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Abstract—The convergence of telephony with the Internet
has led to numerous new attacks that make use of phone calls
to defraud victims. In response to the increasing number of
unwanted or fraudulent phone calls, a number of call blocking
applications have appeared on smartphone app stores, including
a recent update to the default Android phone app that alerts
users of suspected spam calls. However, little is known about the
methods used by these apps to identify malicious numbers, and
how effective these methods are in practice.

In this paper, we are the first to systematically investigate
multiple data sources that may be leveraged to automatically
learn phone blacklists, and to explore the potential effectiveness
of such blacklists by measuring their ability to block future
unwanted phone calls. Specifically, we consider four different data
sources: user-reported call complaints submitted to the Federal
Trade Commission (FTC), complaints collected via crowd-sourced
efforts (e.g., 800notes.com), call detail records (CDR) from a large
telephony honeypot [1], and honeypot-based phone call audio
recordings. Overall, our results show that phone blacklists are
capable of blocking a significant fraction of future unwanted
calls (e.g., more than 55%). Also, they have a very low false
positive rate of only 0.01% for phone numbers of legitimate
businesses. We also propose an unsupervised learning method to
identify prevalent spam campaigns from different data sources,
and show how effective blacklists may be as a defense against
such campaigns.

I. INTRODUCTION
Telephony used to be a relatively closed and trusted sys-

tem. However, with its convergence with the Internet, cyber
criminals are now using the telephony channel to craft new
attacks [14]. Robocalling [13], voice phishing [25], [39] and
caller-id spoofing [15] are some of the techniques that are
used by fraudsters and criminals in these attacks. The number
of scam/spam calls people receive are increasing every day.
In the United States, more than 660,000 online complaints
regarding unsolicited calls were reported in 2015 on websites
that track phone abuse[18], and the Federal Trade Commission
(FTC) phone complaint portal receives millions of complaints
about such fraudulent calls each year [13]. In several scams
that have been reported widely, the telephony channel is either

directly used to reach potential victims or as a way to monetize
scams that are advertised online, as in the case of tech support
scams [32].

In response to the increasing number of unwanted or fraud-
ulent phone calls, a number of call blocking applications have
appeared on smartphone app stores, some of which are used by
hundreds of millions of users (e.g., [41], [42]). Additionally,
a recent update to the default Android phone app alerts users
of suspected spam calls [40]. However, little is known about
the methods used by these apps to identify malicious numbers
and how accurate and effective these methods are in practice.

To fill this knowledge gap, in this paper we systematically
investigate multiple data sources that may be leveraged to
automatically learn phone blacklists, and explore the potential
effectiveness of such blacklists by measuring their ability to
block future unwanted phone calls. Specifically, we consider
four different data sources: user-reported call complaints sub-
mitted to the Federal Trade Commission (FTC) [12], com-
plaints collected via crowd-sourced efforts, such as 800notes.
com and MrNumber.com, call detail records (CDR) from a
telephony honeypot [1] and honeypot-based phone call audio
recordings. To the best of our knowledge, we are the first to
provide a detailed analysis of how such data sources could
be used to automatically learn phone blacklists, measure the
extent to which these different data sources overlap, explore
the utility of call context for identifying spam campaigns,
and evaluate the effectiveness of these blacklists in terms of
unwanted call blocking rates.

In performing this study, we are faced with a number of
challenges, which we discuss in detail throughout the paper.
First, the data sources may contain noise. For instance, user-
provided reports are often very short, written in a hurry (using
abbreviations, bad grammar, etc.) and may contain incomplete
or incorrect information, making it challenging to automati-
cally infer the context of spam/scam calls. In addition, some
data sources provide very limited information. For instance,
due to privacy concerns, the user-reported FTC complaints are
anonymized, and only report the time at which each complaint
was submitted and the phone number the user complained
about; the content or description of the complaints are not
available to the public. Partial call context can be obtained from
transcripts of recordings of calls made to honeypot numbers.
However, recording calls faces legal hurdles, can be costly, and
the quality of the recorded content may depend on the extent
of caller engagement.

Because the utility of phone blacklists comes from blocking
calls which are based on the calling phone number, another
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important challenge is represented by caller ID spoofing. If
spoofing was pervasive, the effectiveness of blacklists could
be entirely compromised. Somewhat surprisingly, our mea-
surements instead reveal that phone blacklists can currently
be reasonably effective, thus suggesting that perhaps caller
ID spoofing is not as widely used as one may think or
expect. Certainly, this could be due to the fact that few
countermeasures currently exist for blocking unwanted calls,
and therefore there may be few incentives for spammers to
spoof their phone numbers. It may therefore be possible that
once phone blacklists become more widely adopted, caller
ID spoofing will also increase, thus making blacklisting less
effective. Fortunately, the FCC has recently requested that
carriers work towards a solution [57]. Technical proposals have
been published on caller ID authentication [64], [58], [63], and
efforts have been put in place by telecommunications providers
to make caller ID spoofing harder [35]. For instance, the
industry-led “Strike Force” effort [56] has suggested numerous
steps that can help mitigate spoofing (e.g., carriers can choose
to not complete calls that originate from unassigned phone
numbers). Also, removing the caller ID altogether can be
detrimental for attackers, as users are less likely to answer
calls coming from a “private” number. Because the cost of
acquiring ever new, valid phone numbers is non-negligible, the
effectiveness of phone blacklists could increase significantly,
once these anti-spoofing mechanism are more widely deployed.
Therefore, studying how phone blacklists can be automatically
learned, and evaluating their effectiveness, is important for
both current and future telephony security applications.

In summary, we provide the following contributions:
• We present the first systematic study on estimating the

effectiveness of phone blacklists. We first analyze the
characteristics of multiple data sources that may be
leveraged to automatically learn phone blacklists, and
then measure their ability to block future unwanted
phone calls.

