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Abstract—Reliably identifying and authenticating smart-
phones is critical in our daily life since they are increasingly
being used to manage sensitive data such as private messages
and financial data. Recent researches on hardware fingerprinting
show that each smartphone, regardless of the manufacturer or
make, possesses a variety of hardware fingerprints that are
unique, robust, and physically unclonable. There is a growing
interest in designing and implementing hardware-rooted smart-
phone authentication which authenticates smartphones through
verifying the hardware fingerprints of their built-in sensors.
Unfortunately, previous fingerprinting methods either involve
large registration overhead or suffer from fingerprint forgery
attacks, rendering them infeasible in authentication systems.

In this paper, we propose ABC, a real-time smartphone Au-
thentication protocol utilizing the photo-response non-uniformity
(PRNU) of the Built-in Camera. In contrast to previous works
that require tens of images to build reliable PRNU features
for conventional cameras, we are the first to observe that
one image alone can uniquely identify a smartphone due to
the unique PRNU of a smartphone image sensor. This new
discovery makes the use of PRNU practical for smartphone
authentication. While most existing hardware fingerprints are
vulnerable against forgery attacks, ABC defeats forgery attacks
by verifying a smartphone’s PRNU identity through a challenge
response protocol using a visible light communication channel.
A user captures two time-variant QR codes and sends the two
images to a server, which verifies the identity by fingerprint and
image content matching. The time-variant QR codes can also
defeat replay attacks. Our experiments with 16,000 images over
40 smartphones show that ABC can efficiently authenticate user
devices with an error rate less than 0.5%.

I. INTRODUCTION

Authentication systems that identify individuals by ”some-
thing the user has” are playing an increasingly important role in
defeating identity theft. According to breach level index [30],
9.2 billion data records have been lost since 2013, including
plaintext passwords and fingerprints. Such leakage makes
knowledge-based authentication severely broken and poses
particular threats, such as device-based impersonation attacks

[12], to biometrics-based authentication. Therefore, there is a
vast amount of works studying and implementing Multi-Factor
Authentication systems which verify device’s identity along
with user’s. Providing enhanced security without degrading
user experience calls for secure and practical smartphone
identification methods.

In the literature, one prevalent methodology to identify
smartphones is to differentiate the fingerprints of their built-in
sensors. Sensor fingerprint is a systematic distortion of sensor
reading incurred by manufacturing imperfection. Such distor-
tion remains constant for each individual hardware and exhibits
strong diversity among different devices. It has been proved
that the fingerprints of motion sensors, WiFi chipsets and
speakers [20], [37], [6], [8] are respectively strong enough to
differentiate smartphones. However, most of existing methods
fail to meet two security requirements: Fingerprint Leakage
Resilience and Fingerprint Forgery Resilience [4]. Although
it is infeasible to steal a sensor in a smartphone, the signals
generated by that sensor, in most cases, are available to the
public. An adversary who has collected those signals might
extract the victim’s hardware fingerprint and synthesize forged
signals [8], [14]. This vulnerability to the fingerprint forgery
attack makes them infeasible in practice. It remains open to
find usable and secure smartphone fingerprinting method that
can provide physical layer proof of device’s identity.

The Photo-Response Non-Uniformity (PRNU) [33] of an
image sensor has been used as a physical layer fingerprint
identifying conventional digital cameras in digital forensics.
Given a query image taken by a camera of interest, the camera
can be identified through correlating the query image’s noise
residue against candidate devices’ reference fingerprints. In
this paper, we explore using the PRNU of an image sensor on
a smartphone to authenticate a user’s device to defeat various
frauds and attacks.

There are two grand challenges of using PRNU to identify
and authenticate smartphones. First, eliminating the large reg-
istration overhead. For conventional digital cameras, normally
at least 50 images are required to derive a usable reference fin-
gerprint. Such a large registration overhead is often prohibitive
for a practical smartphone authentication protocol. Second,
defending against impersonation attack. The PRNU-based fin-
gerprinting method is also vulnerable to fingerprint forgery
attacks [27], [36], [24], [38]. To impersonate a victim device,
an adversary could estimate the victim smartphone’s finger-
print from public images and embed the obtained fingerprint
into an image captured by her own device. Existing forgery
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detection mechanisms suffer from either poor reliability [27]
or huge transmission and storage overhead [36].

We performed extensive experiments to understand the
characteristics of PRNU of smartphone cameras in order to
address these challenges in using PRNU to identify and authen-
ticate smartphones. A key observation is that, compared with
conventional digital cameras, a smartphone’s image sensor is
tens of times smaller. With the same level of manufacturing
imperfection, the reduction in the image sensor’s dimension
amplifies the pixels’ dimensional non-uniformity and generates
a much stronger PRNU. Our experimental results reveal that
the PRNU of smartphone cameras is so strong that one
image alone can uniquely identify a smartphone camera. Based
on this observation, we propose directly using the PRNU
estimated from the noise residue of an image taken by a
smartphone as the reference fingerprint. This will significantly
reduce the registration overhead of such an authentication
system.

Given the unique PRNU of smartphone cameras, we pro-
pose ABC, a PRNU-based smartphone authentication pro-
tocol that can also defeat various attacks. ABC involves a
registration phase and an authentication phase. During the
registration phase, the user uploads a freshly captured image
to the verifier/server. From this image, the verifier estimates a
reference fingerprint for the user’s smartphone. In the authen-
tication phase, the verifier challenges the user to photograph
and upload two time-variant QR codes, in each of which an
abstract of the ongoing transaction, a random number and
a time stamp are encoded. Each QR code image is also
embedded with a semi-fragile probe signal that can survive
photographing but not fingerprint removal. The user then puts
her smartphone parallel to the screen and takes pictures of
those two QR codes. She verifies the messages in the QR
codes and uploads the images to the verifier. Upon receiving
the images captured by the user, the verifier authenticates the
user’s device through the following procedure: 1) Detect the
existence of the two time-variant QR codes and the target
smartphone’s fingerprint. Replay attacks and man in the middle
attacks can be defeated by the two QR codes. 2) Detect
fingerprint forgery by measuring the similarity between the two
received QR code images. This is based on our observation that
two images forged by the adversary contain both the fingerprint
of the victim device and the fingerprint of the adversary’s
device, and incur a significantly higher similarity value. 3)
Detect fingerprint removal through checking the strength of
the probe signal embedded in each received image in case that
the adversary removes the PRNU of her own device from a
forged image.

Our major contributions are summarized as follows:

1 To the best of our knowledge, we are the first to ex-
plore the PRNU-based smartphone fingerprinting on a
large scale. We are the first to observe that one image
alone can uniquely identify a smartphone due to their
unique PRNU. We conducted extensive experiments
by collecting images taken by smartphones through
Amazon Mechanical Turk and can achieve a total
error rate below 0.5% in differentiating smartphone
cameras. This new discovery makes the use of PRNU
practical for smartphone authentication.

2 We propose a real-time smartphone authentication
protocol that can provide reliable authentication and
defeat various attacks. It has the following salient fea-
tures: 1) ABC achieves secure physical layer smart-
phone authentication with a registration overhead of
merely one photoshot. 2) Our experiments on 4,000
forged images demonstrate that ABC can detect the
fingerprint forgery attack with a total error rate less
than 0.47%. 3) The usability of the proposed protocol
is preserved since the requirement for taking photos
is familiar and convenient to smartphone users.

