger one of the inserted memory
corruption vulnerabilities with a given probability. We denote

7Note that we chose a Type-III device because this is the most challenging
case. The intuition is that if we can detect the silent memory corruptions on
a Type-III device, the heuristics are likewise suitable for Type-II and Type-I
devices.

10

this probability as Pc and conducted experiments with Pc = 0,
Pc = 0.01, Pc = 0.05 and Pc = 0.1.

Furthermore, to better simulate a realistic fuzzing session,
we added a simple liveness check for monitoring purposes:
After every fuzz input, the fuzzer receives the response of the
device and evaluate whether it matches the expected behavior.
When the received response differs from the expected one, or
when the connection times out, the fuzzer reports a crash and
restarts the target. The fuzzer uses boofuzz to power cycle
the physical device (NAT) or instructs the emulator to restart
from the snapshot (PE/MF, PE/PM, and FE).

Note that we use the liveness checks during all experi-
ments, even when all heuristics are enabled as there might
be crashes not detected by our heuristics. However, in our
experiments, with all heuristics enabled, the liveness check
never detected any corruption because the heuristics of our
PANDA plugins were able to detect faulty states at a earlier
stage, which in turn triggered an immediate restart of the target.

C. Results

In total, we conducted 100 fuzzing sessions lasting one
hour each. We monitored the number of inputs that were
processed by the target (Itot), the number of times a corrupting
input was sent to a target (IC), the amount of faults detected
by the liveness check (DL), and the number of faults detected
by the heuristics (DH). Additionally, we denote the number
of undetected faults as (DU). As a result:

IC = DL +DH +DU ≈ Itot ∗ PC (1)

The interested reader can find the results of the individual
fuzzing sessions in Appendix A, which are analyzed thorough
the rest of this section.

False Positives and False Negatives

Intuitively, the presented heuristics are not perfect and are
likely to yield false positives or negatives. Interestingly, we
observed only one case of false positives in the stack object
tracking when, due to over-approximation, two consecutive
memory writes to set two distinct but adjacent stack variables
were falsely tagged as a memory corruption.

In general, we want to stress that false positives and
negative rates are highly target- and implementation-dependent
and a comprehensive analysis of those are out of scope of
this work. Our goal is show the limitations of fault-detection
on embedded devices and the feasibility of using heuristics to
overcome this problem, rather than evaluating the effectiveness
of a specific implementation.

Fault Detection

Table V shows which type of corruptions could be detected
by the liveness check or by the individual heuristics. As we
expected, fuzzing without any fault detection mechanism is
largely ineffective. The liveness check alone was only able to
detect the stack-based buffer overflow and format string vul-
nerability because, as we already described in Section III, these
bugs result in the device hanging. All the other vulnerabilities,
although they were triggered correctly by the fuzzer and they

Fo
rm

at
St

ri
ng

St
ac

k-
ba

se
d

bu
ff

er
ov

er
flo

w

H
ea

p-
ba

se
d

bu
ff

er
ov

er
flo

w

D
ou

bl
e

Fr
ee

N
ul

l
Po

in
te

r
D

er
ef

er
en

ce

Liveness Check 3 3 7 7 7
Individual Heuristics:
a) Call Stack Tracking 7 3 7 7 7
b) Call Frame Tracking 7 3 7 7 7
c) Stack Object Tracking 7 3 7 7 7
d) Segment Tracking 3 3 7 3 3
e) Format Specifier Tracking 3 7 7 7 7
f) Heap Object Tracking 7 7 3 3 3
All 3 3 3 3 3

TABLE V: Artificial vulnerabilities discovered by the different
heuristics.

resulted in a successful memory corruption, were not detected
by the fuzzer.