• We investigate a number of alternative approaches for
building phone blacklists. In particular, we propose
methods for learning a blacklist when call context
(e.g., complaint description or phone call transcripts)
is available, and when context is missing.

• We evaluate the effectiveness of the phone blacklists
we were able to learn, and show that they are capable
of blocking a significant fraction of future unwanted
calls (e.g., more than 55% of unsolicited calls). Also,
they have a very low false positive rate of only 0.01%
for phone numbers of legitimate businesses.

• To link phone numbers that are part of long running
spam campaigns, we apply a combination of unsuper-
vised learning techniques on both user-reported com-
plaints as well as from phone call audio recordings.
We then identify the top campaigns from each data
source, and show how effective blacklists could be as
a defense against such campaigns.

II. DATA COLLECTION
A. Data Sources

Although commercial phone blacklisting services and apps
do not openly reveal how their blacklists are constructed,
some of the data sources they use to derive the blacklists
are known or can be inferred. For instance, Youmail [42]

appears to leverage user complaints submitted to the FTC1,
whereas Baidu.com [55] leverages online user complaints2.
Other telephony security companies, such as Pindrop [43],
leverage phone honeypot data [1], [5].

To estimate the effectiveness of phone blacklists, we
therefore use a multi-source data-driven approach that aims
to gather and analyze datasets that are similar to the ones
collected by commercial phone security services. Specifically,
we consider two main sources of telephony abuse information:
(i) phone call records collected at a large phone honeypot, and
(ii) voluntary user complaints. For each of these information
sources, we assemble two different datasets (described below),
which we divide into context-rich and context-less datasets. We
say that a phone call record is context-rich if a recording or
description of the content (i.e., the actual conversation that took
place) of the phone call is available, along with metadata such
as the caller ID, the time of the call, etc. Conversely, when
only the metadata (i.e., no content) related to the phone call
is available, we refer to the phone call record as context-less.

It is important to notice that, because we harvest phone
call information from honeypots and user complaints, our
datasets naturally contain only records linked to abuse-related,
unwanted, or otherwise unsolicited phone calls (though a small
amount of noise may be present, as discussed below).

B. Context-Less Phone Abuse Data
FTC dataset (FTC) - The Federal Trade Commission col-
lects voluntarily provided user complaints about unwanted or
abusive phone calls (e.g., robocalls, phone scams, etc.). Along
with the reported call metadata, users can include a description
of the related phone conversation. However, the data publicly
released3 by the FTC only contains the source phone number
and the timestamp of the reported call, and does not provide
any information about the destination number (i.e., the user’s
phone number) or the content of the call itself, due to privacy
reasons. From February to June 2016, we collected around 1.56
million complaints regarding 300,000 different source phone
numbers.
Honeypot call detail records (CDR) - The CDR dataset
contains detailed information about the calls coming into a
telephony honeypot. It records the source phone number that
made the call, the destination to which the call was made,
and the time of the call. However, it does not provide the
context of the call. This dataset contains records for more
than one million calls received between February and June
2016 from approximately 200,000 distinct source numbers to
approximately 58,000 distinct destination numbers, which are
owned by the honeypot operator.

C. Context-Rich Phone Abuse Data
Crowd-sourced online complaints (COC). This dataset con-
tains the online comments obtained from popular online fo-
rums, such as 800notes.com, MrNumber.com, etc., between
Dec 1, 2015 and May 20, 2016. However, we only considered
comments made between February to June so that this period
overlaps with the time frame of the honeypot transcripts

1The results of a reverse phone look-up via youmail.com include the number
of FTC and FCC reports related to the queried number.

2For example, searching for Chinese spam-related phone numbers on baidu.
com will return a brief report that includes the number of users who have
complained about the queried number.

3Via a Freedom of Information Act request.

2



272838 72337
13118

175256

21673
1158

11404

FTC callers

COC callers

CDR callers
Fig. 1: Overlap of callers across data sources.

dataset (described below). The dataset contains about 600,000
actual “raw” complaints filed by users, containing the phone
number that made the unwanted call, a timestamp, and a
description of the content of the call. Since the comments are
entered manually by frustrated users, the text describing the
content of the call is typically quite noisy, as it contains many
misspellings, grammatically inaccurate sentences, expletives,
and in some cases apparently irrelevant information. It is also
possible that the phone number and timestamp provided by the
users could be mistyped.
Honeypot call transcripts (HCT) - This dataset contains
about 19,090 audio recordings from 9,434 distinct phone
numbers, extracted from a subset of calls made to the honeypot
from February 17, 2016 to May 31, 2016. When a call is
selected for recording, the responder software attempts to
emulate human behavior, to elicit a short conversation from
the caller, which may allow for inferring the nature of the
call. However, we noticed that in many cases the conversation
attempt by the honeypot responder is irrelevant, in that the
caller often simply plays a recorded message (i.e., a robocall).
The audio recordings were automatically transcribed using
Kaldi [19]. Each dataset entry contains the time of the call,
the source phone number, the destination phone number and
the transcript of the call.

D. Data Volume and Overlaps
In the following, we present a number of high-level insights

that can be gained from the four datasets described earlier.
These insights help us understand how each dataset contributes
to intelligence about telephony abuse, and what data source
may first observe certain types of abuse.

