
rtCaptcha: A Real-Time CAPTCHA Based Liveness
Detection System

Erkam Uzun, Simon Pak Ho Chung, Irfan Essa and Wenke Lee
Georgia Institute of Technology

euzun@gatech.edu, pchung34@mail.gatech.edu, irfan@gatech.edu and wenke@cc.gatech.edu

Abstract—Facial/voice-based authentication is becoming in-
creasingly popular (e.g., already adopted by MasterCard and
AliPay), because it is easy to use. In particular, users can now
authenticate themselves to online services by using their mobile
phone to show themselves performing simple tasks like blinking
or smiling in front of its built-in camera. Our study shows that
many of the publicly available facial/voice recognition services
(e.g. Microsoft Cognitive Services or Amazon Rekognition) are
vulnerable to even the most primitive attacks. Furthermore,
recent work on modeling a person’s face/voice (e.g. Face2Face [1])
allows an adversary to create very authentic video/audio of
any target victim to impersonate that target. All it takes to
launch such attacks are a few pictures and voice samples of
a victim, which can all be obtained by either abusing the camera
and microphone of the victim’s phone, or through the victim’s
social media account. In this work, we propose the Real Time
Captcha (rtCaptcha) system, which stops/slows down such an
attack by turning the adversary’s task from creating authentic
video/audio of the target victim performing known authentication
tasks (e.g., smile, blink) to figuring out what is the authentication
task, which is encoded as a Captcha. Specifically, when a user tries
to authenticate using rtCaptcha, they will be presented a Captcha
and will be asked to take a “selfie” video while announcing
the answer to the Captcha. As such, the security guarantee
of our system comes from the strength of Captcha, and not
how well we can distinguish real faces/voices from synthesized
ones. To demonstrate the usability and security of rtCaptcha,
we conducted a user study to measure human response times to
the most popular Captcha schemes. Our experiments show that,
thanks to the humans’ speed of solving Captchas, adversaries
will have to solve Captchas in less than 2 seconds in order to
appear live/human and defeat rtCaptcha, which is not possible
for the best settings on the attack side.

I. INTRODUCTION

With automatic facial/voice recognition becoming more ac-
curate1 and available2, online services are increasingly allow-

1Facebook [2] and Google [3] have respectively achieved recognition
accuracies of 97.35% and 99.63% on faces under different illumination, pose
and facial expressions

2Through cloud services like Microsoft Cognitive Services or Amazon
Rekognition

ing their users to authenticate using their face/voice. In such
authentication schemes, all one needs to do to authenticate is
to perform simple tasks like smile, blink or nod in front of
his/her mobile phone, while the phone’s camera will record
the video of the user performing such a task and send it to the
service provider. The authentication is successful if the service
provider determines that the received video is indeed that of
the expected user performing the required task.

While these new generation facial-recognition-based au-
thentication systems offer superior usability and are robust in
benign settings, existing works already have shown that they
are quite vulnerable to several kinds of attacks. Depending on
how the malicious video/media is fed into the authentication
system in order to impersonate a user, existing attacks can be
classified as presentation attacks and compromising attacks
(see Fig. 1 for an illustration).

Fig. 1. Attack channels specified by ISO/IEC 3017-1 standard and possible
spoofing media types deployed via these channels. CHpa and CHca represent
presentation and compromising attack channels respectively.

As we can see in Fig. 1, presentation attacks physically
“present” the impersonating media (mostly static photos or
masks) to the sensors used by the authentication system, while
compromising attacks involve tempering/fabricating the digital
output of the sensors.

An observation we can make here is that compromising
attacks are potentially much more scalable than presentation
attacks, because compromising attacks can happen entirely in
the digital world, while presentation attacks are restricted to
physically presenting something to the target system. Recent
advances in face modeling (e.g. Face2Face [1]) further make
it easier to automate compromising attacks. In particular, all
an attacker needs to generate authentic looking video of the

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23253
www.ndss-symposium.org

target victim performing the task necessary for authentication
are pictures or videos of the victim. Such materials can be
obtained either through abusing the camera of the authen-
tication device, or through accessing publicly available data
from the victim’s social media accounts– all very doable
once the attacker has a foothold on the authentication device
(e.g. have their malicious app installed and granted the right
permissions). Once such “authentication video” is generated,
the attacker will need a way to feed it into the authentication
system to launch a compromising attack. This final step can
be achieved in a number of ways, e.g. through compromising
the authentication device’s OS (and then modifying the output
buffer of the camera) or through reverse engineering the
authentication protocol and directly talking to the server.

Based on the above observation that compromising attacks
are much easier to launch in a large scale than presentation
attacks, we will focus on the former in this paper. However,
as we will note in Section §VIII, our solution is also expected
to make state-of-the-art presentation attacks more detectable.

Regarding existing work in defense against both presen-
tation and compromising attacks, we can argue that most
defenses focus on making it harder for the adversary to
generate sufficiently good video of the victim performing the
“authentication task.” An obvious example is to perform better
analysis of the received video to determine if it came from
a real human or was somehow synthesized. A less obvious
example is liveness detection, which is mainly used to defeat
“replay” attacks that employ static pictures of the victim; and
this simply pushes the attackers to create animatable 3D mod-
els, instead of continuing to use static pictures. What remains
constant is that the “authentication task” is predefined, fixed
and known to the adversary, and this allows the adversary
to develop new technologies to create authentic videos of the
victims performing the right task.

In this work, we propose a different, orthogonal approach;
instead of making it harder for the adversary to generate
video of the victim performing the known task to fool our
system, we make it harder for the adversary to know what
is the required task the user must perform in order to suc-
cessfully complete the authentication. In particular, at each
authentication attempt, instead of asking the user to perform
simple actions such as blink or smile in front of the camera
on the authentication device, our server will send the user
a Captcha and have the authentication device take a video
of the user answering that Captcha. For a normal user, this
will be easy, but for an automated attack, this will mean
automatically solving the Captcha before feeding the answer
into the algorithm for generating fake video of the user
answering the Captcha. As in all Captcha schemes, we can
assume that the time it takes for a real user to solve the
Captcha is significantly shorter than it is for the adversary
(even if some human intervention is involved, see Section §VII
for our evaluation of this claim), and only authenticate in case
the correct response is received within some threshold time.

To summarize, the high level idea of our system is to
turn the attacker’s task from generating good quality video

of the victim to one of breaking Captcha– a task that is well
understood and studied by the security community. A point
worth noting is that while the security of our system depends
on the security of the Captcha scheme we used, we consider
the security of Captcha an orthogonal problem. We believe
Captcha (i.e. being able to tell if a user of an online service
is a human) is so important, not only to us, but to the whole
online ecosystem, that the security of Captcha will continue
to improve, and any improvement in the security/robustness of
Captcha can be easily adopted to our system.

We have implemented our high level idea in a proto-
type system called rtCaptcha. Our user study shows that
normal human response time to the Captcha presented at
authentication time is less than 1 second even for the most
complex scheme. We also conducted experiments on the same
challenges with existing Captcha solving services and state-
of-the art techniques which has 34.38% average recognizing
accuracy and 6.22 seconds average execution time [4]. In other
words, there is a very large safety margin between the response
time of a human solving a Captcha and a machine trying to
break one.

In summary, the contributions of this work are:
1) We perform an empirical spoofing analysis on current

cloud based audio/visual recognition and verification sys-
tems that use state-of-the art data-driven deep learning
architectures.

2) We propose a practical and usable liveness detection
scheme by using security infrastructure of Captchas to
defeat even the most scalable and automated attacks.

3) We perform analysis on existing automated and man-
powered Captcha-breaking services and state-of-the art
Captcha-solving algorithms by using the most popular
Captcha schemes in the market.

4) We have implemented a prototype Android application
and conducted a user study.

5) Our evaluations show that audio response of a normal
human being to a Captcha challenge is much shorter than
automated attacks which have state-of-the art synthesizers
and Captcha-breaking methods.

In the rest of the paper, we will introduce our threat model in
Section §II, present existing attacks and defense mechanisms
in Section §III, present our experiment on launching com-
promising attacks against existing, publicly available systems
in Section §IV, describe design and details of rtCaptcha in
Section §V, evaluate the human performance and existing
Captcha breaking tools on solving Captcha challenges along
with usability and user acceptance of rtCaptcha in Section §VI,
provide the security analysis of rtCaptcha against our threat
model in Section §VII, discuss about limitations and future
works in Section §VIII, and conclude in Section §IX.