The rest of this paper is organized as follows. Section II
reviews the current PRNU-based digital camera fingerprinting
method. Section III formulates the problem to be addressed
in this paper. Section IV presents our smartphone authenti-
cation protocol. Section V analyzes the security feature of
the proposed protocol. Section VI conducts the performance
evaluation. Section VII reviews the related existing work on
hardware fingerprinting. Section VIII concludes this research.

II. BACKGROUND

In this section, we first introduce the generic Photo Re-
sponse Non-Uniformity (PRNU) based camera fingerprinting
technique, which establishes a link between digital images and
the corresponding cameras. We then introduce the fingerprint
forgery attack against this fingerprinting technique and analyze
existing countermeasures.

A. PRNU-based Camera Fingerprinting

PRNU [33], [23] is caused by an image sensor’s non-
uniform sensitivity to light. It introduces a multiplicative factor
to the actual optical view. Denote the real sensor output as I
and the actual optical view as I(0). Any image captured by a
digital camera can be represented as Equation (1) [6],

I = I(0) + I(0)K + Θ, (1)

where K is the camera’s PRNU, and Θ represents other noise
components such as shot noise and read-out noise.

Since PRNU behaves like a white Gaussian noise variable
with a variance between 3 to 5 [33], [10], it can be extracted
using a denoising filter. The extracted noise residue W(i) can
be represented as Equation (2) [11],

W(i) = I(i)K + Ξ(i), (2)

where Ξ(i) is a random noise component combining Θ and
other minor components.

For conventional digital cameras, the noise residue of its
captured image is so noisy that it can not be directly used as a
fingerprint. Therefore, an averaging process is used to reduce
random components (Ξ(i)) and to enhance PRNU (K) [7]. It
suppresses random noise components through averaging the
noise residues of multiple images taken by the same camera.
The obtained fingerprint can be represented as Equation (3),

K̂ =

∑N
i=1 W(i)I(i)∑N
i=1(I(i))2

= K + ∆, (3)

where ∆ is the difference between the estimated fingerprint K̂
and the real fingerprint K.
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The quality of the estimated fingerprint is defined as q =
corr(K, K̂) [27], which is the similarity between the estimated
fingerprint and the real fingerprint. For each individual device,
q is positively correlated to the number of images used in the
averaging process. The most commonly used similarity metric
is Peak to Correlation Energy (PCE) [26].

To determine if a query image is taken by a camera
of interest, existing fingerprint detection strategies correlate
the image’s noise residue against that camera’s reference
fingerprint extracted from at least 50 images. Following this
strategy, Goljan et al. [28] has proved camera fingerprint’s
accuracy and user capacity on over one million images taken
by 6896 individual cameras. They show that camera fingerprint
can achieve a false rejection rate less than 2.38% at false
acceptance rate below 0.002% in differentiating conventional
digital cameras.

B. Fingerprint Forgery Attack and Countermeasures

With a PRNU fingerprint K̂ estimated from a victim’s
public images, an adversary could fabricate forged images
using Equation (4),

J′ = J(1 + αK̂), (4)

where J is a foreign image and α controls the strength of
the injected fingerprint. With an appropriate α, the fabricated
image could easily pass various fingerprint detection schemes.

The state-of-the-art fingerprint forgery detection mecha-
nisms include fragile fingerprint [36] and triangle test [27].
Fragile fingerprint explores the component of the PRNU noise
that is fragile and removed by the lossy JPG compression.
Based on the observation that the majority of images shared
online are in JPG format, this mechanism assumes that an
adversary derives the fingerprint from public JPG images and
such a fingerprint will not contain the fragile fingerprint. If
a user is required to submit uncompressed raw images for
authentication, a fingerprint forgery attack can be detected
through correlating the query image’s noise residue against the
reference fragile fingerprint of the camera of interest. However,
this approach requires 300 raw images to estimate the refer-
ence fragile fingerprint, which will incur a huge transmission
overhead. Moreover, the robustness of this approach relies
on the secrecy of raw images. Triangle test is based on the
observation that the injected fingerprint K̂ shares additional
noise components Ξ(i) with every noise residue W(i) used by
the adversary. These shared Ξ(i)s will sharply increase the PCE
value between K̂ and all W(i)s. Therefore, it tests all candidate
images that might be accessible to the adversary in order to
detect forged images. However, due to the popularity of image
sharing, it is infeasible for the verifier to collect all candidate
images that are accessible to the adversary.

III. PROBLEM STATEMENT

In this section, we first introduce the system model and
threat model. We then discuss design goals of the authentica-
tion system.

Fig. 1. System model. The verifier authenticate a user’s smartphone through
tracking the fingerprint of its built-in camera. The verifier first challenges the
smartphone to capture and upload the image shown on its interface. Then, the
verifier extracts the fingerprint of the received image and correlates it to the
reference fingerprint to authenticate the smartphone.

A. System Model

Smartphone authentication is a process of verifying the
possession factor (i.e., the smartphone) attached to the claimed
identity of a user. Conventionally, the verification of a smart-
phone is achieved using a secret key controlled by a pre-
installed app or an additional hardware (e.g., the secure el-
ement in iPhone). In this work, we propose to authenticate
a smartphone through tracking its PRNU fingerprint as it
requires no additional hardware and is physically unclonable.
It is worth mentioning that the proposed ABC can be integrated
with conventional cryptographic approaches to provide greater
security without degrading the user experience.

Fig.1 shows the system model of ABC. The system in-
volves three entities: a user, her smartphone and verifier.
The user performs a transaction or login and needs to be
authenticated. The smartphone is equipped with a built-in
camera and serves as a security token. The user interacts with
the verifier’s interface and provides the verifier this security
token in order to be authenticated. The verifier consists of the
interface and a server. The server maintains a database of each
registered user and her smartphone reference fingerprint.

Without loss of generality, we now use a point of sale
(POS) terminal to illustrate the authentication process through
PRNU of a smartphone. The verifier (bank) maintains a
database that stores each user’s account identifier (e.g., card
number) and reference PRNU fingerprint. When a user requests
to make a payment on the POS terminal, the verifier challenges
the user who has to use her smartphone and take pictures of
what is shown on the terminal’s screen. The user uploads the
captured images and her account identifier to the bank. The
verifier then extracts the fingerprint of the user’s smartphone
from the images and correlates it to the reference fingerprint
of the account of interest. If the correlation is higher than
a threshold, the transaction will be executed. Therefore, the
PRNU based authentication relies on “something you have”
(i.e. the smartphone) for authentication.

Our PRNU based authentication involves two communica-
tion channels: 1) Visible light communication (VLC) channel
from the verifier’s interface to the smartphone’s built-in cam-
era. The verifier uses the VLC channel and embeds information
into the image taken by the smartphone; 2) Wireless channel
between the smartphone and the verifier. The smartphone uses
the wireless channel to send the captured images to the verifier.
The wireless channel may vary depending upon availability.
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B. Threat Model

We assume a powerful adversary, who knows everything
about the victim user and may sniff and alter the communica-
tion between the victim and the verifier, e.g., through deploying
a malicious interface. The objective of the adversary is to im-
personate a legitimate user and authorize a malicious request.
We also assume that the adversary can access any images that
the victim captures with her smartphone. Those images may be
hard to be kept private anyway, for example, pictures shared
through online social networks such as Facebook. However,
we assume that the adversary does not physically possess the
victim’s smartphone.