Figure 1 depicts the overlap observed among callers across
the FTC, CDR, COC datasets. Notice that, by definition, the
source numbers in the HCT dataset are a small subset of the
CDR dataset (see Section II-C). Interestingly, we found that
many phone numbers that call into the honeypot are never seen
in the COC or FTC datasets. We suspect this may be due to the
fact that many of the honeypot phone numbers were previously
business-owned, which were returned and repurposed. Hence,
the scammers/spammers targeting businesses tend to be cap-
tured more frequently, whereas spam targeting individual users
is less commonly observed by the honeypot. This hypothesis is
supported by a manual analysis of the transcripts obtained from
the HCT dataset, which revealed the prevalence of business-
oriented abuse. At the same time, since complaints collected
by the FTC and COC datasets come from individuals, they

tend to mostly reflect scammers/spammers targeting generic
users (more details are provided in Section IV-C1).

Figure 2 reports the data volume (i.e., the number of calls
or complaints) over time, across the four datasets. The periodic
drops are due to lower call volumes during weekends.The
drop in the HCT traffic between April and May is because
call recordings were stopped due to operational issues during
that particular period. Similarly, operational issues affected the
collection of COC data towards the end of May.

Figure 3 shows that a large fraction of source numbers
receive only one or few complaints, or perform only few
honeypot calls. This may be due to a combination of factors,
including caller ID spoofing and noise due to misdialing, with
spoofing being the most likely and prevalent culprit.

Figure 4 shows the difference in days between when the
honeypot received the first call from a given source phone
number and the time when the first complaint about that same
phone number appeared in the COC dataset. Among the phone
numbers that are observed in both the CDR and COC datasets,
20% of them were seen on the same day, whereas 35% of
of the numbers were seen in the honeypot before they were
complained about by users.

E. Gathering Ground Truth
Ideally, the datasets we collected should be free of noise.

Indeed, both the honeypot records and the voluntary user
complaints are by nature related to abusive or unwanted calls.
However, as mentioned earlier, the datasets may contain noise,
for instance due to misdialed calls to the honeypot or mistyped
phone numbers in the complaint reports.

Establishing the true nature of source phone numbers that
appear in our datasets is challenging, as no single authoritative
entity exists that can certify whether a certain phone number is
being used for legitimate or malicious activities. We, therefore,
chose to take a conservative, best effort approach for ground
truth collection based on multiple third party providers. Specif-
ically, we leverage reverse phone lookup services provided by
Whitepages [29], YouMail [42], and TrueCaller [41], to obtain
independent insights about the nature of a fraction of the phone
numbers we observed.

Query results from the above third parties contain informa-
tion on whether a number is believed to be a spam/scam-related
number. While we have no detailed information about how
these third-party services classify phone numbers, public doc-
umentation suggests that they leverage user complaints, along
with other data points. As these are third-party commercial
systems with a large user base (millions of mobile application
downloads), we believe it is reasonable to assume that they
have checks in place to limit false positives to a minimum,
because high false positives may otherwise deter app/service
adoption and revenue. Therefore, if a source number is reported
by these services as spam, we consider the label to be correct
(unless disputed via other means).

Whitepages additionally provides information such as
whether a phone number is likely a VOIP, toll free, mobile or
landline number; it also indicates whether the number is used
for commercial purposes, and provides owner information such
as name, street address, etc., when available.

In addition to information on phone numbers likely in-
volved in spam activities, we also collect a large set of
phone numbers that can be considered as legitimate (i.e., non-
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spam), by crawling the YellowPages.com phone book. We later
leverage this set of phone numbers to estimate the false positive
rate of our phone blacklists, as explained in Section IV-F.

In addition to collecting ground truth from third-parties,
in some cases we attempted to verify the nature of phone
numbers that are candidates for blacklisting by calling them
back. For instance, for blacklisted numbers for which context is
available (e.g., for numbers related to call transcripts), calling
back allows us to verify whether the content of our call is
similar to the previously recorded context.

F. Ethics
The telephony honeypot is operated by a commercial entity,

and raw CDR data was accessed under non-disclosure agree-
ments. The honeypot is programmed to record only (a small
subset of) phone calls that meet rigorous legal requirements,
according to US federal and state laws.

The FTC data was obtained in response to a freedom of
information act (FOIA) request, and does not contain any
sensitive information. For instance, the FTC does not disclose
destination phone numbers and user complaint descriptions, to
protect the privacy of the reporting users.

The ground truth data collected from third-party sources,
such as YouMail, TrueCaller, and Whitepages, is limited to
publicly accessible information. To increase the number of
available queries, we used the Whitepages Premium service.
For all Whitepages reverse phone lookups, we carefully re-
frained from collecting sensitive information from background
reports (i.e., we never analyzed or stored any information about
bankruptcies, liens, arrest records, family members, etc., which

is available from Whitepages Premium).
When calling back numbers that are candidate for black-

listing, we only called those that asked to be called back,
according to the honeypot transcripts in the HCT dataset.
Furthermore, when calling back we never interacted with a
real human. Every call we made went through an automated
interactive voice response (IVR) system.

We did not involve human subjects in our research. The
honeypot calls were recorded by a third-party company, while
abiding by US laws (e.g., single-party consent requirement).
Calls made by us were limited to interactions with automated
IVR systems. Because of these reasons, we did not seek
explicit IRB approval.

III. PHONE BLACKLISTING
Blacklisting has been extensively studied as a way to

defend against Internet abuse [4], [27], [48], [49]. For instance,
domain name, URL, and IP address blacklists are commonly
used to defend against email spam, phishing, and malware
infections [47], [45], [46], [4]. Recently, phone blacklisting
has started to make its way into real-world applications [42],
[41]. However, to the best of our knowledge, the effectiveness
of blacklisting approaches to defend against abuse in the
telephony domain has not yet been systematically studied.
Therefore, in this paper we focus on measuring the effec-
tiveness of blacklists for blocking unwanted phone calls, as
described below.