The impact of this is shown in Figure 1, which visualizes
the amount of corrupting inputs detected by the liveness check,
by the heuristics (all8 or in isolation), or that remained unde-
tected. A closer look at the graphs shows that the combined
heuristics (rightmost bar in each group) always successfully
detected all corruptions, while relying on liveness checks
(leftmost bar) always left a large fraction of faults undetected.
Furthermore, segment tracking, as it can both detect format
string and stack based buffer overflow vulnerabilities, is su-
perseding all detections formerly done by the liveness check.
This makes sense: when the device is in a strongly corrupted
state, even detectable by the liveness check, it is likely that
memory accesses to unusual memory locations occured.

Performance

Figure 2 shows the number of input values the fuzzed
target was able to process during one hour fuzz sessions with
different values for PC . As expected, partial emulation with
memory forwarding (PE/MF) is slowing down fuzz testing
by more than one order of magnitude. This overhead is
introduced by the communication between the firmware and
the device peripherals, which results into frequent invocations
of the orchestration features of Avatar. The major part of this
overhead is due to the low bandwidth connection between
Avatar and the physical device, which relies on a standard
JTAG debugger connected via USB. Surrogates [29] has shown
that this issue can be solved by using dedicated hardware,
which would enable partial emulation at near-realtime speed.

Looking at the individual heuristics, we can observe that
their overhead is negligible in the PE/MF scenario, where the
bottleneck of forwarding of MMIO requests fully determines

8Note that the ”Combined Heuristics” consist of heuristic c-f. Heuristic a
and b have been disabled as they are redundant with heuristic c.

11

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

0

1

2

3

#I
np

ut
s [

%
]

PE/MF PE/PM FE

PC = 0.01

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

0
1
2
3
4
5
6
7
8
9

10

#I
np

ut
s [

%
]

PE/MF PE/PM FE

PC = 0.05

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#I
np

ut
s [

%
]

PE/MF PE/PM FE

PC = 0.1

Fig. 1: Corruption detection in emulation based scenarios with distinct probabilities for the occurence of corrupting inputs PC .
Corruptions detected by liveness checks Corruptions detected by heuristics Undetected corruptions

0 0.05 0.10
PC

102

103

104

#I
np

ut
s

NAT
PE/MF
PE/PM
FE
PE/MF'
PE/PM'
FE'

Fig. 2: Processed inputs during one hour long fuzzing sessions
with no heuristics (NAT, PE/MF, PE/PM, FE) and combined
heuristics (PE/MF’, PE/PM’, FE’) enabled.

the speed of the fuzzing experiment. However, in scenario
PE/PM and FE, we can can observe a considerable slowdown
(between x1.5 and x6) introduced by the heuristic analysis
code for PC = 0.

Another important observation is that fuzzing against a
fully emulated target is significantly faster than against the
physical device, as long the amount of detected corruptions
is low. This is due to three main factors. First, the fact that
the communication over TCP allows a higher throughput than
the one over a serial port. Second, by the fact that even if the
firmware is emulated, the emulator often has a much higher
clock speed than (low resource) embedded devices. Third, a
detected corruption is tied to a forcefully reboot of the target,
which means that high PCs are resulting into significant time
spent rebooting, rather than sending new inputs to the target.

However, the most important result of our experiments
is the fact that a firmware that is executed in PANDA (full
emulation) with combined heuristics enabled can be fuzzed
faster than the original embedded device under realistic values
for PC . While the first can detect all classes of vulnerabilities

we inserted in its code, the second needs to rely on a liveness
check that can only identify two of them.

VIII. DISCUSSION

The results of our experiments show that silent memory
corruptions pose a predominant challenge for fuzzing embed-
ded systems, as the majority of fuzzing solutions are relying
on observable crashes. In particular, our tests emphasize three
different aspects:

1) Relying only on liveness tests is a poor strategy.
Fuzzing embedded systems by relying solely on liveness
tests for fault detection is a poor strategy that is very
likely to miss many vulnerabilities. Likewise, using only a
single heuristic at a time does not guarantee the detection
of more vulnerabilities. Intuitively, the highest potential
for corruption detection is reached by combining several
heuristics.