We now use the POS terminal example again and discuss
potential attacks in two cases: 1) The adversary is a mali-
cious user who wants to make a payment with a victim’s
bank account. She knows the victim’s account identifier and
has pictures taken by the victim device. The adversary may
perform the following attacks: Replay attack - the adversary
replays the previous image tokens from the victim smartphone
to the verifier. Such tokens can be obtained through eaves-
dropping the wireless channel of the victim smartphone from
a previous authentication session. Fingerprint forgery attack -
the adversary uploads a forged image token that is composed of
the victim smartphone’s fingerprint and the adversary’s image.
The victim smartphone’s fingerprint can be obtained from
the victim’s public images. 2) The adversary is a malicious
merchant who wants to lure a victim to authorize a malicious
payment. She controls the POS terminal that processes the
victim’s transaction. This adversary may further conduct Man
in the middle attack - The adversary secretly modifies the
victim user’s ongoing transaction. She controls the terminal
to upload a modified payment request to the bank, instead of
uploading the payment shown on the screen of the terminal.

C. Design Goals

We envision the following design goals for a robust and
usable smartphone authentication system:

Attack resilience: the protocol should only accept fresh
images captured by legitimate smartphones. It should be able
to detect forged images and the images collected from the
victim’s previous authentication sessions.

Real-time authentication: the protocol should be able to
provide accurate and real-time authentication. Both the finger-
print matching process and the attack detection process should
be efficient.

User-friendliness: the protocol should provide simple and
convenient interaction processes for both registration and au-
thentication. The involved overhead should be minimal and
tolerable for all involved entities.

IV. PROPOSED SYSTEM

This section presents our real-time smartphone authenti-
cation system. We first investigate the feasibility of using
PRNU as a smartphone’s unique identity. We then discuss
two baseline authentication schemes and their vulnerabilities.
Finally, we present our full-fledged authentication protocol that
achieves the aforementioned design goals.

A. Smartphone Camera Fingerprinting

Table I [1] shows that although smartphone cameras and
digital cameras use similar types of image sensors, a smart-
phone’s image sensor is often tens of times smaller than the
image sensor of a traditional digital camera. The reduction in
the sensor’s dimension significantly degrades the light received
by the image sensor, and leads to a worse signal to noise ratio
(SNR) in captured images. Since the quality of the extracted
fingerprint (W = IK+Ξ) is mainly determined by the image’s
noise components, we have to find out whether the existing fin-
gerprint detection strategy is suitable for smartphone cameras.

To investigate the characteristics of a smartphone camera’s
PRNU, we collected over 16,000 images from 40 individual
smartphones and evaluated their noise residues. Our experi-
mental results (Fig. 2) demonstrate a very strong correlation
between noise residues from the same smartphone camera.
The fingerprint generated by a smartphone camera is much
stronger than the fingerprint generated by a traditional digital
camera. This is likely caused by the small size of the pixels
in a smartphone’s image sensor. With the same level of
manufacturing imperfection, small pixels exhibit stronger non-
uniformity, and hence introduce a “high-quality” fingerprint in
a captured image.

We now demonstrate the strong correlation between images
captured by smartphone cameras. Since an authentication is
usually carried out in an indoor environment, we look at the
scenario where the tested image and the reference image are
both indoor images. We note that this is also the worst-case
scenario since the quality of the fingerprint on a captured
image significantly increases with the rise of the intensity of
ambient light (will be shown in section VI).

We construct two types of image pairs: 1) matching image
pairs, each of which contains two images taken by the same
smartphone; 2) non-matching image pairs, each of which con-
tains two images taken by different smartphones. For iPhone 6,
we tested 1250 matching image pairs and 1150 non-matching
image pairs. For Galaxy Note 5, we tested 4000 matching
image pairs and 5300 non-matching image pairs. Fig. 2 shows
the distribution of the obtained PCE values. It can be observed
that, for both smartphone models, the PCE values of the
matching image pairs are significantly higher than the PCE
values of non-matching image pairs. By using thresholding to
differentiate matching image pairs from non-matching image
pairs, we obtained the Receiver operating characteristic (ROC)
shown in Fig. 3. Minimizing the total error rate of fingerprint
matching based on Fig. 3, we choose 7.4338 as the matching
threshold for iPhone 6 and 13.0704 for Galaxy note 5. For
iPhone 6, the chosen threshold leads to a false positive rate of
0.08% at a false negative rate of 0.71%. For Galaxy Note 5,
the chosen threshold leads to a false positive rate of 0.16% at
a false negative rate of 0.94%.

For both smartphone models, the PRNU achieves high
accuracy in differentiating image pairs even when the ambient
light intensity is low. This suggests that one image alone can
be used as a reference fingerprint to uniquely identify a smart-
phone. The reason why some image pairs are wrongly detected
is because the fingerprints on those images are relatively weak.
In order to further improve the identification accuracy, the
verifier can increase the intensity of ambient light or use a
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TABLE I. EXAMPLES OF IMAGE SENSORS FOR DIGITAL AND SMARTPHONE CAMERAS. A SMARTPHONE’S IMAGE SENSOR IS NORMALLY TENS OF TIMES
SMALLER THAN A TRADITIONAL DIGITAL CAMERA’S

Digital camera Sensor size pixel amount Smartphone camera Sensor size pixel amount
(mm2) (million) (mm2) (million)

Canon EOS 5D Mark II 36.00×24.00 21.1 Samsung Galaxy S4 4.69 ×3.53 13
Sony A850 35.90×24.00 24.6 Apple iPhone 6 4.89×3.67 8
Nikon D300s 23.60×15.80 12.3 HTC One X 4.54×3.42 8
Pentax Pentax K-30 23.70×15.70 16.3 LG G3 4.69×3.53 13.13
Sigma SD1 Merrill 23.50×15.70 15.36 Nokia Lumia 920 4.80×3.60 8.7

(a) Matching image pairs captured
by iPhone 6

(b) Non-matching image pairs cap-
tured by iPhone 6

(c) Matching image pairs captured
by Galaxy Note 5

(d) Non-matching image pairs cap-
tured by Galaxy Note 5

Fig. 2. Similarity statics for images captured by smartphone cameras. PCE measures the correlation between two images’ noise residues. For both iPhone 6 and
Galaxy Note 5, images taken by the same smartphone (matching image pair) show significantly higher correlation than images captured by different smartphone
(non-matching image pair).

Fig. 3. ROC curve for fingerprint matching. True positive rate measures
the percentage of matching images that are correctly identified. False positive
rate measures the percentage of non-matching images that are identified as
matching ones.

reference fingerprint extracted from a bright image. As will
be shown in section VI, if the images are captured in a bright
environment (e.g. outdoor), the fingerprint detection strategy
can achieve 100% accuracy.

Due to the high-quality fingerprint, smartphone camera
fingerprinting differs from the digital camera fingerprinting in
the following aspects: Fingerprint detection strategy - with
a high-quality fingerprint on every captured image, we do
not need to acquire a large number of images in order to
estimate a reference fingerprint any more. Therefore, for a
smartphone camera, we can use only one image’s noise residue
as the reference fingerprint. Fingerprint forgery - use of PRNU
for smartphone camera fingerprinting is vulnerable to the
fingerprint forgery attack. With a high-quality fingerprint on
every image taken by a smartphone camera, the adversary can
conduct the fingerprint forgery attack with only one reference
image. Since existing forgery detection mechanisms are not
practical and unreliable, it is a grand challenge to provide a

Fig. 4. Use case: a user captures an image shown on the verifier’s interface
to be authenticated (or registered).

trustworthy fingerprinting result.