II. THREAT MODEL

In this work, we focus on defending against powerful,
automated compromising attacks. We assume the following
threat model:

2

• the authentication device is a mobile phone with a camera
and a microphone,

• the authentication server is not compromised,
• the kernel of the authentication device can be compro-

mised,
• there is no form of attestation mechanism on the authen-

tication device, since software attestation is theoretically
security by obscurity and hardware attestation is not yet
available for phones,

• the protocol between the client app running on the
authentication device and the server is known to the
attacker, thus the attacker can run malicious version of
the client app on the authentication device that will
completely control the camera and microphone input to
the authentication server,

• the attacker can abuse the camera and microphone on the
authentication device to collect samples of the face and
voice of the victim; the collected samples can then be
used to generate models of the victim’s voice and face,
which can then be used to synthesize videos and audios
for impersonating the victim during a future authentica-
tion session,

• the attack needs to be completely automated, and it needs
to happen on the victim’s authentication device, otherwise
we believe the attack cannot scale.

Out-of-scope: Based on above assumptions, we consider
the following attacks out of scope for this work. 1) Pre-
sentation attacks which involve showing 2/3D printed and
wearable masks, hard copy photos or device screens displaying
the target’s face and other rudimentary manipulations, (since
this means the attack must happen on an authentication
device physically controlled by the attacker, thus violating
the last assumption in the threat model). 2) Facial mimicry
manipulations through face reenactment [1], [5], where facial
expressions of an imposter solving the Captcha are captured
and applied in real time to a 3D model of the victim to syn-
thesize the victim’s face responding to our liveness detection
challenge3 (this requires a source actor to perform the act
before the software can map it to the target subject, which
is not a practical and scalable attack scenario for automated
tasks).

III. RELATED WORK

In this section, we summarize existing liveness detection
methods against both presentation and compromising attacks.

A. Presentation Attacks and Defenses

The requirement of liveness detection systems against face
spoofing attacks was first introduced by researchers who
showed that existing face authentication applications for both
desktop and mobile platforms are vulnerable to single image
spoofing [6], [7]. As a defense mechanism against this at-
tack, researchers proposed challenge-response based liveness
detection mechanisms that involve user interaction such as

3In [1], this can be achieved with a 20ms latency.

smile, blink, lip or head movement, etc. [8], [9]. However,
frame switching or video-based attacks proved how easy
it was to bypass smile or blink detection since they have
arbitrary facial frames creating a motion to fulfill desired
challenges [10]. Both image and video-based attacks are de-
ployed as presentation attacks, but, they also are suitable for a
compromising attack scenario. However, the latter attacks and
corresponding defense mechanisms have been sophisticated
for either presentation or compromising attacks.

Against presentation attacks, researchers mainly focused on
discriminating 3D structure, texture or reflectance of a human
face from a planar surface. To this end, 3D shape inferring
features such as optical flow and focal length analysis, color
and micro texture analysis, or features extracting reflectance
details (such as visual rhythm analysis) have been proposed
against presentation attacks [11]–[16]. On the other hand,
researchers proposed a wearable 3D mask for presentation
attacks to defeat all of these anti-spoofing methods. However,
reflectance and texture analysis-based defense mechanisms
have also been proposed against 3D mask attacks [17]–
[20]. It is worth noting that many different approaches and
design choices have been proposed at the competitions on the
countermeasures to presentation attacks [21]–[23].

B. Compromising Attacks and Defenses

Recent advances in 3D face model creation (using a couple
of images) have been employed to launch compromising
attacks [24]. In order to capture enough raw material for model
generation, the victim’s face/voice could be captured through
a user interface (UI) redressing attack caused by a malicious
app that allows particular permissions (e.g. draw-on-top on
Android device [25]) without his/her notice. To generate a
3D face model from captured image/video, the most suitable
approach in existing literature is to use pre-built 3D Morphable
Models (3DMMs) [26]–[28]. 3DMMs are the statistical 3D
representations built on facial textures and shapes of many
different subjects (e.g. 10,000 faces in [27]) by incorporating
with their facial expressions and physical attributes at the
same time. Once built, a 3DMM is ready for reconstruction
according to facial attributes of a victim’s face. The details
of building a 3D face model could be found in [27], but the
overall pipeline is as follows. First, facial landmarks which
express pose, shape and expression are extracted from the
victim’s face. Then, the 3DMM is reconstructed to match
the landmarks from both the 3D model and the face. Hence,
pose, shape and expression of the face are transferred to the
3DMM. After reshaping the 3DMM, texture of the victim’s
face is conveyed to the 3D model. Since a 2D face photo/frame
does not contain full representation of its 3D correspondence,
a photo-realistic facial texture is generated from the visible
face area in the photo/frame for missing parts in the 3D
representation [29]. Then, this 3D face is transferred into a VR
environment to fulfill requested challenge tasks (e.g., smile,
blink, rotate head, etc.).

On the defense against compromising attacks, even though
some inertial sensor-assisted methods increase the security

3

of facial authentication systems [30], such a compromised
environment with given permissions can allow attackers to
use additional sensor data to manipulate the motion of 3D
face model in a VR environment. Another defense mechanism
against these attacks, especially against VR based ones, could
be analyzing the authentication media by using forensic tech-
niques to detect forged audio/video [31], [32]. However, since
3D face models are created from scratch with high fidelity
texture data, these methods could not detect any forgery on
spoofing media. On the other hand, new approaches (such as
discrepancy analysis on color filter array of camera sensor
noise or multi-fractal and regression analysis on discriminating
natural and computer generated images) could be used as
countermeasures against 3D-face-model-based attacks [33],
[34]. However, attackers can extract genuine noise patterns or
features from existing or captured images to embed them into
generated video in a compromised device, thus, these defense
mechanisms also fail against our threat model [35]. Hence,
defense mechanisms against compromised attacks should not
rely on additional device data as suggested in previous works.

User authentication through audio response to text chal-
lenges is first proposed by Gao et al. [36]. However, their
goal is mainly to distinguish between natural and synthesized
voice. Their results show that human responses can pass the
system with 97% accuracy in 7.8 seconds average time while a
very basic text-to-speech (TTS) tool (Microsoft SDK 5.14) can
pass the system with 4% success rate. In contrast to rtCaptcha,
the work in [36] use plain-text challenges and thus allows
the attacker to easily learn what is the task involved in the
liveness detection challenge, and thus can be easily defeated
by more sophisticated real-time synthesis of the victim’s voice
(e.g. [37], [38]). Shirali et al. [39] proposed a scheme that
involves audio Captchas. In their system, challenges are sent
to users in audio formats and users give audio responses
back to the system. They use audio features such as Mel-
Frequency Cepstral Spectrum (MFCC) to correlate challenge
and response audios at the decision side. They achieved
80% of authentication accuracy on average. However, since
breaking audio Captchas are as easy as breaking plain-text
challenge by using a speech-to-text application, this work also
does not provide good defense against compromising attacks.
To the best of our knowledge, rtCaptcha is the first approach
that binds a text-based Captcha challenge response with user’s
biometric data in the realm of audio/visual liveness detection.

IV. EVALUATING THE SECURITY OF EXISTING SYSTEMS

In this section, we study how vulnerable the most popular
facial and voice-authentication systems are to the compro-
mising attacks which motivate our work in rtCaptcha. In
particular, we tested all studied systems against compromising
attacks of various levels of sophistication in terms of how
they create the impersonating video/audio of the victims, using
open source spoofing datasets.

4www.microsoft.com/en-us/download/details.aspx?id=10121

Facial Authentication Systems Studied

We tested most popular cloud-based facial recognition ser-
vices that are provided or funded by major companies such as
Microsoft5, Amazon6, AliPay(Face++)7 and Kairos8.

Database: We tested each studied system against videos
showing real/fake faces. We used subjects from the open
source CASIA Face Anti-Spoofing Database [40]. In particu-
lar, we took the genuine videos from the CASIA Face Anti-
Spoofing Database and: 1) used them as positive samples
to test each studied system, and 2) used them as samples
for generating synthesized videos, and used them as negative
samples against each tested system. For our experiment, we
used the first 10 subjects from the CASIA database.