2) While full emulation is the best strategy, emulators
are rarely available. Our experiments shows that, if it is
possible to fully emulate the firmware of the device under
test, then few selected heuristics can mitigate the lack of
fault detection mechanisms. This increases the accuracy
of vulnerability discovery to what we now expect when
fuzzing desktop applications. While this may seem to
solve the problem, full emulation is still very difficult
to achieve. In particular, third party testers often lack
sufficiently detailed knowledge of the hardware to im-
plement a good emulator. Moreover, even with sufficient
documentation, implementing a full emulator requires a
considerable amount of manual effort.

3) Partial emulation can lead to accurate vulnerability
detection, with a significant performance impact.
When full emulation is not possible, partial emulation
can lead to the same benefits in term of accuracy, at the
cost of a significant slowdown of roughly one order of
magnitude. In particular, partial emulation with peripheral
modeling provides an interesting trade-off between vul-
nerability detection and fuzz speed throughput and does
neither require a sound emulator nor a physical device
to be present. Moreover, this setup allows to parallelize

12

Fuzz
ing Star

t

Dev
ice

 Star
t

corruptionreboot time

liveness check

1st fuzz input

nth fuzz input
Reb

oot

corruption
detected

Fuzz
ing C

ont.

n+1h fuzz input

(a)

Fuzz
ing Star

t

Dev
ice

 Star
t

reboot time

1st fuzz input

2*nth fuzz input
Reb

oot

corruption
detected

Fuzz
ing

 C

ont.

2*n+1th fuzz input

(b)

Fig. 3: Example timelines of a fuzzing session with (a) liveness
checks, and (b) live detection without liveness checks.

fuzzing sessions, thus making fuzz-testing embedded de-
vices more scalable.

A further advantage of our emulation-based approach is
that PANDA could also be used to record and replay the exe-
cution, which largely simplify the followup analysis to identify
the root cause and possible impact when a vulnerability is
detected.

Another interesting observation is that liveness checks
often detect crashes due to a timeout, which significantly
slows down the fuzzing experiment. In an optimal setup, where
live heuristics are able to detect the majority of corruptions,
the liveness check could be omitted, which could result into
a significant performance improvement. This is conceptually
demonstrated in Figure 3 for a simplified scenario where
processing the liveness-check and processing the fuzz-input
is taking the same computation time.

Finally, while our results directly impact the performance
of fuzzing embedded systems, this work also applies to binary
symbolic execution on embedded devices firmware (e.g., as
described in [55]). An important problem of symbolic ex-
ecution is the state explosion problem: with a sufficiently
complex program and symbolic input the symbolic execution
can rapidly reach a very large number of states which exhaust
resources or takes indefinitely long time to complete. Typically,
state exploration will continue until a terminating condition is
found. Therefore, if the corruptions are not promptly detected,
the symbolic execution could spend a significant amount of
time computing useless states.

IX. LIMITATIONS

The aim of this work is to study the problem of silent
memory corruptions in embedded systems and explore possible
solutions. Since other aspects of fuzzing, such as the generation
of inputs to discover vulnerable paths, are not specific to our
domain and do not affect our study, we relied on artificial bugs
to have a better control over the experiments.

Omitting real vulnerabilities from our tests may raise the
question whether the insights of this work are applicable in

a real world scenario. We believe this to be the case, as
our work points out a fundamental (and poorly understood)
limitation of the way we test embedded systems today, which
is independent from the position of the vulnerabilities in the
code and from the way such vulnerabilities are triggered. The
behavior we observe and analyze mainly depends on the plat-
form (OS, hardware) and on how the program was compiled
(which countermeasures). The only changes when migrating
from an artificial test scenario to real world software are the
observed false positive and negative rates of the individual
heuristics, which are, as pointed out in Section VII-C, highly
implementation-specific.

Furthermore, while we initially describe several options,
we then focused our study on emulation-based approaches
to tackle silent memory corruptions. However, despite the
increasing amount of research dedicated to this topic, the
ability to fully emulate arbitrary firmware images is still an
open problem. Therefore, the solution we discuss in this paper
may not be applicable to all scenarios and all embedded system
devices. In conclusion, our work raises awareness about the
impact of silent memory corruptions on fuzzing, provides
the building blocks to solve this problem, and will hopefully
stimulate new research in this important direction.