B. Basic Authentication Schemes

Before presenting the full-fledged ABC protocol that
achieves all three design goals outlined in Section III-C, we
now introduce the framework of the camera fingerprint based
smartphone authentication system and two baseline schemes.
The first scheme can not distinguish a forged fingerprint from
a genuine one. The second scheme can detect forgery attacks,
but introduces a huge overhead to the verifier and the user.

1) System Framework: Fig. 4 shows a use case of the
two-phase authentication process. Registration: the verifier
constructs a fingerprint profile for a target smartphone. This
phase collects the target smartphone’s reference fingerprint,
smartphone make and model. The registration process is con-
ducted on the verifier’s interface. Authentication: the verifier
authenticates a smartphone in real time. The verifier challenges
the user to upload freshly captured images and uses the fin-
gerprint derived from those images to authenticate the device.

2) Basic Scheme I: This authentication scheme, shown in
Fig. 5, can defeat the replay attack and the man in the middle
attack. It integrates a challenge response scheme that enforces
the user to capture a freshly constructed scene embedded with
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Fig. 5. Basic Scheme I. Registration: the user uploads an arbitrary image
captured by her smartphone. Authentication: the verifier challenges the user to
capture a freshly constructed QR code shown on its interface. The QR code is
encoded with an abstract of the ongoing transaction, which enables the user
to verify the information before authorizing.

an abstract of the ongoing transaction. We propose to use a
Quick Response Code (QR code) as the challenge since it can
carry long messages and support fast image content matching.

The registration phase has no constraint on the user’s
reference image I(r). Upon receiving the reference image
uploaded by the user, the verifier extracts the fingerprint K̂(c)

contained in this image and uses it to construct a profile P(c)

for this smartphone.

During the authentication phase, upon receiving the user’s
authentication request, the verifier generates a QR code I(s)
that encodes an abstract of the ongoing transaction ω, a random
string str and a time stamp T , displays this QR code on
its interface, and challenges the user to capture it. The user
photographs the QR code with her smartphone and examines
the transaction embedded in the QR code. In this stage, any
modification to the user’s request will be noticed by the
user (defeat man in the middle attack). She then uploads the
captured image I(c) to the verifier. Finally, the verifier performs
image content matching and fingerprint matching to make the
authentication decision. Image content matching ensures the
liveness of the authentication process through detecting the
newly presented QR code in the received image. Fingerprint
matching verifies the producer of the received image by
matching the noise residue extracted from the QR image to the
target smartphone’s reference fingerprint. A legitimate image
token should consist of the challenging QR code and the target
smartphone’s fingerprint.

Although this scheme provides great convenience and
strong resistance against replay attacks and man in the middle
attacks, it is vulnerable to fingerprint forgery attacks. During
the authentication process, the adversary could capture the
presented QR code with a foreign smartphone and embed the
victim smartphone’s fingerprint in the captured image. Since
the forged image contains both the challenging QR code and
the victim smartphone’s fingerprint, the verifier will accept this
image as a legitimate token.

3) Basic Scheme II: To address the fingerprint forgery at-
tack against Basic Scheme I, Basic Scheme II adopts the state-
of-the-art forgery detection mechanism named triangle test.
The main reason for not using the fragile fingerprint detection
technique is that transmitting large number of uncompressed
raw images will lead to a huge latency as discussed in section
II-B. With a complete history image set, triangle test can

Fig. 6. Basic Scheme II. Registration: the user uploads one image freshly
captured by her smartphone and all other images the smartphone has ever
captured. Authentication: this process is similar to the process in basic scheme
I, except that triangle test is applied to detect forged images.

Algorithm 1 Triangle Test
F1 function TriangleTest(I(q), {W(1), ...,W(N)})
1. W(q) ← F (I(q))
2. for i:= 1 to N do
3. η ← PCE(W(i),W(q))
4. If (η > threshold) then
5. Reject
6. end if
7. end for
8. Accept.

end function

determine with a high level of confidence whether or not
the received image contains a forged fingerprint. The triangle
test has two requirements for the verifier: 1) the reference
fingerprint K̂(c) for the target smartphone should be extracted
from a private image that is not accessible to the adversary; 2)
the verifier should maintain a history image set for the target
smartphone. This image set contains all of this smartphone’s
public images that might be accessible to the adversary.

Fig. 6 shows the second baseline authentication scheme.
The registration phase of this scheme requires the user to
upload their history image set {I1, ..., IN} and a freshly
captured image I(r). The verifier extracts the noise residues
of these images and uses them to construct a profile P(c) for
this smartphone.

During the authentication phase, this scheme also asks
the user to photograph a freshly generated QR code. After
verifying the QR code and the fingerprint contained in the
received image, this scheme further conducts the triangle test to
detect the fingerprint forgery attack, as shown in Algorithm 1.
The verifier first extracts the query image’s noise residue W(q).
For each history image’s noise residue W(i), it then calculates
the similarity η between W(q) and W(i). An η higher than a
threshold suggests that I(q) is a forged image fabricated with
W(i). The accuracy of this detection mechanism depends on
the completeness of the history image set.

Although the triangle test addresses the vulnerability
against the fingerprint forgery attack, it has the following
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Fig. 7. Full-fledged authentication protocol. Registration: the user uploads
an arbitrary image captured by her smartphone. Authentication: the verifier
enforces the user to capture two consecutive images shown on its interface.

drawbacks: 1) This scheme can not guarantee real-time au-
thentication. Since the verifier needs to test the whole history
image set, the response time may increase dramatically as the
size of the image set increases. 2) It brings a huge burden to
the user and the verifier. To maintain an up-to-date history
image set for the smartphone, the user has to notify the
verifier whenever they publish new pictures. 3) It is difficult
to guarantee the completeness of the history image set. An
incomplete history image set will make the detection result
unreliable. 4) Collecting all the history images of a user might
create privacy issues.

C. Full-fledged Authentication Protocol

Overcoming the drawbacks in the two baseline schemes
requires a reliable and real-time detection mechanism against
fingerprint forgery attacks. ABC detects the forgery attack
through tracking the fingerprint of the adversary’s smartphone.
This fingerprint in question is introduced during the challenge
response stage where the adversary captures the challenge
QR code with their own smartphone. Since this fingerprint
of the attacking smartphone is preserved in forged images, its
existence implies a fingerprint forgery attack. ABC requires
a smartphone to upload two freshly captured images. If these
images are forged by an adversary, their noise residues will
contain both the victim device’s fingerprint and the adversary’s
camera fingerprint. This renders their similarity value signifi-
cantly higher than a normal value.

Since a camera fingerprint can be removed with a denoising
filter, the adversary can forge images containing only the
victim device’s fingerprint. ABC detects fingerprint removal by
embedding each challenge with a probe signal that can survive
photographing but not fingerprint removal and checking the
existence of the probe signal in the received images.

Using the above detection mechanisms as building blocks,
we now present the full-fledged ABC protocol (Fig. 7). Its
registration phase is the same as the one in Basic Scheme I,
which collects only one reference image from the user. The
authentication phase is as follows:

Step 1. The verifier generates two different QR codes
encoded with a transaction abstract, a time stamp and a
random string. Each QR code is embedded with independent
white Gaussian noise Γi, the variance of which is 5. The

Fig. 8. Attack detection flow: since the user has confirmed the information
of the ongoing transaction, the verifier needs only to detect replay attack and
fingerprint forgery attack.

challenging scenes with QR codes can be represented as
Ii(s) = QR(stri, Ti) + Γi, i = 1, 2. The verifier displays
the two QR codes on its interface in a sequence.