Synthesizing methods: We tested each studied system
against videos synthesized using methods with various levels
of sophistication. Fig. 2 presents a complete set of synthesized
video for a user in the database (5th subject in training set). We
can summarize the synthesizing techniques employed starting
from the most complex to the simplest as followed:

Fig. 2. A full media set including genuine and fake versions of it for a subject
in our face authentication database.

1) 3D Face Model: This is the state-of-the art method for
generating fake face video for the purpose of compro-
mising attacks [24]. For our experiments, we generated
3D face models from genuine videos of each subject in
our dataset by using three different tools: i) Surrey Face
Model (labeled as 3Dsf in Fig. 2), a multi-resolution
3DMM and accompanying open-source tool [28]; ii)
FaceGen9 (3Dfg), and iii) demo version of CrazyTalk810

(3Dct8) commercial tools used for 3D printing or ren-
dering 3D animation and game characters. Although the
demo tool puts a brand mark on 3D models, they don’t
seem to have any effect on the effectiveness of the attack.

5azure.microsoft.com/en-us/services/cognitive-services/
6aws.amazon.com/rekognition/
7www.faceplusplus.com
8kairos.com
9https://facegen.com
10https://www.reallusion.com/crazytalk

4

TABLE I
BASELINE AND SPOOFING RESULTS OF CLOUD BASED FACE AUTHENTICATION SYSTEMS

Baseline / Overall Conf. (%) Number of Verified Faces Over 10 / Overall Confidence Rate (%)

Cognitive Service TP TN 3Dsf 3Dfg 3Dct8 2Dcar 2Dske 2Dfem

Face API MS Azure 10 / 78 10 / 65 10 / 70 10 / 75 10 / 70 10 / 82 10 / 84 10 / 86
Kairos Human Analytics 10 / 80 8 / 58 10 / 75 10 / 78 10 / 73 10 / 91 10 / 83 10 / 80
Cognitive Services Face++ 10 / 87 10 / 83 10 / 86 10 / 71 10 / 72 9 / 77 7 / 80 7 / 75
Amazon Rekognition 10 / 97 10 / 82 10 / 89 8 / 77 9 / 67 7 / 84 6 / 84 9 / 89

2) Cartoonized and Sketch Photos: To detect whether the
face authentication systems check the texture informa-
tion or not, we convert randomly grabbed frames from
the genuine videos to cartoonized and sketch forms11.
We express these manipulations with 2Dcar and 2Dske,
respectively.

3) Fake Eyes/Mouth Photo: Finally, we replaced eyes and
mouth regions of the stationary photos with fake ones
which are cropped from an animation character. We con-
duct this attack method to prove that facial authentication
and verification systems only focus on the location of
facial attributes. To create appropriate fake eyes and
mouth, we first extract the facial landmarks to get their
regions. Afterwards, we reshape our fake eyes and mouth
templates to exactly fit their corresponding regions. This
manipulation is represented by 2Dfem in the evaluation
results.

Methodology: We experimented with each studied service
as followed: we enrolled each subject with his genuine face
sample. After the enrollment, we established the baseline
performance of each service by presenting one genuine face
from the enrolled user (thus measuring its true positive, TP)
and one genuine face from a different user (thus measuring
its true negative, TN). To test the robustness of each service
against attacks, we presented each service with all of our
synthesized videos. To make the experiment more realistic, we
generated the synthesized videos using samples different from
those used for registration. The success rate of each synthesis
technique and its overall similarity rates (which is the tested
service’s measure of how close the presented video is to the
one from registration) are in Table-I. Since most of the services
accept 50% of similarity rate for correct verification, we also
consider this threshold in our experiments.

Findings: First of all, under benign conditions, we find the
analyzed services have an overall baseline true positive (TP) of
100% and an overall baseline true negative (TN) of 95%, with
85.5% and 75.7% overall confidence rates, respectively. Our
results also show that Amazon Rekognition service performs
best among all tested service, since its confidence rates on
both TP and TN are highest. Unfortunately, we also find that
all of the analyzed services are vulnerable against almost all
of the tested synthesis techniques. Results show that 92.5%
of the spoofed faces are detected as genuine copies with an
average similarity rate of 79%. More specifically, Cartoonized

11http://www.cartoonize.net

and Sketch photo attacks showed that the texture information is
not considered in the authentication process at these systems.
When we made detailed analysis to understand the reason for
a lower matching rate in the Sketch photo attack, we conclude
that it is because the tested services cannot detect facial region
on those samples. The success of Cartoonized and Sketch
photo attacks highlights that attackers can succeed without
putting much effort in building a high fidelity facial texture;
it would add to the latency in generating the synthesized
video to answer the liveness detection challenge presented.
Moreover, results of fake eyes/mouth spoofing amusingly
proved that all of these systems are only using the landmark
locations as the facial feature set on their face authentication
protocol. 3D facial model spoofing results also support these
outcomes since we used non-sophisticated tools to create 3D
models and facial textures. Even though the demo software
puts some brand marks over the generated face, we still
get very high similarity rates with these 3D models. Hence,
faces created by one of the latest 3D facial model generation
software (e.g. [29], [41]) are very unlikely to be detected
as fake by these services. As a result, we can make an
inference that even if a facial authentication scheme uses a
challenge-response based liveness detection mechanism (such
as smile/blink detection) accompanying one of these services,
it will be very easy to spoof such a scheme even by conducting
a rough switching frame manipulation (e.g. when asked to
blink, go from a frame with open eyes to one with closed
eyes for a short time) or using a demo application to create
3D face model and manipulate the model to answer the
challenge. For instance, Fig. 3 shows how easy it is to get
a high smiling probability from Microsoft Cognitive Service
even with a rough manipulation on a genuine face while
preserving similarity rate around 78.52%. Assuming a security
mechanism that uses smile-detection as a liveness clue and
MS Face API to authenticate user face (as Uber does for
driver authentication), then a crude attack as in the figure can
defeat this mechanism without using any sophisticated tool or
algorithm.

Voice Authentication Systems

In this section, we show that automatic speaker verification
(ASV) systems also have similar vulnerabilities to compro-
mising attacks as do their facial recognition counterparts.
To make a clear demonstration, we systematically conducted
attacks with synthesized voices from the Microsoft Speaker

5

Fig. 3. Smiling probabilities of genuine and fake samples while their
similarity rate is 78.52%.

Identification (SI) service by using open-sourced synthesized
speech data sets.

Database: In our experiments, we used two different
datasets, from ASV Spoofing Challenge [42] (Vasv) and DNN
based speaker adaptation work by Wu et al. [38] (Vdnn).
The first dataset, Vasv , contains both genuine and synthesized
voice samples for a total of 106 male and female users. ASV
Spoofing Challenge is organized for Interspeech 2015 Confer-
ence to determine best technique detecting spoofing methods
against automatic speaker verification systems. Hence, orga-
nizers published Vasv dataset containing synthesized versions
of genuine data which are generated by 7 voice conversion
(VC) and 3 speech synthesizing (SS) techniques. We denoted
these samples from V1

asv to V10
asv . Some of the synthesized

data have published before the submissions evaluated, which
are called known attacks, and some of them are used only for
evaluation which are called unknown attacks. Overall spoofing
detection accuracy of the submissions is around 97% for
known attacks and 91% for unknown attacks. It is worth noting
that almost all submitted countermeasure methods perform
worst on the last SS based samples (V10

asv).
The second dataset, Vdnn, contains both genuine and syn-

thesized samples for one female and one male speaker, where
the synthesized speech samples were generated by using 7
different settings of their DNN framework. These samples are
denoted as V1−7

dnn. Objective and subjective experiments prove
that all DNN techniques in the paper have better adaptation
performance than the hidden Markov model baseline in terms
of naturalness and speaker similarity. Hence, we use this
dataset as the state-of-the art spoofing attacks.

Fig. 4. Success rate of speaker spoofing attacks to Microsoft SI service.

Methodology: We first enrolled 10 users using their genuine
samples from the two datasets, (2 users from Vdnn and 8
randomly selected users from Vasv), each with a total of 30
seconds of speech samples. We then tested the targeted service
against 10 genuine samples from the enrolled user, as well as
7 (for Vdnn) or 10 (for Vasv) synthesized samples generated
for the enrolled user by each tested technique, and evaluated if
each tested sample was successfully identified as the enrolled
user.