A. Example Use Case
We consider a scenario in which smartphone users4 install

an app that implements the following functionalities: the app
is notified every time a phone call is received, it checks the
caller ID against a phone blacklisting service5, and informs
the user whether the calling phone number is believed to be
used for phone spam/abuse activities. This use case is similar
to currently available popular apps [42], [41], [40].

Depending on user preferences, the app may strictly en-
force the blacklist, and immediately block the call [44] (while
still notifying the user of the event, for example). Alternatively,

4Blacklisting services may also be used by telephone networks to defend
landline phones, for instance. While in the past there existed strict regulatory
constraints that may have prevented carriers from using blacklists to block
calls, such restrictions seem to have been recently relaxed [44].

5We also assume that queries to the blacklisting services can be done
securely and in a privacy-preserving way, similarly to URL blacklists such
as Google Safebrowsing.
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the user may opt for a soft blacklisting enforcement, whereby
the user is provided with information about if/why the calling
number was included in the blacklist and will have to decide
whether to pick up the call or not [40]. For instance, the
user may be informed that the calling number was previously
complained about by other users (e.g., via the FTC complaints
service). If context is available (see Section II-C), the app
may also provide information about a specific (set of) spam
campaign in which the number has been involved.

In absence of public details on how current phone security
apps work internally, in this section we explore different
approaches for building a phone blacklist. Specifically, we
build five different blacklists using the four datasets described
in Section II, and then evaluate their effectiveness in blocking
future unwanted or abusive calls in Section IV. Our blacklisting
system architecture is shown in Figure 5. As we will show in
Section IV, we empirically verified that our blacklists resemble
third-party blacklists, and can therefore be used as a proxy for
evaluating the effectiveness of proprietary phone blacklists.

B. Context-less blacklisting
As discussed in Section II, the FTC and CDR datasets do

not include the context of a call. To build a blacklist based
on these context-less data, we therefore focus on identifying
anomalies in calling patterns.

Before we describe our blacklisting approach, it is impor-
tant to remember that, by nature, the FTC and CDR datasets
contain only information about unwanted or abusive calls.
While we cannot exclude the presence of small amounts of
noise (e.g., due to misdialed calls captured by the honeypot,
or numbers incorrectly reported to the FTC), it is reasonable to
assume the fraction of noisy reports/calls is small. We leverage
this as the main observation to guide our approach to phone
blacklisting in absence of context.

1) Blacklisting using the CDR data: Because the CDR
dataset may (by chance) collect misdialed phone calls, we first
apply a pre-filter step by removing phone numbers that, during
the training data collection period, made less than θc calls to
less than θd destination honeypot numbers. In other words, we
only consider a phone number for the next processing steps if
it made more than θc calls and contacted more than θd different
destinations within a predetermined observation time (in our
experiments, we primarily use θc = 5 and θd = 3, but also
perform additional experiments that show how the blacklist
effectiveness varies with these parameters). Notice that this
pre-filtering step is fairly conservative, and that source phone
numbers actively involved in spam activities will tend to pass
this simple filter.

To build the CDR-based blacklist, we analyze the behavior
of the remaining source phone numbers. For each of the source
phone numbers, pi, we compute a blacklist score:

s(pi,∆t) = α× vol(pi,∆t) + β × nod(pi,∆t) (1)

where vol(pi,∆t) is the number of calls made by pi within
time ∆t, whereas nod(pi,∆t) is the number of destination
numbers called by pi in the same time period, and α and β
are tunable parameters.

As spammers typically tend to reach a large number of
potential victims, we set the value of β greater than α (in our
experiments, we set β=0.2 and α=0.1). Any number pi whose
blacklist score s(pi,∆t) is greater than a threshold θb, which
is learned from past observations, is added to the blacklist.

To learn the blacklist, we use a one-class learning ap-
proach [52], [51]. This choice of learning paradigm is guided
by the challenges in collecting ground truth labels (see Sec-
tion II-E), especially for benign phone numbers. To identify
spam-related phone numbers within the CDR dataset, which
we then leverage for training the blacklisting threshold, we
proceeded as follows. Given the set PCDR of all source phone
numbers calling into the honeypot (excluding the pre-filtered
numbers), we find the intersection between these numbers and
the phone numbers reported in the FTC and COC datasets
during the observation period ∆t. Because these datasets are
collected in a completely independent way (honeypot calls vs.
user complaints), we assume that phone numbers that appear
in two or more datasets are the most likely to actually be
spam-related. For instance, if a number pj called into the
honeypot multiple times (enough to pass the pre-filter), and
multiple users, in a completely independent way, complained
about the same pj number via the FTC portal, we label pj
as spam. We then use this one-class labeled subset of spam
numbers, Ps ∈ (PCDR ∩ PFTC), to learn the θb threshold.
Specifically, we sort the number in Ps by their blacklist score
(see Equation 1), and set θb so that the top 99% of all numbers,
by score value, are added to the blacklist. In the spirit of one-
class learning [52], [51], the remaining 1% of numbers are
considered to be tolerable false negatives, and have the benefit
of making the decision threshold sufficiently “tight” around the
bulk of spam-labeled data to filter out the possible remaining
dataset noise (i.e., potentially benign numbers that accidentally
called into the honeypot).

2) Blacklisting using the FTC dataset: The FTC dataset
is the largest in terms of volume of reported phone numbers,
compared to the other datasets. As mentioned in Section II,
the information provided by the FTC is very limited, as it only
contains the user-reported phone numbers and a timestamp for
each complaint report. Unlike the CDR dataset, no information
is provided regarding the destination numbers.