Step 2. The user captures I1(s) and I2(s), and uploads
captured images to the verifier through the wireless channel.

Step 3. Upon receiving the images uploaded by the user,
the verifier performs the actions shown in Fig. 8 to identify
the user’s smartphone:

Image content matching. Detects the challenging QR code
in the received images. This can easily be achieved with off-
the-shelf QR code scanning tools.

Fingerprint matching. Detects the target smartphone’s cam-
era fingerprint K(c) in the received images by correlating the
noise residue of each received image to the noise residue of
the reference image.

Forgery detection. Detects the adversary’s camera finger-
print K(a) in the received images. As shown in Algorithm
2, the verifier extracts the noise residues Wi(c) of each
received image Ii(c) and calculates their similarity values
PCE(W1(c),W2(c)). If these images are forged by the adver-
sary, both W1(c) and W2(c) will contain K(a) and K(c), which
will make PCE(W1(c),W2(c)) significantly higher than the
normal similarity value PCE(W1(c), K̂(c)).

Removal detection. Detects the added white Gaussian noise
Γi in the received images. As shown in Algorithm 3, the
verifier first subsamples each received image Ii(c) and obtains
Îi(c). With an appropriate subsampling method, Îi(c) should
contain the embedded probe signal Γi. The verifier then
calculates the similarity value between Γi and the noise residue
of Îi(c). If Ii(c) has gone through a fingerprint removal process,
due to Γi’s sensitivity to fingerprint removal, the similarity
value will be lower than a threshold.

V. SECURITY ANALYSIS

In this section, we analyze the security of the ABC protocol
by examining its resistance against the replay attack, man in
the middle attack and fingerprint forgery attack.

A. Replay Attack

An adversary may attempt to impersonate a legitimate
smartphone by fraudulently replaying a captured image token
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Algorithm 2 Forgery Detection

F2 function ForgeryDetection (K̂(c), I1(c), I2(c))
1. W1(c) ← F (I1(c))
2. W2(c) ← F (I2(c))
3. δ ← PCE(W1(c),W2(c))− PCE(W1(c), K̂(c)))
4. If (δ > threshold) then
5. Reject.
6. end if

end function

Algorithm 3 Removal Detection
F4 function RemovalDetection(I1(c), I2(c))
1. for i in [1,2] do
2. Îi(c) ← Subsample(Ii(c))
3. Ŵi(c) ← F (Îi(c))
4. Γi ← ith probe signal
5. if PCE(Ŵi(c),Γi) < threshold then
6. Reject.
7. end if
8. end for

end function

that is previously sent to the verifier. Since this image token
is indeed photographed by the legitimate smartphone, without
appropriate detection mechanisms, it will pass the authentica-
tion system.

To detect replayed images, ABC challenges the user to
photograph a freshly generated QR code, in which a random
string and a time stamp are encoded. The random string
ensures that the presented QR code is hard to predict and
the time stamp ensures that each QR code will be used only
once for each user. In this way, the verifier can detect replay
attack through checking the existence of the presented QR
code in the received image. The reliability of this liveness
detection mechanism is mainly determined by the entropy of
the presented challenge. For QR codes, even the lowest QR
code version can generate 5.7×1045 different images [2]. It is
hardly possible for an adversary to predict the QR code to be
requested in a future authentication process. Therefore, ABC
has strong resistance against the replay attack.

B. Man in the Middle Attack

An adversary may attempt to lure a legitimate user to
authorize a malicious request through modifying the com-
munication between the user and the verifier. The attacking
process is as follows: 1) The legitimate user initiates her
request on the verifier’s interface. 2) The adversary (e.g., a
malicious terminal) intercepts the user’s request and sends the
verifier a malicious one. 3) The verifier’s server sends a freshly
generated QR code to the interface and challenges the user to
capture it. 4) The user captures and uploads the image using
her smartphone. Since the smartphone presented by the user
is indeed the legitimate one, the captured image sure will pass
the authentication process. However, the transaction authorized
by this smartphone is not the one requested by the user.

To address this attack, ABC further embeds an abstract of
the ongoing transaction into the challenging QR code. During
the authentication process, the user will be required to capture

(a) iPhone 6 (b) Galaxy Note 5

Fig. 9. PCE for forgery detection. PCE1 measures the correlation between
one tested image and the reference fingerprint. PCE2 measures the correlation
between two tested images.

the challenging QR code and to verify the information of the
transaction. With this design, an adversary conducting man in
the middle attack will have two options after receiving the
challenging QR code (step 3): 1) Display it on the screen and
ask the user to capture it. In this case, the user will terminate
the authentication as the transaction encoded in the QR code is
different from the one she requested. 2) Fabricate and display
a forged QR code, in which an abstract of the user’s original
transaction in encoded. In this way, the user will confirm the
transaction and photograph the QR code shown on the screen.
However, since the QR code shown on the screen is different
from the one generated by the verifier, the captured image
token will not pass image content matching. In both cases, the
adversary’s transaction will not be authorized.

C. Fingerprint Forgery Attack

An adversary may impersonate a legitimate smartphone
through fabricating images that contain the challenging QR
code and the target smartphone’s fingerprint. Two forgery
strategies could be used: 1) directly inject the victim’s camera
fingerprint into an image captured by the adversarial device; 2)
remove the adversary’s camera fingerprint from the captured
image before the injection process.

1) Forgery Strategy I: This forgery process works as fol-
lows: 1) derive two reference fingerprints from two different
sets of images captured by the victim device; 2) photograph
the challenging QR codes with another smartphone of the
same model; 3) embed each captured image with a different
reference fingerprint. Images fabricated in this way consist of
the challenging QR code, the victim’s camera fingerprint K(c)

and the adversary’s camera fingerprint K(a), along with other
random noise components.

In order to detect this attack, our protocol adopts a forgery
detection mechanism that can detect the existence of K(a).
Based on the observation that forged images sharing K(a)

will have a significant higher correlation value than legitimate
images, our protocol enforces the user to capture two challeng-
ing QR codes with the same device, and uses the correlation
between the captured images to detect this forgery attack.

The reliability of the detection mechanism above lies in
the significance of the correlation caused by K(a). To prove
the effectiveness of this mechanism, we also look at the worst-
case scenario where all tested images are captured in an indoor
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(a) Normal iPhone 6 image pair (b) Forged iPhone 6 image pair (c) Normal Galaxy Note 5 image
pair

(d) Forged Galaxy Note 5 image
pair

Fig. 10. Distribution of PCE2-PCE1. For normal image pairs, PCE1 and PCE2 both measure the correlation between two legitimate images. The distribution
of PCE2-PCE1 is roughly a zero mean Gaussian. For forged image pairs. PCE2 measures the correlation between two forged images sharing both the target
smartphone’s fingerprint and a foreign smartphone’s. The foreign smartphone’s fingerprint makes PCE2 significantly higher than PCE1.

Fig. 11. Forgery detection. True positive rate measures the percentage of
forged images which are correctly identified. False positive rate measures the
percentage of legitimate images that are identified as forged ones.

environment. As will be shown in section VI, images captured
in this environment has the weakest fingerprint. We tested two
image sets collected from Amazon Mechanical Turk and our
own device:

• iPhone set: 6,000 images taken by 30 different iPhone
6. The resolution is 2448× 3264.

• Samsung set: 10,000 images taken by 10 different
Galaxy Note 5. The resolution is 2048× 1152.