Findings: In Fig. 4, we present the genuine identification
results for the genuine samples (Org), synthesized samples
generated by 10 different methods in the Vasv dataset (V1

asv to
V10

asv) and 7 different DNN methods in the Vdnn dataset from
left to right. V1−7

dnn average result is given for 7 DNN based syn-
thesizers in the Vdnn dataset. First of all, we note that 97% of
the genuine samples were identified correctly. Hence, it shows
that the cloud service is working accurately for the recognition
tasks. On the other hand, samples synthesized by various tested
SS and VC methods have an average success rate of 64.6%.
More specifically, even with the worst performing VC tool,
there are still 28.75% of the synthesized samples identified
to be from the real enrolled user. Additionally, samples from
open sourced TTS synthesizers (10th method of Vasv) can
have a 90% chance of being considered legitimate. Finally, if
an adversary generate synthesized voice of a victim by using
a DNN based approach, the SI service identify the forged
speakers as a genuine one 100% of time (this is true for
all methods/settings in Vdnn). The results also prove that the
parameter space to synthesize is much more bigger than those
which are used by verification methods. That is why, even the
simplest VC approach can tune the voice characteristics of the
victim to the level of a verification system’s requirements.

V. OUR APPROACH

The workflow of rtCaptcha is summarized in Figure 5. The
workflow starts when an authentication device (i.e. mobile
phone) needs to start an authentication/registration session;
to proceed, it will establish a secure connection with our
authentication server. Upon receiving requests over the secure
channel, our server will generate and send a Captcha challenge
to the authentication device and measure the time until the
authentication device responds. The session will time out if
no response is received after a predefined period.

On the authentication device, once it receives the Captcha
challenge, it will display the challenge to the user and start
recording the user’s audio response. The client app running on
the authentication device will also take a number of snapshots
of the user at random time while he/she is responding to the
challenge, using the front camera on the phone. We use the
phone’s voice recognition system to determine when the user
has finished responding to the Captcha challenge; the captured
voice and face samples will then be sent to the server using the
established secure channel. To avoid unnecessarily utilizing the
more expensive voice/facial recognition service, our server will
perform initial sanity check of the response by transcribing
the audio response received using a standard speech-to-text

6

Fig. 5. Process flow diagram of the Real Time Captcha. (Tr , Th and Fvf refer to user response time, human response time threshold and face & voice
feature vector, respectively.)

(STT) algorithm to determine if the response corresponds to
the Captcha solution to the challenge we sent. We will also
determine how much time it takes for the user to start respond-
ing to the challenge by measuring when did the first speech
activity happen in the received response. If the user took too
long to start responding, we will consider the liveness test a
failure and reject the authentication/registration request. If the
received response passes the preliminary checks, we’ll perform
the more expensive analysis to determine if the validity of the
received voice and face samples (the exact process will depend
on whether the request is for authentication or registration, and
we will detail the process for each case below).

Registration: Our analysis for registration is very simple
and mostly involves sanity check of the received face and
voice sample to make sure they came from a real human being
to further avoid bot registration and avoid wasting resources
to establish accounts for non-existent/non-human users. If
necessary, we can also match the received samples against
that of all existing users to detect attempts to register multiple
accounts for the same person. If the face and voice samples
pass all our tests, we will proceed to create the new user
account and tie the received face and voice sample to that
user and use them for future authentication sessions.

Authentication: For authentication requests, if the user is
trying to authenticate as user X, we will compare the received
facial and voice samples against the samples received at the es-
tablishment of account X. If the samples are verified as coming
from user X, we can confirm the liveness and authenticity of
the request; liveness is confirmed since the Captcha challenge
is correctly answered, authenticity is confirmed through the
matching face and voice sample. Thus, we will report to the
user that the authentication is successful and let him/her log
in as user X. Upon successful authentication of a user, we
can also add the received face and voice sample for this
authentication attempt to the user’s record to improve his/her
face and voice profile for future authentication.

Using this framework, we can prevent the adversary from
launching automatic, large-scale user impersonation using
compromised phones. In the following, we will provide im-
plementation details of the rtCaptcha system.

A. Captcha Challenge

For our implementation of rtCaptcha, we’ve employed a
number of commonly used Captcha generation tools so we
can experiment with and fine tune the difficulty level of
our liveness detection. In the following we will give a brief
description of the Captcha schemes we’ve experimented with.

In the literature, text-based Captchas are classified into three
different categories according to font styles and positional
relationships between adjacent characters. The three categories
are, namely, character isolated (CI) schemes, hollow character
schemes, and crowding characters together (CCT) schemes [4].
Some Captcha providers also use variable character sizes and
rotations or different kinds of distortions and background
noises to make their Captcha harder to break. For our exper-
iments, we obtained Captcha samples used by Gao et al. [4]
(which conducted generic Captcha breaking attacks on them).
We also have modified the Cool PHP Captcha12 framework
to create variable size Captchas of short phrases or numbers
to include random lines on background. Table II summarizes
different Captcha schemes we have experimented with in our
user study and evaluations.

Regarding the hardness of these Captcha schemes, Brodic et
al. [43] shows that an average Internet user can solve text and
numeric Captchas in hollow and CCT (reCaptcha) schemes at
around 20 seconds on average (3 secs. min.). They also show
that Captcha solving time is correlated with education and age.
However, previous findings focus on the scenario where the
user has to type in the answer to the Captcha, while in our
case, they only have to speak out the answer, which should

12Cool PHP Captcha is used in the reCaptcha scheme, and is available at
https://github.com/josecl/cool-php-captcha

7

TABLE II
MOST POPULAR CAPTCHA SCHEMES

Sample Scheme Websites

reCAPTCHA
(CCT scheme)

linkedin, facebook
google,youtube,twitter
blogspot, wordpress. . .

Ebay
(CCT scheme) ebay.com

Yandex
(Hollow
scheme)

yandex.com

Yahoo! (Hollow
scheme) yahoo.com

Amazon
(CCT scheme) amazon.com

Microsoft
(CI scheme)

live.com
bing.com

be faster and easier than typing. Thus, we have performed our
own user study to determine how long it will take users to
complete the liveness challenge in our settings. Our findings
are reported in Sect. VI.

B. Transcribing Captcha Responses

As a first step in our validation of the face and voice samples
received for the liveness test under rtCaptcha, we transcribe the
voice sample using a speech-to-text (STT) algorithm to see if
it’s a correct answer to the Captcha we sent. In our framework,
we used a Hidden Markov Model (HMM)-based approach
with a pre-trained dictionary. We used the open-sourced CMU
Pocketsphinx library, Carnegie Mellon University’s Sphinx
speech recognition system [44], in our user study app since
it provides a lightweight library working on mobile devices.
CMU Sphinx is the state-of-the art solution among HMM
based approaches. There also are many sophisticated alterna-
tives for this step. For example, recently Baidu’s open source
framework Deep Speech 2 exceeds the accuracy of human
beings on several benchmarks [45]. They trained a deep neural
network (DNN) system with 11,940 hours of English speech
samples. Cloud-based cognitive services such as Microsoft
Bing Speech API13 or IBM Watson Speech to Text14 also
could be used as STT algorithm for this step. However,
network latency caused by audio sample transmission could
be a drawback in our framework.

C. Audio Response Validation

Given a verified audio response of the Captcha challenge,
the next verification process tests user response time to the
challenge. Unlike typing-based responses, our further analysis
will show that giving audible response is much faster. Fur-
thermore, the attacker’s time window for breaking Captcha

13https://azure.microsoft.com/en-us/services/cognitive-services/speech/
14https://www.ibm.com/watson/services/speech-to-text/

challenges and synthesizing a victim’s face and challenge
announcing voice is smaller than even the duration of audible
response. As depicted in the top of the Fig. 6, adversarial
action time is limited with the beginning of the speech activity.

Fig. 6. Time window for adversarial actions.

Speech activity detection, also referred to as voice activity
detection (VAD), is a ubiquitous method that has been studied
and discussed in different contexts such as audio coding, con-
tent analysis and information retrieval, speech transmission,
automatic segmentation and speech recognition, especially in
the noisy environments [46], [47]. In our framework, we used a
hybrid model that follows a data-driven approach by exploiting
different speech-related characteristics such as spectral shape,
spectro-temporal modulations, periodicity structure and long-
term spectral variability profiles [48]. After getting different
streams representing each of these profiles, the information
from the streams is applied to the input layer of a Multilayer
Perceptron classifier. The overall equal error rate of this
approach is around 2% when a classifier is built with 30 hours
data and tested on 300 hours data. Since our audio responses
will be a few seconds, the error rate will be a few milliseconds.
On the bottom of Fig. 6, we presented speech activity detection
on the spectrogram of a sample Captcha response audio from
our experiments.