X. CONCLUSION

In this paper, we explored the challenges in fuzzing embed-
ded devices. We classified the types of devices and the types
of memory corruption effects – which can either be observable
or silent. We pinpointed that one of the predominant issues are
silent memory corruptions. Silent memory corruptions are not
specific to embedded systems. However, desktop system have a
variety of protection mechanisms which are turning the major-
ity of silent corruptions into observable crashes, while those
mechanisms are often lacking on embedded devices. Hence,
we studied the effects of silent corruptions on different classes
of embedded devices. We evaluated a variety of approaches
to mitigate this issue, and implemented a system based on
Avatar and PANDA, which implements six different live anal-
ysis heuristics for partial and full emulation. We conducted
experiments with this system which indicates that live analysis
can improve fuzzing of embedded systems. Finally, this work
shows the importance of having good emulators. Therefore,
we hope that our results will stimulate more research in both
improving the construction of emulators for embedded devices
and in fuzzing such devices.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in 12th ACM conference on Computer and communications
security (CCS), 2005.

[2] V. Alimi, S. Vernois, and C. Rosenberger, “Analysis of embedded
applications by evolutionary fuzzing,” in International Conference on
High Performance Computing & Simulation (HPCS). IEEE, 2014.

[3] M. Almgren, D. Balzarotti, J. Stijohann, and E. Zambon, “D5.3 report
on automated vulnerability discovery techniques,” 2014.

[4] P. Amini and A. Portnoy, “Sulley fuzzing framework,” 2010.
[5] Z. Basnight, J. Butts, J. Lopez, and T. Dube, “Firmware modification

attacks on programmable logic controllers,” International Journal of
Critical Infrastructure Protection, vol. 6, no. 2, 2013.

[6] A. Beckus, “QEMU with an STM32 microcontroller implementation,”
2012, http://beckus.github.io/qemu stm32/.

13

[7] D. L. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, 2004.

[8] D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards Automated
Dynamic Analysis for Linux-based Embedded Firmware,” in Network
and Distributed System Security Symposium (NDSS), 2016.

[9] X. Chen, A. Slowinska, and H. Bos, “Who allocated my memory?
Detecting custom memory allocators in C binaries,” in WCRE, 2013.

[10] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for in-
vivo multi-path analysis of software systems,” ACM SIGPLAN Notices,
vol. 46, no. 3, 2011.

[11] Clang Users Manual, “Undefined behavior sanitizer.”
[12] A. Costin, A. Zarras, and A. Francillon, “Automated Dynamic Firmware

Analysis at Scale: A Case Study on Embedded Web Interfaces,” in
11th ACM symposium on Information, computer and communications
security (ASIACCS), 2016.

[13] A. Cui and S. Stolfo, “Defending embedded systems with software
symbiotes,” in Recent Advances in Intrusion Detection. Springer, 2011.

[14] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Re-
peatable reverse engineering with PANDA,” in Proceedings of the 5th
Program Protection and Reverse Engineering Workshop. ACM, 2015.

[15] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan, “LAVA: Large-scale automated vulnera-
bility addition,” in 37th IEEE Symposium on Security and Privacy (SP),
2016.

[16] M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, 2011.
[17] I. D. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and

Vulnerable: A Story of Telematic Failures,” in 9th USENIX Workshop
on Offensive Technologies (WOOT), 2015.

[18] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in 31st International Conference on Software Engineering.
IEEE, 2009.

[19] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“Pulsar: Stateful Black-Box Fuzzing of Proprietary Network Protocols,”
in Securecomm, 2015.

[20] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: whitebox fuzzing
for security testing,” Queue, vol. 10, no. 1, 2012.

[21] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations,”
in USENIX Security Symposium, 2013.