For both image sets, we construct two kinds of image pairs
for comparison: 1) Normal image pair: two images taken by
the same camera, i.e., with the same K(c). 2) Forged image
pair: two forged images with the same K(c) and K(a). All
forged image pairs are fabricated through Forgery Strategy I.
For the iPhone set, we constructed 400 forged image pairs and
450 normal image pairs. For the Samsung set, we constructed
1600 forged image pairs and 1400 normal image pairs.

For each tested image pair, we calculate two similarity
values. PCE1 = PCE(W1(c), K̂(c)) is the similarity value
between one tested image’s noise residue and the target smart-
phone’s reference fingerprint. PCE2 = PCE(W1(c),W2(c))
is the similarity value between tested images’ noise residues.
Since PCE2 is positively correlated to PCE1 for both kinds
of image pairs, as shown in Fig. 9, we use the difference
between PCE1 and PCE2 to differentiate normal images
from forged ones. The distribution of the obtained difference

is shown in Fig. 10.

ABC uses thresholding to detect fingerprint forgery attack.
It counts an image pair as a forged one if the difference
between PCE2 and PCE1 is above a threshold, and vice
versa. Fig. 11 shows the performance of the detection result
as a ROC curve. Both true positive rate and false positive rate
increase with the reducing of the threshold. To minimize the
total error rate of forgery detection, we choose 75.7 as iPhone
set’s forgery detection threshold and 162.9 as Samsung set’s
threshold. For iPhone 6, the chosen threshold yields a false
positive rate of 0% and a false negative rate of 1.01%. For
Galaxy Note 5, the false positive rate is 0.14% and the false
negative rate is 0.64%.

The reason why some forged image pairs can successfully
pass the forgery detection mechanism is because the K(a)

introduced during their forgery process is too weak. Because
of the existence of random noise, the strength of K(a) ran-
domly varies between exposures even when the intensity of
ambient light is fixed. If an adversary accidentally captures
an image with a weak K(a) during the authentication process,
she may able to fabricate a forged image that can pass the
forgery detection mechanism. However, as shown in Fig.2, the
detection result will also be affected by the strength of K(c). As
PCE1 increases, the difference between PCE2 and PCE1 grows
rapidly. If the verifier can increase the intensity of ambient light
and raise the threshold for fingerprint matching, even images
with weak K(a) will not pass the forgery detection mechanism.

2) Forgery Strategy II: In this strategy, the adversary tries
to defeat the forgery detection mechanism through removing
his own fingerprint from forged images. The forgery process
works as follows: 1) derive two reference fingerprints from
two different sets of images from the victim; 2) photograph the
challenging QR codes and remove the adversary’s fingerprint
from the captured image; 3) embed each obtained image with
a different fingerprint of the victim. The constructed image
consists of the challenging QR code, the victim’s camera
fingerprint, and other random noise component. This strategy
may defeat our mechanism for defeating Forgery Strategy I.

ABC defeats this attack by detecting fingerprint removal.
Fingerprint removal can be achieved in two ways: 1) filter the
captured image with the adaptive PRNU denoising technique
[31], [22]; 2) reconstruct an image containing the presented
QR code. Since both removal strategies remove all noise com-
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Fig. 12. Probe signal detection. Setting 1: The presented QR code does not
contain the probe signal. Setting 2: The presented QR code contains a probe
signal and fingerprint removal is not performed on the captured image. Setting
3: The presented QR code contains a probe signal and fingerprint removal is
performed on the captured image.

ponents, we use a probe signal to detect fingerprint removal.
The probe signal is semi-fragile: 1) robust against camera-
screen channel distortion to ensure that it will be preserved
in legitimate image tokens. 2) sensitive against fingerprint
removal to ensure that the fingerprint removal process will
change it. During the authentication process, the verifier em-
beds this probe signal Γ into the QR code to be captured by
the user. In this way, fingerprint removal can be detected by
checking the existence of this signal in the received image.

The reliability of this detection mechanism lies in the semi-
fragility of the probe signal.

Sensitivity: The probe signal in ABC is of the same type as
a camera fingerprint, i.e., white Gaussian noise with a variance
of 3 to 5. With this design, the probe signal has an inherent
sensitivity against adaptive PRNU denoising. Any filtering
method that can remove the adversary’s fingerprint will also
remove the probe signal. For the second removal strategy, since
the probe signal is unknown, the adversary cannot construct
an image containing the probe signal without introducing their
own camera fingerprint into a captured image.

Robustness: Camera-screen channel distortion may lead to
an information loss in the high frequency band [29], [25].
Although this loss also affects the probe signal, the information
loss caused by fingerprint removal is much more severe. To
compare channel distortion and fingerprint removal, we test
the probe signal with three different settings: 1) The presented
QR code does not contain the probe signal. 2) The presented
QR code contains an 800×800 probe signal, and the adversary
does not conduct fingerprint removal on the captured image.
3) The presented QR code contains a 800× 800 probe signal
and fingerprint removal is performed on the captured image.
In the experiment, we first put the smartphone (iPhone 6) in
parallel to the verifier’s interface (iPad mini 2) and photograph
the presented QR code I(s). We then perform region detection
and subsampling on the captured image I(c) to extract the
challenging QR code and get I′(c). Finally, we calculate the
PCE value between I(s) and I′(c). For each setting, we repeat
the experiment 20 times and show the CDF of the PCE value in
Fig. 12. It can be observed that: 1) the probe signal is preserved
in the captured images. The PCE value of the second setting
is significantly higher than that of the first setting; 2) using

the probe signal, we can reliably detect fingerprint removal.
The PCE distributions of the second and third setting have no
overlapping. We note that the PCE value of the first setting is
mainly caused by the image content shared between I(s) and
I′(c).

Being sensitive to all fingerprint removal methods and ro-
bust against camera screen channel distortion, the probe signal
applied in ABC can effectively detect fingerprint removal.

VI. PERFORMANCE EVALUATION

In this section, we first investigate the characteristics of a
smartphone camera’s PRNU. We then evaluate the efficiency of
the proposed ABC protocol. Finally, a user study is conducted
to demonstrate the usability of the system.

A. Experiment Setup

Configuration: The evaluation is conducted using Matlab
on a Windows system with 8 Core Intel i7-4720HQ processor
running at 2.6 GHz. The algorithm for fingerprint matching
and extraction is based on the code by digital data embedding
laboratory [28].

Image sets: The applied image sets include 6,000 images
captured by 30 individual iPhone 6 devices and 10,000 images
captured by 10 individual Samsung Galaxy Note 5 devices.
The resolution of iPhone 6 images and Samsung Galaxy Note
5 images are 2448 × 3264 and 2048 × 1152, respectively.
These images are collected from Amazon Mechanical Turk and
our own devices. To ensure the randomness of the collected
images, the image collection tasks we published on Mechanical
Turk had no limitation on image content or the way people take
photographs.

Metrics: We use the following metrics to evaluate the
fingerprint of a smartphone camera. Peak to Correlation En-
ergy (PCE) measures the correlation between a query image’s
noise residue and the reference fingerprint. It can be used to
indicate the quality of the reference fingerprint and the strength
of the fingerprint carried by the query image. Cumulative
distribution function (CDF) is a graphical plot that illustrates
the distribution of a value X . Given a specific value α, the
CDF shows the probability that the X will take a value less
than or equal to α. In this paper, CDF is used to compare the
PCE distributions of different experimental settings. A setting
with higher PCE value will achieve better accuracy in both
fingerprint detection and forgery detection.