Once user response time has been extracted, if it is within
an expected human response time and not-longer than the
breaking time of the corresponding Captcha scheme, we verify
the challenge response as a genuine attempt. The reference
response time window could be adapted for each user and
Captcha scheme with his/her response times from the suc-
cessful attempts since Captcha reading behavior could vary
for each person and scheme.

D. Facial and Voice Verification

After getting a correct Captcha response within a real human
response time, we verify the user’s facial and voice data
by using data from the registration phase. If the attempt is
a new user registration, we again make facial and speaker
recognition to check that the new user is not a duplicate
one. Facial and speaker recognition and verification literature
could be investigated under two different categories; first
one is feature or descriptor-based (old fashioned) and the
second one is a data-driven DNN-based (modern) approach.

8

In our experiments, we used cognitive services of Face++ and
Microsoft to verify a user’s face and voice, respectively.

VI. EVALUATION

In this section, we present the results of our evaluation
on rtCaptcha to show that it provides a strong, yet usable,
liveness detection to protect facial/voice-based authentication
systems against compromising attacks. In particular, we have
performed a user study to measure:

• the time difference between a real user solving the
Captcha presented by rtCaptcha versus the time it takes
for an algorithm to break it

• the usability and user acceptance of rtCaptcha
Note that our user study has been approved by the Institu-

tional Reviews Board of our institution.

A. User Study Procedure and Data Collection

We implemented an Android app to experiment with five
different challenge response-based liveness detections, where
the user either has to read numbers or text presented on
the screen, or perform an action in front of the screen. All
text-based challenges will have the user read a number of
phrases comprised of two to three simple words, and numeric
challenges of 6-digit numbers.

It is worth noting that users pronounced all of the numeric
or phrase challenges (in plain text or Captcha forms) out loud
in our experiments.

To be more specific, our five tested liveness detection based
upon the following challenges: 1 two text phrase and one
numeric challenges as plaintext; 2 three numeric challenges
as Captcha images with reCaptcha, Ebay and Yandex schemes;
3 three text phrase challenges in an animated Captcha images
with reCaptcha scheme. In this task, we display challenge
words individually by animating (e.g., sliding from left to
right) them sequentially with small time delays. The idea
behind this approach is to prevent the attacker from extracting
the challenge from one single frame, and instead force him/her
to extract the Captcha as moving targets. On the other hand, we
believe understanding an animated Captcha should be not too
much more difficult than solving one at a fixed location for a
human being. For this part of our experiment, we used Captcha
samples collected by Gao et al. [4] for Ebay and Yandex
schemes. To obtain reCaptcha samples that are either purely
numerical or purely text (which are not included in the dataset
from [4]), we generated them using Cool PHP Captcha tool
which creates custom word Captchas in reCaptcha scheme; 4
challenge to blink, and 5 challenge to smile.

To improve the usability of our liveness detection, for
challenges 1 to 3 , our app will only present one challenge
at a time, and we used CMU Pocketsphinx library for real-
time speech recognition on mobile devices to know when
the user has finished attempting the current challenge (by
noticing the stop of utterance), show them whether they’re
successful before moving on to the next challenge phrase
or number. Similarly, for challenges 4 and 5 , we used
Google’s Mobile Vision API to obtain smiling and blinking

probability to determine when the user has answered our
challenge. Fig. 7 shows sample screen shots from our Android
app while conducting Captcha challenges and blink detection.

Fig. 7. Screen shots from Android app for user study. From left to right;
tasks 2 , 3 and 4 , respectively.

We recruited 31 volunteers for our experiments and had
them use our Android app, which has installed on a LG Nexus
4 device we own. At the beginning of our experiment with
each participant, we explained the purpose of our experiment
and showed them an introductory video about how to use
the Android app to complete the tasks. Then we asked each
participant to answer 3 rounds of challenges for each of the 5
different kinds of challenges listed above (i.e., 15 challenges
in total). For each challenge, we set a timeout of 10 seconds
and considered it a failure and moved on to the next if the
participant did not answer the challenge in that time. For
the first three types of challenges, we captured the user’s
audio responses and some facial frames while answering the
challenges (like we did in rtCaptcha), as well as how long it
took to answer the challenge and whether the answer was
correct. We also compared the facial and voice data from
different challenges to determine if it’s the face and voice
of the same user. For the fourth and fifth challenge types, we
only measured and saved blink and smile detection time along
with their probability without capturing any video/audio data.

B. Findings

Before delving into the details of the results from the
aforementioned experiment, it is worth noting that partici-
pants correctly announced the Captcha challenges with an
89.2% overall accuracy and 0.93 seconds overall response
time. The accuracy is much higher and the response time
is excessively smaller than state-of-the art Captcha breaking
algorithms (detailed in further sections). Moreover, 100% of
participants’ faces and voices are verified correctly with 93.8%
(by Face++) and High (by Microsoft) overall confidence
values, respectively.

Figure 8 presents the response time distributions of the
participants. While response (and detection) time to any type
of challenge that involves the user reading something are
below two seconds, the minimum time to give a smile or
blink response is higher than the largest measured response

9

TABLE III
RESPONSE TIMES AND SUCCESSFUL RECOGNITIONS OF THE CHALLENGES WITH OUR APPROACH (HUMANaud), MEN-POWERED CAPTCHA SOLVING

SERVICE (ATTACKtyp), OCR BASED (ATTACKocr) AND STATE-OF-THE ART CAPTCHA BREAKING ALGORITHMS (ATTACKbest) [4].

Task
#

Captcha
Scheme

Time (secs) Recognition Accuracy (%)

Humanaud Attacktyp Attackocr Attackbest Humanaud Attacktyp Attackocr Attackbest

1 Plaintext 0.77 N/A N/A N/A 91.9 N/A N/A N/A
2 reCaptchanum 0.90 22.11 2.98 10.27 87.1 96.7 0 77.2
2 Ebaynum 0.73 12.33 2.79 05.98 94.1 100 0 58.8
2 Yandexnum 0.89 15.05 3.30 15.50 87.7 96.7 0 02.2
3 reCaptchaphrase 1.02 20.88 3.03 N/A 88.0 91.5 0 N/A

Fig. 8. Distribution of challenge response times for each tasks.

time to any of the Captcha challenges (task 2 and 3). The slow
detection time for blink and smile may be due to the limitation
of our implementation, but we believe they generally require
every frame to be analyzed and thus can be more difficult than
detecting the utterance of the answer to a text or numerical
Captcha challenge. In other words, our experimental results
show that Captcha based liveness detection challenges are not
going to increase the end-to-end time to authenticate a user
over existing smile or blink based challenges.

Fig. 9. Distribution of overall completion times for each tasks.

Finally, Fig. 9 shows the overall time to answer all 15
challenges, and we see that there’s no significant difference
between participants.

In Table III, the left most columns (Humanaud) give the
average response times and recognition accuracies of our
participants for each Captcha scheme in challenge type 1 to 3.

Also, Fig. 10 presents distribution of them for each challenge
in tasks 1 to 3. Our results show that participants’ response
times remain mostly constant over the different types of
Captcha schemes tested, and are not affected by the difficulty
level of the Captcha. Similarly, recognition accuracies from
plain-text and Ebay Captcha challenges to reCaptcha and
Yandex Captchas vary only slightly. Moreover, while numeric
Captchas have consistently better accuracies than English
phrase-based Captchas, the difference is below 5%.

Fig. 10. Distribution of response times for each challenges in each tasks. (1 1
and 1 2: Plaintext Phrases, 1 3: Plaintext numbers, 2 1: reCaptcha numbers,
2 2: Ebay numbers 2 3: Yandex numbers, 3 1, 3 2 and 3 3: Animated
reCaptcha phrases)

Fig. 10 also shows that there is a slight warm-up effect
at the beginning of each tasks; the response times for the
first challenge of each task is longer than that for the others.
Moreover, when we change the challenge type (e.g. from
phrase to numeric at task 1) or the Captcha scheme (e.g. from
Ebay to Yandex at task 2), we also observe a slight warm-up
effect. On the other hand, since we did not change challenge
type or Captcha scheme on task 3, response times decreased in
each trial at this task. In any case, even if we have a warm-up
effect, the maximum response time to the Captcha challenge
is 3.74 seconds, which is still below the execution time of
current Captcha-breaking algorithms.