[22] S. Heath, Embedded systems design. Newnes, 2002.
[23] W. Jin, C. Cohen, J. Gennari, C. Hines, S. Chaki, A. Gurfinkel,

J. Havrilla, and P. Narasimhan, “Recovering C++ objects from binaries
using inter-procedural data-flow analysis,” in Proceedings of the ACM
SIGPLAN on Program Protection and Reverse Engineering Workshop
(PPREW), 2014.

[24] N. Kamel and J.-L. Lanet, “Analysis of HTTP protocol implementation
in smart card embedded web server,” International Journal of Informa-
tion and Network Security, vol. 2, no. 5, 2013.

[25] M. Kammerstetter, D. Burian, and W. Kastner, “Embedded Security
Testing with Peripheral Device Caching and Runtime Program State
Approximation,” in 10th International Conference on Emerging Security
Information, Systems and Technologies (SECUWARE), 2016.

[26] M. Kammerstetter, C. Platzer, and W. Kastner, “PROSPECT: Peripheral
Proxying Supported Embedded Code Testing,” in 9th ACM symposium
on Information, computer and communications security (ASIACCS),
2014.

[27] Keen Security Lab, “Car hacking research: Remote attack tesla motors,”
2016, http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-
Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/.

[28] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in 30th IEEE Symposium
on Security and Privacy (SP), 2010.

[29] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: enabling near-
real-time dynamic analyses of embedded systems,” in 9th USENIX
Workshop on Offensive Technologies (WOOT), 2015.

[30] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim, “Fuzzing CAN Packets

into Automobiles,” in 29th International Conference on Advanced
Information Networking and Applications (AINA). IEEE, 2015.

[31] U. Lindqvist and P. G. Neumann, “The future of the internet of things,”
Communications of the ACM, vol. 60, no. 2, 2017.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in ACM SIG-
PLAN notices, vol. 40, 2005.

[33] D. McMillen, “Security attacks on industrial control systems,” IBM
Security, Tech. Rep., 2015.

[34] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, 1990.

[35] C. Miller and C. Valasek, “Remote exploitation of an unaltered passen-
ger vehicle,” Black Hat USA, vol. 2015, 2015.

[36] C. Mulliner, N. Golde, and J.-P. Seifert, “SMS of Death: From Analyz-
ing to Attacking Mobile Phones on a Large Scale,” in USENIX Security
Symposium, 2011.

[37] NCC Group, “TriforceAFL,” 2017, https://github.com/nccgroup/
TriforceAFL.

[38] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in ACM SIGPLAN notices, vol. 42,
no. 6, 2007.

[39] A. Nordrum, “The internet of fewer things [news],” IEEE Spectrum,
vol. 53, no. 10, 2016.

[40] D. Papp, Z. Ma, and L. Buttyan, “Embedded systems security: Threats,
vulnerabilities, and attack taxonomy,” in 13th Annual Conference on
Privacy, Security and Trust (PST). IEEE, 2015.

[41] J. Pereyda, “boofuzz,” 2016, https://github.com/jtpereyda/boofuzz.
[42] J. R., “Processor tracing,” Intel Blog, September 2013, https://

software.intel.com/en-us/blogs/2013/09/18/processor-tracing.
[43] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,

“VUzzer: Application-aware Evolutionary Fuzzing,” in Network and
Distributed System Security Symposium (NDSS), 2017.

[44] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A Fast Address Sanity Checker,” in USENIX Annual
Technical Conference, 2012.

[45] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: data race de-
tection in practice,” in Proceedings of the 3rd Workshop on Binary
Instrumentation and Applications (WBIA). ACM, 2009.

[46] K. Serebryany, “Sanitize, Fuzz, and Harden Your C++ Code,” 2016.
[47] T. Shellphish, “Cyber Grand Shellphish,” Phrack Papers, 2017.
[48] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A Dynamic Ex-

cavator for Reverse Engineering Data Structures,” in Network and
Distributed System Security Symposium (NDSS), 2011.