Like the CDR dataset, the FTC dataset may also contain
small amounts of noise, for instance due to a calling number
being typed erroneously into a user complaint. To filter out this
possible noise, we exclude all phone numbers that have been
reported in less than θc complaints (notice that this parameter
is similar to the θc filtering threshold used for the CDR-based
blacklisting). All remaining numbers are then simply added to
the blacklist. The reason why we do not perform any additional
filtering is that the FTC dataset contains official complaints that
users send to the FTC; as such, this dataset intuitively tends to
contain lower amounts of noise, compared to the CDR dataset.

3) Context-less blacklisting using the COC dataset: For
comparison purposes, we apply the same process described
above for the FTC dataset to the COC dataset, pretending
that no context is available. In other words, from the user
complaints in the COC dataset we only extract the timestamp
and the reported phone number (i.e., the source numbers users
complained about), and apply the filtering approach described
above for the FTC complaints. In the remainder of the paper,
we refer to this blacklist as the COCNC blacklist, where NC
stands for no-context.

C. Context-rich blacklisting
The context of a call, when available, can be used to under-

stand the nature and content of the conversation, and provide
more definitive indication on whether a call is potentially an
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Fig. 5: System Architecture

unwanted or fraudulent one. For example, calls with similar
context can be clustered together to discover spam campaigns,
and the phone numbers related to the campaigns can be added
to the blacklist, along with contextual information. Therefore,
when a user receives a call from a number that belongs to
a context-rich blacklist, we could not only inform the user
that the incoming call is likely unwanted or abusive, but
also provide a short description (e.g., via the example app
described in Section III-A) of what kind of spam campaigns
the number has been involved within the past. This information
may be particularly useful when a soft blacklisting approach is
selected, as it may help the user make a decision on whether
to pick up the call or not.

1) Blacklisting using the HCT dataset: To derive a phone
blacklist based on the honeypot call transcripts (HCT) dataset,
we take the following high-level steps: (i) we perform tran-
script text analysis using topic modeling via latent semantic
indexing (LSI) [6], to extract possible campaign topics; (ii)
we then label transcripts based on their most similar topic,
and group together calls that likely belong to a common spam
campaign; (iii) finally, phone numbers belonging to a spam
campaign are added to the blacklist. Below, we provide more
details on this blacklisting process.

We first use a data pre-processing phase, which aims to
filter out possible noise from the transcripts (e.g., noise due
to imprecise speech transcription). To this end, we use the
following steps: (1) stop-words are removed and a dictionary
of the remaining terms is extracted from the transcripts’ text;
(2) each transcript is then converted into a bag of words, and
each word is assigned a score using TF-IDF [10]. These two
steps transform each call transcript into a vector of numerical
features (i.e., a feature vector).

TABLE I: LSI topic modeling on HCT – top 10 topics

topic 0 google, listing, front, page, business, verify, press, removed, searching, locally
topic 1 cruise, survey, bahamas, awarded, correctly, included, participate, short,

congratulation, selected
topic 2 listing, verify, front, google, page, updated, record, show, end, list
topic 3 verification, address, name, phone, number, cancel, flagged, map, notice,

business
topic 4 hotel, pressed, exclusive, telephone, husband, marriott, detail, announcement,

pre, star
topic 5 hotel, exclusive, husband, marriott, star, stay, placed, complimentary, further,

telephone
topic 6 electricity, bill, per, system, stop, increase, energy, renewable, soon, coming
topic 7 optimize, found, date, order, indicate, critical, online, updated, show, end
topic 8 system, interest, eligibility, cost, account, rate, credit, notice, card, lower
topic 9 business, interest, eligibility, thousand, application, loan, rate, bad, system,

qualifies

We then use a topic modeling approach on the feature
vectors obtained from the steps mentioned above. Let ∆t

be a data observation window, and H(∆t) be the set of
call transcript feature vectors obtained during ∆t. We use
LSI, a natural language processing technique that leverages
SVD [11] to map documents (i.e., transcripts, in our case) from
a syntactic space (the bag of words) to a lower-dimensional
semantic space represented by a (tunable) number τhct of
topics. In concrete terms, each topic is represented by a set of
representative keywords that may be interpreted as describing
a campaign theme. Table I shows the top 10 topics (sorted by
eigenvalue) extracted from our HCT dataset (more details on
the experimental results are provided in Section IV).

At this point, each transcript can be represented as a
weighted6 mix of topics, rather than a set of words [6]. Among
these, we can identify the topics with the highest weight, which
can be interpreted as indicating what spam campaigns the
calling number recorded in the transcript is involved with.

The LSI algorithm requires as a parameter the desired
number of topics to be kept in the SVD decomposition.
Choosing the best value for the number of topics is often
done either manually, by leveraging domain knowledge, or by
measuring topic coherence [54]. However, coherence measures
are themselves still a subject of research in the machine
learning domain, and don’t always lead to satisfactory results
in practice. Therefore, in this paper we revert to manual selec-
tion driven by empirical results, and leave a fully automated
selection of the optimal number of topics to future work. In
our experiments, we first set the maximum number of LSI
topics to 50. Then, once the topics are extracted, we manually
analyze them and mark the ones whose keywords more clearly
indicate a spam campaign, whereas the other topics are effec-
tively discarded from a transcript’s topic mixture vector. As a
byproduct, this manual analysis also has the advantage that it
allowed us to associate a human-interpretable campaign theme
to each of the remaining topics. For instance, we summarize
topic 0 in Table I as the Google Listings spam campaign
(notice that when analyzing a topic, not only we can refer to
the topic’s keywords, but also to the full text of the transcripts
that are associated with that topic with a high weight).