Finally, when a user fails to correctly answer any kind
of liveness detection challenge, he/she will be asked to try
again. So, in Table IV, we measure how many times our
participant had to re-try before a successful authentication
could be completed under the different types of challenges.
Our results show that in almost all cases, participants needed to

10

TABLE IV
AUTHENTICATION ACCURACIES BY NUMBER OF TRIALS(%)

Trial # Task-1 Task-2 Task-3 Task-4 Task-5

1 90.3 87.1 90.3 80.7 90.3
2/3 100 100 96.8 100 100

try at most two times to successfully respond to any challenge.
The only exception happened for one participant under the
animated Captcha challenge. When we manually inspected
his response, we realized that the problem was caused by the
speech recognition algorithm.

C. Usability Evaluation

We measured the usability and user acceptance rate by
asking subjective questions at the end of our user study. Each
participant faced two to four questions depending on their
answers. We asked the following questions with the stated
multiple choices:

1) Have you ever interacted with any kind of facial authen-
tication systems? (Y/N)

2) If yes, what was the challenge it asked?
(Blink/Smile/Other)

3) Would you consider using Real Time Captcha in the
future? (Y/N)

4) If no, why?
• I don’t like Captchas.
• I don’t like voice recognition systems.
• I prefer using password protection.

Overall, 87.1% of the participants never have used any
kind of facial authentication system and 81.5% of them lean
toward an authentication system that offers the proposed
liveness detection scheme. The rest do not want to use our
framework because of the voice recognition component or
Captcha scheme. Finally, 12.9% of the participants have used
smile or blink detection-based facial authentication systems,
and they stated that they prefer rtCaptcha. Even though an
84% favorable response from our participants shows promise,
we consider it only a preliminary result. As future work, we
plan to perform another user study to establish the usability
of our system in the general population. This is because: 1)
our current user study has a small number of participants,
and 2) the participants are from limited diversity of age and
background (mostly university students who are familiar with
Captchas).

VII. SECURITY ANALYSIS

In this section, we will first present our analysis to deter-
mine how likely it is for an attacker to successfully evade
rtCaptcha and impersonate the user. As mentioned in the
threat model, we assume the attacker can compromise the
victim phone’s kernel, and can have his/her malicious version
of the client app used for authenticating with rtCaptcha.
Furthermore, the attacker can also use the victim’s phone
camera and microphone to collect face and voice samples

of the victim, and use available techniques to build accurate
models for the victim’s face and sound. Thus, when rtCaptcha
presents the attacker with a Captcha, his/her main obstacle in
achieving successful authentication is to solve the Captcha
before the authentication session times out. Once the Captcha
is solved, the created facial/voice model of the victim can be
used to create video/audio of the victim saying the answer
to the Captcha. This fabricated answer can be sent to our
authentication server either by injecting it into the system
as outputs from the camera and the microphone (through a
compromised kernel) or directly into a malicious version of
the client app.

Since our system measures the time between when the
Captcha is first presented to the time when the user starts
to speak, one possible attack against our system is for the
attacker to produce an arbitrary “filler” sound (e.g., “errrr”)
while trying to automatically solve the challenge and then
inject the synthesized video. This attack can lead to one of
the following scenarios: 1) the “errrr” part is detected by the
speech-to-text library, and results in the attacker giving the
wrong response, or 2) the “errrr” part is ignored by the speech
to text (in this case, we can modify our system to ignore
the beginning of an utterance, but instead the beginning of
speech recognized by the speech-to-text). Another potential
attack against use of the start of speech is for the attacker
to focus their effort in identifying/solving the first part of the
Captcha. However, we will argue that a main challenge in
solving Captcha is to break up the different characters and
digits, and thus this attack may not buy the attacker much
time.

One key to considering the attacker’s chance of success
is the threshold for session time out; let’s call it Thlegit.
To put it another way, the strength of rtCaptcha depends
on the difference between a Thlegit threshold that’s long
enough for legitimate human users to have good success
rate at authentication, versus a Thlegit threshold that allows
for accurately breaking Captcha using a Captcha-breaking
algorithm. Thus, in the following, we will refer back to our
experiments in Sect. VI.

A. Setting Thlegit = 5sec

Participants in our user study responded to 98.57% of the
challenges in less than 3 seconds. Furthermore, our results in
Sect. VI also show the studied users have an overall accuracy
of 87.1% for all tested Captcha schemes, and there seems
to be no correlation between their response time and their
success rate. In other words, we will not see any significant
improvement in the user’s rate of successfully answering the
Captcha even if we set Thlegit significantly higher. Thus,
for the rest of our discussion, we’ll assume Thlegit to be 5
seconds.

B. Automated Attacks under Thlegit = 5sec

Now let’s consider what is the attacker’s chance of breaking
our Captcha and successfully generating the video/audio of a
victim answering the Captcha with a session time out of 5

11

seconds. We will base our discussion on different kinds of
Captcha breaking methods with different levels of sophistica-
tion.

The most primitive Captcha breaking method we have tested
is Optical Character Recognition (OCR) based. In particular,
we tested the Captcha used in our study against one of the
OCR-based Captcha solving websites15. As presented in the
Attackocr columns of Table III, the tested site could not solve
any of our Captcha challenges. Later on, we investigated if
it can successfully decode anything but plain-text lookalike
Captcha images without background noise or distortions.

We’ve also experimented with state-of-the-art Captcha
breaking schemes from Gao et al. [4] and Bursztein et al. [49],
which are based on character segmentation and Reinforcement
learning (RL) respectively. Table-VI summarizes their best
decoding accuracy and solving times for various schemes on
commodity laptops. We consider the work in [4] to be state-
of-the-art because it proposes the most generic solution and is
the only published work that defeats the Yandex scheme. In
Table III we referred to their system as Attackbest. While the
results in Table-VI show that some Captcha schemes can be
broken in approximately 3 seconds, the overall recognition ac-
curacies can be very low (while the corresponding accuracies
for harder schemes in our user study remain above 85%). Thus,
we believe that setting Thlegit at 5 seconds gives us a very
good safety margin against compromising attacks that could
employ even the most advanced Captcha-breaking scheme.

Fig. 11. Distribution of response times of 2captcha service for our Captcha
database.

C. Semi-Automated Attacks

Although in our threat model we stated that any attack
that requires human intervention is not going to scale and
thus is out of scope, we still will consider the possibility
of breaking rtCaptcha using cloud-based, manual Captcha
solving services, since this is a commonly used attack method
against other Captcha schemes. In particular, attackers may
use the authentication device as a proxy and ship Captcha
solving tasks to the real human workers. There are many man-
powered Captcha-solving services that report high recognition
rates, as presented in Table-V. We obtained recognition times

15http://www.captchatronix.com

and accuracies, as advertised on the official website of each
service in Table-V. While the advertised times are much
higher than our 5 seconds Thlegit threshold, we also used
2captcha.com to break the Captcha dataset we used in the
user study to obtain real numbers for a fair comparison.
The average response times and decoding accuracies of this
service under each scheme are presented in Table-III under the
Attacktyp columns, while the distribution of response times
are presented in Fig.11. The average solving time is 19.17
seconds (with 10.75 seconds at minimum) with 96.2% overall
solving rate. As such, once again, an attacker trying to launch
compromising attacks based on these services will not be able
to beat the 5 second threshold, and that is true even if we
do not consider other time overheads caused by synthesizer,
which has Ttts=1.1 seconds (TTS delay time) at best [37], etc.