[49] E. Stepanov and K. Serebryany, “MemorySanitizer: fast detector of
uninitialized memory use in C++,” in International Symposium on Code
Generation and Optimization (CGO). IEEE, 2015.

[50] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in Network and Dis-
tributed System Security Symposium (NDSS), 2016.

[51] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[52] F. Van Den Broek, B. Hond, and A. C. Torres, “Security testing of GSM
implementations,” in International Symposium on Engineering Secure
Software and Systems. Springer, 2014.

[53] V. Van der Veen, L. Cavallaro, H. Bos et al., “Memory errors: the
past, the present, and the future,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2012.

[54] Vendicator, Stack Shield, “A stack smashing technique protection tool
for Linux,” 2000, http://www.angelfire.com/sk/stackshield/info.html.

[55] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR:
A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares,” in Network and Distributed System Security
Symposium (NDSS), 2014.

[56] M. Zalewski, “American fuzzy lop,” 2014, http://lcamtuf.coredump.cx/
afl/.

14

APPENDIX

NAT PE/MF PE/PM FE
Dtot Itot Dtot Itot Dtot Itot Dtot Itot

No Heuristic – 14269 – 166 – 9997 – 53390

P c
=0

Individual Heuristics:
a) Call Stack Tracking – – – 166 – 8467 – 30418
b) Call Frame Tracking – – – 166 – 4213 – 5400
c) Stack Object Tracking – – – 166 – 8233 – 28318
d) Segment Tracking – – – 166 – 9390 – 41101
e) Format Specifier Tracking – – – 166 – 9257 – 38158
f) Heap Object Tracking – – – 166 – 9321 – 39654
Heuristics c,d,e,f – – – 166 – 7921 – 25557

No Heuristic 43% 12681 100% 165 35% 2241 40% 37569

P c
=0

.0
1

Individual Heuristics:
a) Call Stack Tracking – – 50% 165 34% 2386 42% 25059
b) Call Frame Tracking – – 0% 166 37% 2512 38% 18289
c) Stack Object Tracking – – 50% 165 52% 1894 42% 23213
d) Segment Tracking – – 50% 166 64% 2372 61% 31768
e) Format Specifier Tracking – – 33% 163 23% 2382 38% 31123
f) Heap Object Tracking – – 0% 166 76% 1794 79% 28564
Heuristics c,d,e,f – – 100% 166 100% 1985 100% 19387

No Heuristic 39% 9663 14% 163 36% 1087 38% 15985

P c
=0

.0
5

Individual Heuristics:
a) Call Stack Tracking – – 77% 159 30% 1143 39% 15604
b) Call Frame Tracking – – 55% 164 36% 874 37% 15212
c) Stack Object Tracking – – 33% 162 45% 905 40% 15537
d) Segment Tracking – – 66% 165 68% 987 62% 9688
e) Format Specifier Tracking – – 33% 164 50% 1192 35% 15909
f) Heap Object Tracking – – 87% 162 91% 852 78% 7772
Heuristics c,d,e,f – – 100% 165 100% 863 100% 5813

No Heuristic 40% 7067 41% 158 38% 956 38% 8267

P c
=0

.1

Individual Heuristics:
a) Call Stack Tracking – – 33% 161 36% 813 39% 7773
b) Call Frame Tracking – – 50% 161 43% 811 39% 7773
c) Stack Object Tracking – – 33% 162 43% 850 36% 8122
d) Segment Tracking – – 66% 164 81% 868 64% 5048
e) Format Specifier Tracking – – 27% 159 32% 908 36% 8612
f) Heap Object Tracking – – 64% 161 84% 779 80% 4387
Heuristics c,d,e,f – – 100% 165 100% 793 100% 3727

Appendix A: Number of inputs sent to the target during a fuzzing session Itot and vulnerability detection efficacy Dtot for different
corruption probabilities PC in the four target setups Native (NAT), Partial Emulation with Memory Forwarding (PE/MF), Partial
Emulation with Peripheral Modeling (PE/PM) and Full Emulation (FE).

15