At this point, we have a set of topics, T , that are labeled
with a relevant campaign theme, and we aim to do two things:
(1) decide what source numbers for the transcribed calls should
be blacklisted; and (2) leverage the topic model to group
together call transcripts, and related source phone numbers,
that likely belong to the same spam campaign. To this end,
we first compute a topic similarly score Si,j = S(tri, τj)
that indicates how strongly a transcript tri is associated to
each topic τj ∈ T . We calculate the topic scores by nor-

6We consider absolute values for the topic weights.
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Fig. 6: HCT blacklist score threshold learning

malizing the topic weights output by the LSI topic modeling
algorithm. Specifically, for every transcript tri and every
topic τj , the topic modeling algorithm will assign a weight
wi,j = w(tri, τj). We compute the normalized weights for
each transcript as w′i,j = |wi,j |/

∑
j |wi,j |, and set the score

Si,j = w′i,j ∈ [0, .., 1].
To decide whether a source phone number pi responsible

for call transcript tri should be blacklisted, we proceed as
follows. We first compute the topic most similar to tri,
namely k = arg maxj(Si,j). Then, if Si,k is greater than a
predetermined threshold θk, we assign pi to the HCT blacklist.
The threshold θk is learned as follows. Let S∗i be the highest
topic score for transcript tri. We first plot the distribution of
scores S∗i computed over all transcripts, as shown in Figure 6
and then compute θk by finding the “knee” of the curve (the
knee finding process is explained in details in Appendix A).

Now, for every blacklisted number pi, we have the topics
that are most similar to the transcripts related to pi, and can
therefore label pi with one or more campaigns themes (an
analysis of campaigns themes and related blacklisted numbers
is reported in Section IV-G).

2) Blacklisting using the COC dataset: Like honeypot
call transcripts, user comments from online forums such as
800notes.com, MrNumber.com, etc., also provide us with the
context of an unwanted call. However, transcripts and user
comments datasets are different in nature, as user comments
only provide a user’s version – a subjective textual description
– of the content of a call. To derive a blacklist using the COC
dataset, we follow a process very similar to the one we used for
the HCT data, with some small changes that take into account
differences in the nature of the two data sources.

Via manual analysis of a few initial samples of online
complaints data, we noticed that user-provided descriptions of
unwanted calls tend to be noisier in nature than transcripts
from call recordings. This is fairly intuitive: while the tran-
scripts faithfully reflect the conversation (often represented
by a well-played recorded spam message), user complaints
typically consist of high-level descriptions of a call, in which
abbreviations, bad grammar, and expletives are used to express
discontent. Therefore, to reduce noise we use a more stringent
pre-processing step, compared to the HCT dataset. First, we
only consider phone numbers that were complained about at

least θcoc times (θcoc = 10, in our experiments). We also
remove stop words and punctuation from the comments, and
combine all comments about a single phone number into a
single text document. This latter aggregation step is motivated
by the following considerations: (1) complaints from different
users that receive calls from the same phone number are often
similar, because the number is used to perpetrate the same
spam campaign by calling multiple destinations; (2) online
complaints are often very short, making it difficult to auto-
matically analyze them independently from each other; (3) by
aggregating multiple complaints, we obtain larger documents
that can be more easily analyzed using topic modeling, with a
process similar to the one described in Section III-C1.

Let C(∆t) = {cs1 , . . . , csn} be the set of complaint
documents, where document csi is an aggregate (i.e., a con-
catenation) of all user complaints about calling number si
observed during period ∆t. As for the HCT blacklist, we
apply LSI on C(∆t) to derive a set of possible spam campaign
themes, and at the same time associate each calling number
(via the related complaints) to a mix of topics, as done for
the HCT blacklist. We then decide what source numbers for
the transcribed calls should be blacklisted by computing the
topic scores, plotting the distribution of the maximum score,
and computing the blacklisting score threshold by finding the
“knee” of this distribution (see Section III-C1).

Although both context-rich and context-less blacklists con-
sist of phone numbers, each phone number in the context-rich
blacklist is associated with a label derived from its context.
The label identifies the type of scam campaign for which the
phone number was used. This label could be used to inform a
user about the potential content of a suspected spam call.

IV. EVALUATION
In this section, we evaluate the effectiveness of the phone

blacklists we constructed following the methods described in
Section III. We first show that our blacklists are representative
of real-world phone blacklisting applications, by vetting them
against two commercial third-party telephony security services.
In addition, we perform an analysis of how blacklists formed
from different data sources can complement each other. We
then assess how well the blacklists we construct can help to
block future spam (i.e., unwanted or abusive) phone calls, by
evaluating each blacklist in terms of their call blocking rate
(defined below). Finally, we analyze a few prominent phone
spam campaigns, and demonstrate how effective the blacklists
would be in blocking these campaigns.

A. Call blocking rate (CBR) definition
We evaluate the effectiveness of a phone blacklist based on

its ability to block future unwanted call. Therefore, to enable
the evaluation we first need to more formally define the concept
of blocking rate. Given a blacklist B(D,∆t) = {p1, . . . , pm}
containing m phone numbers learned from dataset D over a
training observation period ∆t, we consider the set C(λt)
of calls (or complaints, depending on the blacklist being
analyzed) observed at a future deployment time period λt. We
then compute the ratio r(B, λt) = Nbl(λt)/Ntot(λt) between
the number of calls (or complaints) Nbl(λt) that would have
been blocked by the blacklist B, and the total number of calls
(or complaints) N(λt) = |C(λt)| received during period λt.

In the remainder of this section, the set C(λt) will represent
either the set of calls received by the honeypot, as recorded
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in the CDR dataset, or user complaints from the FTC or COC
datasets, depending on the blacklist that is being evaluated. In
the first case, we refer to r(B, λt) as the call blocking rate,
whereas in the second case we refer to it as the complaint
blocking rate – both abbreviated as CBR.