TABLE V
REPORTED AVERAGE DECODING ACCURACY AND TIME OF TYPING BASED

HUMAN RESPONSES TO CAPTCHA CHALLENGES

Service Acc(%) Time(s) Service Acc(%) Time(s)

anti-captcha 99.0 7 2captcha 96.6 10
captchaboss 99.9 8 imagetyperz 99.0 12
deathbycaptcha 95.8 10 9kw.eu N/A 30

TABLE VI
BEST DECODING ACCURACY AND TIME OF GENERIC ATTACKS

Gao et al. [4] Bursztein et al. [49]

Scheme Acc(%) Time(s) Acc(%) Time(s)

reCAPTCHA(Old) 7.8 8.06 21.74 7.16
reCAPTCHA 77.2 10.27 19.22 4.59
Yahoo! 5 28.56 3.67 7.95
Baidu 44.2 2.81 54.38 1.9
Wikipedia 23.8 3.74 28.29 N/A
QQ 56 4.95 N/A N/A
Microsoft 16.2 12.59 N/A N/A
Amazon 25.8 13.18 N/A N/A
Taobao 23.4 4.64 N/A N/A
Sina 9.4 4.83 N/A N/A
Ebay 58.8 5.98 47.92 2.31
Yandex 2.2 15.5 N/A N/A

D. Other Security Benefits

While the main strength of rtCaptcha lies in presenting
the attacker with a challenge that is difficult to answer au-
tomatically, and thus nullifying the advantage they have in
being able to generate authentic-looking/sounding video/voice
of the victim and inject it into the authentication process at
will, rtCaptcha also comes with a surprising benefit over other
liveness detection challenges like blinking and smiling. That
is, it is very difficult to capture the user giving out the answer
to the right Captcha ”just by accident.” In particular, liveness
challenges that are based on blinking and smiling are very
vulnerable to attacks like UI redressing attacks [25], or more
advanced attacks like those described in [50]. Under both
scenarios, the attacker can drive the legitimate authentication
app to a state where it’s presenting the user with its liveness

12

detection (either by using Intent, which is harder to control
for more than one UI, or using the accessibility service),
while covering up the phone’s display with an overlay (so
the user doesn’t know he/she is being attacked). With liveness
challenge based on blinking or smiling, this attack is likely
to be successful because people naturally blink and smile
occasionally, and thus they will provide the answer to the
underlying challenge and help the attacker to authenticate them
unknowingly. With rtCaptcha, such an overlay-based attack is
unlikely to be successful because it is very unlikely the victim
will spell out the answer to the right Captcha by accident while
the overlay is obscuring the screen and the underlying app is
waiting for a response.

VIII. DISCUSSION AND FUTURE WORKS

Reaching a big diversity in our user study was our limitation
as in the previous studies [30]. Since we mainly recruited
people around the university, these users were usually more fa-
miliar with the underlying technology with rtCaptcha. Hence,
human performance may vary among other populations, es-
pecially among those who rarely use mobile devices or are
unfamiliar with Captchas, as stated by Brodic et al. [43].

One of the main security infrastructures in our framework
relies on speech recognition since we capture audio response
to the Captcha challenges. Hence, the STT algorithm must be
robust enough to minimize the false negatives for legitimate
user responses. The collected data in our user study involves
ambient office, restaurant and outside environments with A/C
sound, hums and buzzes, crowd and light traffic sounds. How-
ever, our data still have limited background noise variations
to test the robustness of used STT method in our experiments.
Having said that, we can always use other powerful STT ap-
proaches such as Deep Speech 2 by Baidu [45] or cloud-based
solutions (instead of CMU Pocketsphinx library) for noisy
environments. Moreover, recent advances in lip reading (e.g.
LipNet [51]) provide around 95.2% of sentence-level speech
recognition accuracy by only using visual content. Combining
such an approach with STT would probably give very accurate
results to legitimate challenge responses. Moreover, using
lip reading-based speech recognition also will increase the
usability of the system in a silent environment.

Our future work includes implementing a lip reading
method on the Captcha response recognition. Furthermore,
future research is required to analyze more data collected
from different populations and environments with varying
noise types and levels. It also could be required to analyze
varying illumination and pose to measure face recognition
and verification performance in a real life scenario. However,
most of these limitations are related with all audio/visual
authentication systems.

Even though we consider presentation attacks out of scope
for this work, we believe that by requiring the user to actually
say something in order to authenticate, we will create extra
challenges for even state-of-the-art presentation attacks. In
particular, no matter whether the presentation attack employs
static pictures or wearable masks, the attacker will have

difficulty in using those materials to present genuine muscle
movement. This is obviously true for static pictures, but even
for wearable masks, where it is doubtful that one can move
lips (without exposing the lips of the person wearing the mask
underneath) well enough to appear to be saying the answer
to our Captcha challenge. Thus, on top of incorporating lip
reading into our system, in the future we also plan to evaluate
how this will stop attacks from wearable masks (which should
be the state-of-the-art for presentation attacks).

Finally, one can argue that the recently announced Face
ID16 by Apple already provides a robust security mechanism
against our threat model, and also, wearable masks. However,
our approach still can be applicable through the existing smart
phones (estimated around 2.3 billion by the end of 201717)
without the requirement of any additional hardware (e.g., depth
camera, infrared sensors, etc.).

IX. CONCLUSIONS

Our work outlines several aspects of an audio/visual authen-
tication system and presents a novel and practical approach,
called rtCaptcha to straighten the flaws of existing liveness
detection systems. First, our exhaustive analysis on major
cloud-based cognitive services (which have a market size of
$15 billion18) clearly reveals that an applicable and spoof-
resistant liveness detection approach is an urgent need. On the
other hand, Captcha-based human authentication has been used
successfully on the web for more than a decade. Therefore,
rtCaptcha is a suitable fit for this urgent and growing need.
Additionally, our user study and comparative threat analysis
with its results proves that our scheme constitutes a strong
basis against even the most scalable attacks involving the latest
audio/visual synthesizers and state-of-the art Captcha-breaking
algorithms.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments and feedback, as well as Tara
La Bouff for her proofreading efforts. This research was sup-
ported by the ONR under grants N0001409-1-1042, N00014-
15-1-2162 and N00014-17-1-2895, and by the DARPA Trans-
parent Computing program under contract DARPA-15-15-TC-
FP-006. Any opinions, findings, conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the ONR or DARPA.

REFERENCES

[1] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner,
“Face2face: Real-time face capture and reenactment of rgb videos,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2387–2395.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 1701–1708.

16https://www.apple.com/iphone-x/
17https://www.statista.com/statistics/330695/number-of-smartphone-users-

worldwide/
18http://www.biometricupdate.com/research

13

[3] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–
823.

[4] H. Gao, J. Yan, F. Cao, Z. Zhang, L. Lei, M. Tang, P. Zhang, X. Zhou,
X. Wang, and J. Li, “A simple generic attack on text captchas,” in NDSS,
2016.

[5] K. Li, F. Xu, J. Wang, Q. Dai, and Y. Liu, “A data-driven approach for
facial expression synthesis in video,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 57–
64.

[6] N. M. Duc and B. Q. Minh, “Your face is not your password face
authentication bypassing lenovo–asus–toshiba,” Black Hat Briefings,
2009.

[7] Y. Li, K. Xu, Q. Yan, Y. Li, and R. H. Deng, “Understanding osn-based
facial disclosure against face authentication systems,” in Proceedings of
the 9th ACM symposium on Information, computer and communications
security. ACM, 2014, pp. 413–424.

[8] G. Chetty and M. Wagner, “Multi-level liveness verification for face-
voice biometric authentication,” in Biometric Consortium Conference,
2006 Biometrics Symposium: Special Session on Research at the. IEEE,
2006, pp. 1–6.

[9] G. Pan, L. Sun, Z. Wu, and S. Lao, “Eyeblink-based anti-spoofing in
face recognition from a generic webcamera,” in Computer Vision, 2007.
ICCV 2007. IEEE 11th International Conference on. IEEE, 2007, pp.
1–8.

[10] I. Muslukhov. (2017) Breaking liveness detection on Android (4.1.1).
[Online]. Available: https://www.youtube.com/watch?v=zYxphDK6s3I

[11] J. Bai, T.-T. Ng, X. Gao, and Y.-Q. Shi, “Is physics-based liveness
detection truly possible with a single image?” in Circuits and systems
(ISCAS), Proceedings of 2010 IEEE international symposium on. IEEE,
2010, pp. 3425–3428.

[12] X. Tan, Y. Li, J. Liu, and L. Jiang, “Face liveness detection from a single
image with sparse low rank bilinear discriminative model,” Computer
Vision–ECCV 2010, pp. 504–517, 2010.

[13] J. Määttä, A. Hadid, and M. Pietikäinen, “Face spoofing detection from
single images using micro-texture analysis,” in Biometrics (IJCB), 2011
international joint conference on. IEEE, 2011, pp. 1–7.