B. Smartphone Camera’s PRNU

Before presenting the detailed setting of our experiments,
we first summarize the investigated questions and our key
observations as follows:

1 Does PRNU change over time? No. We have tested
images captured in three different years. There is
no significant difference in the fingerprints on those
images.

2 Will the ambient environment affect the fingerprint
on an image? Yes, we have tested the impact of
light, temperature and relative humidity. The only
factor that can affect the fingerprint is the intensity
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(a) indoor images (b) outdoor images (c) Ambient temperature (d) Relative humidity

Fig. 13. Impact of ambient environment. The CDF of each setting plots a distribution of the correlation between two images captured in that environment.
The only environmental factor that affects camera fingerprint is the intensity of ambient light. The strength of the fingerprint on a image significantly increases
with the rise of the ambient light intensity.

Fig. 14. The impact of age. We use a reference image captured in 2017
and conduct fingerprint matching with images captured in different years. The
CDF of each year shows the distribution of the PCEs obtained for that year.

of ambient light. The strength of the fingerprint on
a captured image significantly increases with the rise
of the light intensity.

3 What is the relationship between an image’s resolu-
tion and the strength of its fingerprint? Positively
correlated. When cropping an image to different
resolutions, the strength of its fingerprint is nearly
proportional to the number of remaining pixels.

4 How does the number of reference images affect
the strength of the extracted reference fingerprint?
For each smartphone, the strength of the extracted
reference fingerprint is nearly proportional to the
number of reference images.

1) Impact of Age: In an authentication system, a usable
hardware fingerprint should not change over time. Since the
average life cycle for a smartphone is around 22 months [3],
we evaluate a smartphone’s PRNU with images captured in
three different years: 2015, 2016 and 2017. All tested images
were captured in the same room with fixed light intensity. The
smartphone applied in this test is an iPhone 6.

To find out if PRNU changes over time, we first extract a
reference fingerprint from an image captured in 2017. Then, we
conduct fingerprint matching with three image sets collected in
different years. Each image set contains 200 images captured
by the tested device. Fig. 14 shows the CDF of the obtained
PCE value. As the reference fingerprint is captured in 2017,
the CDF of 2017 shows the correlation between noise residues

(fingerprints) from the same year, and the CDF of 2015
and 2016 show the correlation between noise residues from
different years. Since there is no significant difference between
these three CDFs, the PRNU of the tested smartphone did not
change over the last three years.

2) Impact of Ambient Light: The quality of an extracted
fingerprint is mainly determined by the noise components of
the image of interest. Since the ambient light will affect the
random noise component on a captured image, it is important
to investigate the impact of ambient light on camera finger-
print. We evaluate images captured in six different environ-
ments: 1) Indoor low: a windowless room with a dim filament
lamp. 2) Indoor median: a windowless room with several
fluorescent lamps. 3) Indoor high: an indoor environment with
several windows. The ambient light source is the sun. 4)
Outdoor morning. 5) Outdoor noon. 6) Outdoor evening. The
outdoor images are captured on a sunny day.

During the experiment, we construct 300 image pairs for
each configuration and conduct fingerprint matching on those
image pairs. The PCE value calculated for each image pair in-
dicates the strength of the fingerprints carried on them. Fig. 13
shows the CDF of the obtained PCE values. The observations
are as follows: 1) The strength of the fingerprint on a captured
image significantly increases with the rise of the intensity of
ambient light. 2) Compared with an indoor image, an outdoor
image normally carries a stronger fingerprint. Therefore, one
possible way to improve the identification accuracy is to extract
the reference fingerprint from an outdoor image.

3) Impact of Ambient Temperature and Relative Humidity:
To understand how ambient environments affect the finger-
print on a captured image, we further investigate the impact
of ambient temperature and relative humidity. In order to
eliminate the impact of ambient light, all tested images are
captured in an indoor environment with fixed light intensity.
For ambient temperature, we have tested 17.78°F, 45.5°F and
85.1°F. For relative humidity, the tested images cover 27%,
45% and 78%( a rainy day). Similar to the last experiment, we
construct 200 image pairs for each configuration and conduct
fingerprint matching. As shown in Fig. 13(c) and Fig. 13(d),
there is no significant difference between the CDF of different
configurations. Therefore, PRNU is not affected by ambient
temperature or relative humidity.

4) Impact of Image Resolution: Since the resolution of
the image token significantly affects the overhead of the
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(a) 40% scaling rate, JPG (b) 40% scaling rate, PNG

(c) 60% scaling rate, JPG (d) 60% scaling rate, PNG

(e) 80% scaling rate, JPG (f) 80% scaling rate, PNG

Fig. 15. Impact of image resolution. For each setting, we conduct fingerprint
matching with matching and non-matching image pairs. When the resized
image is stored in JPG format, the scaling ratio has no significant impact on
the obtained PCE values. When PNG is used, the PCE value obtained from a
matching image pair is nearly proportional to the number of remaining pixels.

authentication process (Section VI-C) in terms of the time used
for authentication, we now evaluate the fingerprint detection
strategy on resizing images.

The images captured by a digital camera can be resized
with down-sampling or image cropping. For down-sampling,
we tested three most commonly used interpolation methods:
nearest-neighbor, bilinear, and bicubic. For image cropping,
we crop a rectangular area from the target image. After resizing
an image, we also need to decide the image format to be
used to store it. We test the two most commonly used image
formats: 1) PNG, which supports lossless image compression.
The obtained image has accurate pixel values but requires
more storage space. 2) JPG, which supports lossy compression.
The obtained image is noisy but smaller. The scaling ratio is
defined as the proportional ratio of the size of the resized image
to the size of the original image. We tested different image
scaling ratios from 40%-80%. Overall, we have 24 different
configurations, each of which is tested with 100 matching
image pairs and 100 non-matching image pairs generated from
the Samsung image set.

(a) 40% scaling rate, JPG (b) 40% scaling rate, PNG

(c) 60% scaling rate, JPG (d) 60% scaling rate, PNG

(e) 80% scaling rate, JPG (f) 80% scaling rate, PNG

Fig. 16. Impact of number of reference images. For every scaling ratio and
image format, the PCE value obtained from a matching image pair is nearly
proportional to the number of reference images.

Fig. 15 shows the CDF of the obtained similarity value.
We make the following observations. Image resizing method:
image cropping is much better than all tested down-sampling
methods and it has the most distinguishing similarity value in
all configurations. We note that image cropping is also the
most efficient one. Image format: PNG is better than JPG
in fingerprint detection. For the matching image pairs, PNG
images generate higher PCE values than JPG images. For non-
matching image pairs, JPG images generate higher PCE values
than PNG images due to the noise components introduced
during the lossy compression process. Scaling ratio: a higher
scaling ratio results in a higher PCE value for PNG images.
The scaling ratio has no remarkable impact on JPG images.

To summarize, the best resizing strategy is to crop the
image to the target resolution and save the obtained image
in the PNG format. Comparing the distributions of matching
and non-matching image pairs, it can be observed that even
images with 40% scaling ratio (16% pixel amount) can achieve
a decent accuracy.

5) Impact of the Number of Reference Images: For images
with a low scaling ratio, one approach to improve the accuracy

12



TABLE II. EXPERIMENTAL SETTINGS FOR OVERALL PERFORMANCE EVALUATION

Test# 1 2 3 4 5 6
Image Resolution 640x480 960x720 1280x960 1600x1200 2048x1152 3264x2448
Probe Resolution 200x200 200x200 400x400 400x400 400x400 800x800

(a) Fingerprint matching (b) Forgery detection (c) Total time consumption (d) Photographing

Fig. 17. Time overhead of the ABC protocol. The resolutions of the tested images are shown in Table II.

of fingerprint detection is to increase the number of reference
images uploaded by the user. Since this approach also increases
the registration overhead of the authentication system, we
further investigate how the number of reference images affects
the similarity value of resized images.