In the case of the CDR data, we essentially pretend that the
phone numbers belonging to the honeypot are owned by users,
and consider a future honeypot call to be blocked if the related
calling phone number was included in B(∆t). Therefore, the
CBR estimates the fraction of future unwanted calls towards
real users that would be prevented by the blacklist. In addition,
in this case we can also measure how many users would
be defended against spam calls, by counting the number of
distinct destination numbers that thanks to the blacklist did
not receive the unwanted calls.

In the case of the blacklists derived from the FTC and COC
datasets, the CBR measures the fraction of future complaints
that would be prevented by the blacklist. Computing the
number of blocked complaints is motivated by this simple
observation: if an app enforcing the blacklist was widely
deployed, or telephone carriers directly blocked calls based
on the blacklist, users would not receive any more unwanted
calls from the blacklisted numbers, and would therefore stop
complaining about them. Thus, the number of complaints
that would be prevented (i.e., blocked) is a reflection of the
effectiveness of the blacklist.

B. Experimental Setup
Our experiments for computing the CBR are performed

as follow, for all the datasets and blacklisting approaches
described in Sections II and III. Let D be a dataset of calls
or complaint records (e.g., the CDR or FTC dataset). We
start by setting an initial training period ∆t0 of one month,
corresponding to the first month of data collected in D.
We use this first month of data to learn the first blacklist
B0 = B(D,∆t0). We then consider one day, λt0 , of data
from D collected on the day immediately after period ∆t0,
and compute the CBR r0 = r(B(D,∆t0), λt0).

We then set ∆t1 = ∆t0 + λt0 , thus extending the training
period by one day, and compute B1 = B(D,∆t1) and r1 =
r(B(D,∆t1), λt1), where λt1 again represents the day after
∆t1. We repeat this process for all subsequent days of data
available in D, thus obtaining a series of blacklists {Bi}i=0..k

and related blocking rate estimates {ri}i=0..k. In other words,
every day we extend our blacklist training set by adding one
day of data from D to the previous training dataset, and then
test the obtained blacklist against the following day of data
in D. This allows us to estimate how effective the blacklist
would be in blocking future calls (or complaints) related to
spam phone numbers we learned up to the previous day.

C. Characterizing Blacklisted Numbers
We now analyze the overlap among blacklists learned over

different data sources, and discuss how our blacklists align
with phone blacklists provided by third-party apps.

1) Overlap among our blacklists: Figure 7 shows the size
(i.e., the number of blacklisted phone numbers) and overlap
among the blacklists learned as discussed in Section III. These
results are obtained by building the blacklists over the entire
set of data available from each of our data sources. In other
words, given a dataset D, we consider the entire period of time

∆tmax in which data was collected, and compute the related
blacklist B(D,∆tmax).

Fig. 7: Blacklists size and overlap

As we can see from the figure, the overlap among blacklists
derived from different data sources is limited. Specifically,
there exists only partial overlap between spam phone numbers
observed in the three main data sources, namely the FTC
complaints, online user complaints (i.e., the COCNC blacklist)
and honeypot call records (i.e., the CDR blacklist). This shows
that the different blacklists provide coverage for different sets
of phone numbers, and are therefore complementary to each
other.

The differences between honeypot calls and user com-
plaints is likely due to the particular nature of the honeypot-
owned phone numbers. While user complaints mostly reflect
spam campaigns that target ordinary users, many of the
honeypot-owned phone numbers were previously owned by
businesses, and tend to attract business-oriented phone abuse.
We verified this by analyzing the honeypot transcripts in the
HCT dataset, many of which are related to Google business
listing, business loans, and other business oriented phone spam
campaigns. On the other hand, user complaints tend to reflect
more “traditional” spam campaigns, including IRS scam, tech
support scam, payday loans scams, etc. (see Section IV-G for
more details about spam campaign analysis).

We conducted further analysis to better understand the
limited overlap between the COCNC and CDR blacklists.
There are 2,292 overlapping phone numbers in these two
blacklists, and we found that these numbers are not among the
most complained about or heavy honeypot callers. This seems
to refute the intuition that phone numbers that make the most
honeypot calls are also more likely to be complained about
by users. Again, this may be due to the different, business-
oriented nature of the honeypot-owned numbers, as discussed
above.

The FTC is the largest dataset in our analysis, and the
blacklist constructed from the FTC complaints is the largest
one, in terms of number of blacklisted phone numbers. Com-
paring the FTC blacklist to all other four blacklists combined
shows an overlap of less than 50%. On the other hand,
the context-rich blacklists are significantly smaller than the
context-less ones. The main reason is that in the context-
rich case a phone number is added to the blacklist only if
it can be associated to an identifiable spam campaign (see
Section III-C).

2) Overlap with third-party blacklists: As discussed in
Section II-E, we leverage third-party phone security and in-
formation services to gather independent (partial) ground truth
on spam-related activities and characterize the phone numbers
in our blacklists, as described below. We first assess the overlap
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between our blacklists and phone abuse information available
from Youmail [42] and Truecaller [41], and then use the
Whitepages [29] reverse phone lookup service to gather further
insights into a subset of the numbers.

To estimate the overlap between our blacklists and third-
party blacklists, we selected a random sample of 12,500 source
phone numbers from all of our datasets, and performed reverse
phone lookup queries. We found that 2.4% of the queried
numbers were labeled as spam by Youmail. To determine the
overlap between our blacklists and Youmail’s, we proceeded as
follows. If Youmail labeled a queried phone number as spam,
we checked if the number was also present in our blacklists
or not, and found that 87% of the phone numbers blacklisted
by Youmail were also present in one or more of our blacklists.
Most of the numbers labeled as spam by Youmail that were
not included in our blacklists are present in our FTC dataset,
but they were not included in our blacklist because they had a
very low number of complains. This is in accordance with our
attempt to be conservative, and filter-out possible noise in the
user complaints, as explained in Section III-B2. On the other
hand, it appears that Youmail labels a number as spam even
if only one user complained to the FTC about that number. If
we had added all FTC-complained callers to our blacklist, we
would have a 98% match of our blacklisted numbers against
Youmail’s blacklist. We also found that among the numbers
that were not labeled as spam by Youmail, about 1% of
them were present in our blacklists. These results show that,
combined, our blacklists are representative of a commercial
blacklisting app such as Youmail.