[14] A. da Silva Pinto, H. Pedrini, W. Schwartz, and A. Rocha, “Video-based
face spoofing detection through visual rhythm analysis,” in Graphics,
Patterns and Images (SIBGRAPI), 2012 25th SIBGRAPI Conference on.
IEEE, 2012, pp. 221–228.

[15] S. Kim, S. Yu, K. Kim, Y. Ban, and S. Lee, “Face liveness detection
using variable focusing,” in Biometrics (ICB), 2013 International Con-
ference on. IEEE, 2013, pp. 1–6.

[16] Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face spoofing detec-
tion using colour texture analysis,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 8, pp. 1818–1830, 2016.

[17] N. Erdogmus and S. Marcel, “Spoofing in 2d face recognition with 3d
masks and anti-spoofing with kinect,” in Biometrics: Theory, Applica-
tions and Systems (BTAS), 2013 IEEE Sixth International Conference
on. IEEE, 2013, pp. 1–6.

[18] S. Liu, B. Yang, P. C. Yuen, and G. Zhao, “A 3d mask face anti-spoofing
database with real world variations,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2016, pp. 100–106.

[19] N. Kose and J.-L. Dugelay, “Reflectance analysis based countermeasure
technique to detect face mask attacks,” in Digital Signal Processing
(DSP), 2013 18th International Conference on. IEEE, 2013, pp. 1–6.

[20] I. Manjani, S. Tariyal, M. Vatsa, R. Singh, and A. Majumdar, “Detecting
silicone mask based presentation attack via deep dictionary learning,”
IEEE Transactions on Information Forensics and Security, 2017.

[21] M. M. Chakka, A. Anjos, S. Marcel, R. Tronci, D. Muntoni, G. Fadda,
M. Pili, N. Sirena, G. Murgia, M. Ristori et al., “Competition on counter
measures to 2-d facial spoofing attacks,” in Biometrics (IJCB), 2011
International Joint Conference on. IEEE, 2011, pp. 1–6.

[22] I. Chingovska, J. Yang, Z. Lei, D. Yi, S. Z. Li, O. Kahm, C. Glaser,
N. Damer, A. Kuijper, A. Nouak et al., “The 2nd competition on
counter measures to 2d face spoofing attacks,” in Biometrics (ICB), 2013
International Conference on. IEEE, 2013, pp. 1–6.

[23] I. J. C. on Biometrics. (2017) Competition on generalized face
presentation attack detection in mobile authentication scenarios.
[Online]. Available: https://sites.google.com/site/faceantispoofing/

[24] Y. Xu, T. Price, J.-M. Frahm, and F. Monrose, “Virtual u: Defeating face
liveness detection by building virtual models from your public photos,”
in 25th USENIX Security Symposium (USENIX Security 16). USENIX
Association, 2016, pp. 497–512.

[25] M. Niemietz and J. Schwenk, “Ui redressing attacks on android devices,”
Black Hat Abu Dhabi, 2012.

[26] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3d
faces,” in Proceedings of the 26th annual conference on Computer
graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co., 1999, pp. 187–194.

[27] J. Booth, A. Roussos, S. Zafeiriou, A. Ponniah, and D. Dunaway, “A
3d morphable model learnt from 10,000 faces,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 5543–5552.

[28] P. Huber, G. Hu, R. Tena, P. Mortazavian, P. Koppen, W. Christmas,
M. Ratsch, and J. Kittler, “A multiresolution 3d morphable face model
and fitting framework,” in Proceedings of the 11th International Joint
Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications, 2016.

[29] S. Saito, L. Wei, L. Hu, K. Nagano, and H. Li, “Photorealistic
facial texture inference using deep neural networks,” arXiv preprint
arXiv:1612.00523, 2016.

[30] Y. Li, Y. Li, Q. Yan, H. Kong, and R. H. Deng, “Seeing your face
is not enough: An inertial sensor-based liveness detection for face
authentication,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015, pp. 1558–1569.

[31] M. Kobayashi, T. Okabe, and Y. Sato, “Detecting forgery from static-
scene video based on inconsistency in noise level functions,” IEEE
Transactions on Information Forensics and Security, vol. 5, no. 4, pp.
883–892, 2010.

[32] Y. Rao and J. Ni, “A deep learning approach to detection of splicing and
copy-move forgeries in images,” in Information Forensics and Security
(WIFS), 2016 IEEE International Workshop on. IEEE, 2016, pp. 1–6.

[33] F. Peng and D.-l. Zhou, “Discriminating natural images and computer
generated graphics based on the impact of cfa interpolation on the
correlation of prnu,” Digital Investigation, vol. 11, no. 2, pp. 111–119,
2014.

[34] F. Peng, D.-l. Zhou, M. Long, and X.-m. Sun, “Discrimination of
natural images and computer generated graphics based on multi-fractal
and regression analysis,” AEU-International Journal of Electronics and
Communications, vol. 71, pp. 72–81, 2017.

[35] R. Caldelli, I. Amerini, and A. Novi, “An analysis on attacker actions in
fingerprint-copy attack in source camera identification,” in Information
Forensics and Security (WIFS), 2011 IEEE International Workshop on.
IEEE, 2011, pp. 1–6.

[36] H. Gao, H. Liu, D. Yao, X. Liu, and U. Aickelin, “An audio captcha
to distinguish humans from computers,” in Electronic Commerce and
Security (ISECS), 2010 Third International Symposium on. IEEE, 2010,
pp. 265–269.

[37] Z. Wu and S. King, “Investigating gated recurrent networks for speech
synthesis,” in Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on. IEEE, 2016, pp. 5140–5144.

[38] Z. Wu, P. Swietojanski, C. Veaux, S. Renals, and S. King, “A study of
speaker adaptation for dnn-based speech synthesis.” in INTERSPEECH,
2015, pp. 879–883.

[39] S. Shirali-Shahreza, Y. Ganjali, and R. Balakrishnan, “Verifying human
users in speech-based interactions.” in Interspeech, 2011, pp. 1585–
1588.

[40] Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, and S. Z. Li, “A face antispoofing
database with diverse attacks,” in Biometrics (ICB), 2012 5th IAPR
international conference on. IEEE, 2012, pp. 26–31.

[41] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-Shlizerman, “What
makes tom hanks look like tom hanks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 3952–3960.

[42] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi, C. Hanilçi, M. Sahidullah,
and A. Sizov, “Asvspoof 2015: the first automatic speaker verification
spoofing and countermeasures challenge,” Training, vol. 10, no. 15, p.
3750, 2015.

[43] D. Brodić, A. Amelio, and I. R. Draganov, “Response time analysis
of text-based captcha by association rules,” in International Confer-
ence on Artificial Intelligence: Methodology, Systems, and Applications.
Springer, 2016, pp. 78–88.

[44] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar,
and A. I. Rudnicky, “Pocketsphinx: A free, real-time continuous speech

14

recognition system for hand-held devices,” in Acoustics, Speech and
Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE Inter-
national Conference on, vol. 1. IEEE, 2006, pp. I–I.

[45] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos et al., “Deep speech 2:
End-to-end speech recognition in english and mandarin,” arXiv preprint
arXiv:1512.02595, 2015.

[46] S. Mousazadeh and I. Cohen, “Voice activity detection in presence of
transient noise using spectral clustering,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 21, no. 6, pp. 1261–1271, 2013.

[47] E. Uzun and H. T. Sencar, “A preliminary examination technique for
audio evidence to distinguish speech from non-speech using objective
speech quality measures,” Speech Communication, vol. 61, pp. 1–16,
2014.

[48] M. Van Segbroeck, A. Tsiartas, and S. Narayanan, “A robust frontend
for vad: exploiting contextual, discriminative and spectral cues of human
voice.” in INTERSPEECH, 2013, pp. 704–708.

[49] E. Bursztein, J. Aigrain, A. Moscicki, and J. C. Mitchell, “The end is
nigh: Generic solving of text-based captchas.” in WOOT, 2014.

[50] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and dagger:
From two permissions to complete control of the ui feedback loop,” in
Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017, pp.
1041–1057.

[51] Y. M. Assael, B. Shillingford, S. Whiteson, and N. de Freitas, “Lipnet:
Sentence-level lipreading,” arXiv preprint arXiv:1611.01599, 2016.

15