Since the high registration overhead can severely degrade
user experience, we only tested 1, 2, 4 and 6 reference images.
The images are resized with image cropping and saved in both
PNG and JPG formats. The image scaling ratios are 40%,
60% and 80%. Each of the 24 configurations is tested with
100 matching image pairs and 100 non-matching image pairs
generated from the Samsung image set. Fig. 16 shows the
CDF of the obtained similarity values. We observe that: 1) for
the JPG format, although increasing the number of reference
images can improve the accuracy of fingerprint detection, it is
hardly possible for JPG images to achieve fair accuracy with
reasonable registration overhead; 2) for the PNG format, even
images with a scaling ratio of 40% can achieve high accuracy
with a very low registration overhead.

C. Time Overhead

We first analyze the cost of each individual procedure
involved in the authentication process and then discuss the
overall protocol efficiency. The system is tested with six of
the most common resolutions shown in Table II.

Image Content Matching: the cost of this procedure is
mainly determined by the version of the applied QR code.
Based on the experimental results in [41], smartphones can
decode QR codes of a very high version (20) within 0.1 second.

Fingerprint Matching: this process involves two rounds of
noise extraction and PCE calculation. The time consumption
of this procedure is shown in Fig. 17(a).

Forgery Detection: since the required noise residues have
been obtained in the previous procedure, this procedure only
involves one round of PCE calculation. Fig. 17(b) shows the
time consumption of this process.

Removal Detection: this process involves two rounds of
noise extraction and PCE calculation. For the probe signal

used in our prototype (800×800), the protocol uses up to 0.9
seconds to detect fingerprint removal.

Overall Protocol Efficiency: For each test, we utilize the
parallel pool of Matlab with four workers on a local machine.
Two of the workers conduct fingerprint matching and forgery
detection sequentially, and the other two workers conduct
removal detection with the probe signals shown in Table
II. As shown in Fig.17(c), for most of the tested common
resolutions, ABC achieves high efficiency. Compared with
the fingerprint matching process, the security mechanisms
integrated in the protocol only introduce 7.5% additional run
time to the authentication process.

The latency for high resolution images is mainly caused by
the fingerprint extraction process. We note here that the code
published by the digital data embedding laboratory [28] does
not take advantage of GPU computing and parallel computing.
With further optimization, the efficiency would be significantly
improved. Moreover, as shown in Sections VI-B4 and VI-B5,
images with a low scaling rate can also achieve high ac-
curacy with reasonable registration overhead. Therefore, for
smartphone models with high resolution cameras, the verifier
can reduce the overhead of the authentication process through
cropping the received image to low resolution.

D. Usability Study

To understand the users’ behaviors, needs, and attitudes
towards the ABC protocol, we conducted a user study with
a prototype using two Samsung Galaxy Note 5 devices as
the smartphone to be authenticated and the verifier. In the
prototype, we use a NFC channel to implement the wireless
channel from the smartphone to the verifier. We tested our
system on 40 participants (20 males and 20 females) aged from
21 to 54. They were randomly picked from the general public.
During the test, we first gave a one-minute introduction to
the system. Each participant was then required to conduct the
smartphone authentication using our prototype without further
guidance. Since people are familiar with photographing with
smartphones, all participants were able to easily accomplish
the task on their first attempt. Fig. 17(d) shows the CDF
of the time taken by each participant in photographing the
challenging QR code. 95% of the participants thought that the
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photographing phase is efficient and comfortable. In particular,
5 female participants pointed out that photographing is better
than typing password since remembering passwords places a
considerable burden on them. For the NFC transmission phase,
80% of the male participants criticized that the transmission
speed of the NFC channel is a little slow while 90% of
the female participants thought that the transmission speed is
acceptable and the way it transfers data is interesting.

VII. RELATED WORK

Hardware fingerprinting has been actively studied in recent
years. Due to manufacturing imperfection, physical sensors
introduce systematic distortions on their output. It has been
shown that the distortions generated by motion sensors, acous-
tic sensors, and wireless transmitters are strong enough to
fingerprint off-the-shelf smartphones.

Dey et al. [21] exploit the imperfection of the accelerom-
eter. They stimulate the sensor with a vibration motor and
use machine learning to create the fingerprint. Bojinov et
al. [5] analyze the calibration error of the accelerometer and
verify its effectiveness with a large number of devices. This
method requires the user to perform a calibration of the
accelerometer. Das et al. [19] further investigate combining
the features of both accelerometers and gyroscopes to generate
more accurate fingerprints. However, their method requires the
user to precisely rotate the smartphone with several angles.
Moreover, the fingerprints of motion sensors are manipulatable
and can be easily eliminated [19], [18].

Acoustic fingerprints can also be used to uniquely identify
smartphones. Das et al. [17], [16] extract auditory fingerprints
from a process of playing and recording audio clips. Zhou et
al. [42] explore the speaker’s frequency response to a specially
designed audio input. Chen et al. [9] combine the frequency
response of one device’s speaker and another device’s micro-
phone as the hardware fingerprint for device authentication.
However, these methods require access to the microphone and
lead to privacy concerns [18].

Radio frequency fingerprinting is also an active research
area. Several individual steps in the process of generating
wireless signals, all due to hardware imperfections of a trans-
mitter [15], can be the source of the RF fingerprints. Different
fingerprint sources include the clock jitter [40], device antenna
[13], DAC sampling error [34], power amplifier non-linearity
[34], [35], [32], modulator sub-circuit [6], and the mixer or
local frequency synthesizer [39].

Although hardware fingerprinting has been proved to be
effective in tracking smartphones, it is unclear whether these
methods can resist an impersonation attack. Since the signal
generated by a sensor is manipulatable, most fingerprinting
methods are vulnerable against forgery attacks where an ad-
versary tampers with the sensor data intentionally [8], [14].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we explore the idea of utilizing the im-
age sensor’s PRNU as a smartphone’s unique fingerprint to
implement the physical layer device authentication. We find
that smartphone cameras demonstrate very strong PRNU.
Based on this fact, we design ABC, an attack-resilient, real-
time, and user-friendly smartphone authentication protocol that

differentiates smartphones through the PRNU of their built-in
cameras. The registration of a smartphone’s PRNU requires
only one image. We implement a prototype of ABC and test
it with 16,000 images collected from Amazon Mechanical
Turk and our own devices. The experimental results show that
ABC can efficiently authenticate users’ devices with an error
rate less than 0.5% and detect fingerprint forgery attacks with
an error rate less than 0.47%. Our user study suggests that
the PRNU-based authentication is a promising approach for
enhancing smartphone security.

With more and more smartphone manufacturers adopting a
dual-camera (rare) system, we plan to investigate how to take
advantage of the extra camera and improve the security of ABC
as future work. With a dual-camera system, the verifier will
be able to identify each smartphone with fingerprints of the
two cameras and further increase the difficulty of fingerprint
forgery. We will also consider the characteristics of different
dual-camera system types: IPhone 7 plus is equipped with a
wide-angle camera and a telephoto camera to achieve higher-
quality zoom from farther away; Huawei P9 combines two
image sensors, one RGB and one monochrome, to enhance
the detail of the captured image.
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