To compare our blacklists with Truecaller, we took a
similar approach. In this case, we found that 38% of the
numbers we queried were labeled as spam by Truecaller, and
that only 13% of all the numbers labeled as spam by Truecaller
were contained in our blacklists. The reason is that Truecaller
seems to be labeling a number as abusive even if only one
Truecaller user reported it as such. In fact, by labeling as
spam only numbers that have been reported as abusive to
Truecaller by at least 5 users, we found that 75% of these
numbers are present in our blacklists. As in the previous
analysis of Youmail, we found that of the numbers that were
not labeled as spam by Truecaller, only 13% were present in
our blacklists. The majority of this 13% of numbers matches
our FTC blacklist, and are therefore reported in multiple user
complaints.

The above results confirm that our blacklisting approach
aligns fairly well with real-world, commercial phone blacklists
(especially with the Youmail app), and can therefore be lever-
aged as a proxy to estimate how effective third-party phone
blacklists are in defending real users from unwanted or abusive
calls.

3) Analysis of phone number types: To further characterize
the phone numbers included in our blacklists, we turned to the
Whitepages [29] reverse phone lookup service. Whitepages is
a third-party provider that gathers comprehensive information
about phone numbers, including detailed phone ownership
information, and whether the phone number type falls within
one of the following categories: VoIP, toll-free, landline, or
mobile.

As Whitepages’ public querying interface only allows for
a limited number of queries, we first started by selecting a
sample of 150 phone numbers in the overlapping region across

TABLE II: Whitepages reverse phone lookup results
cdr coc hct hct/coc hct/cdr coc/cdr

VoIP 69% 37% 57% 80% 76% 70%
toll-free 9% 2% 0% 0% 2% 0%
landline 20% 16% 26% 20% 22% 30%
mobile 2% 45% 17% 0% 0% 0%

owner info 7% 10% 12% 2.5% 2% 5%

HCT, COC and CDR blacklists, and analyzed their query re-
sults. Because these numbers appeared in three different black-
lists, they are among the highest confidence spam numbers in
our datasets. We found that 67% of these numbers are VoIP
numbers for which no owner information was available. This
is not surprising, as it is common for abusive calls to originate
from VoIP numbers [33], [37]. The lack of owner information
also suggests that these phone numbers are unlikely to belong
to legitimate users. In addition, 5% of these numbers did not
appear to have been assigned by any carrier. Surprisingly, only
22% of the numbers we queried were flagged as scam/spam
callers by Whitepages itself. This suggests that Whitepages
may be missing a large fraction of numbers that can be labeled
as spam with high confidence.

We then expanded our sample of phone numbers by ran-
domly drawing a total of 400 numbers from all blacklists and
performing an analysis of the reverse lookup results. Out of all
the phone numbers we queried from Whitepages, 71% of them
were present in our FTC blacklist. Table II summarizes some
of the results we obtained, where the cdr, coc, and hct represent
results related to phone numbers that were included only
in the CDR, COC, or HCT blacklist, respectively. Columns
hct/coc, hct/cdr, and coc/cdr represent a random sample of the
phone numbers that belong to the intersection between pairs of
blacklists. Table II also report the percentage of phone number
for which ownership information was present. As we can see,
only a relatively small fraction of the (potentially spoofed)
numbers appear to be owned by a valid user or business. In
addition, we found that some owner information (e.g., owner
name and location) is highly likely forged.

D. Evaluating Context-Less Blacklists
We now evaluate the call (or complaint) blocking rates,

which we defined in Section IV-A, for the CDR, FTC, and
COCNC blacklists (see Section III-B).
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Fig. 8: CDR call blocking rate

Figure 8 shows the call blocking rate when applying the
CDR blacklist to future calls into the honeypot. The y axis de-
picts the percentage of calls to the honeypot on a given day that
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would have been blocked by using the most recent blacklist
(i.e., the blacklist trained on data collected up to the previous
day, as detailed in Section IV-B). The blue curve show the
results for our CDR blacklist (see Section III-B1), whereas the
green line shows the upper bound for the effectiveness of the
blacklist. This upper bound was obtained by adding all source
phone numbers previously observed in the honeypot (during
the training period ∆t) to the blacklist, without applying any
noise filtering or threshold learning, and then testing against
the calls received on the next day (i.e., λt). The periodic call
blocking rate drops in this graph are due to periodic appearance
of new callers (every 7 days or so).

Although the blocking rate decreases during some days,
by updating (i.e., re-training) the blacklist daily, over 55% of
honeypot calls could be blocked using our CDR blacklist, on
average. This shows that the blacklist can be fairly effective in
blocking unwanted calls. At the same time, the upper bound
curve clearly demonstrates that every day 40% or more of
all calling numbers observed from the honeypot are always
new (never seen before). Although we need to consider that
noise (e.g., misdialings) may be recoded in the dataset and that
spammers also churn through new valid numbers, it is likely
that the large volume of new numbers is for the most part due
to spoofing.

Figure 9 reports the complaints blocking rate (defined in
Section IV-A) for the FTC blacklist. These results were com-
puted for three different values of the θc blacklisting threshold
defined in Section III-B2. Naturally, the lower the threshold,
the higher the blocking rate, because more numbers will be
added to the blacklist. In Figure 10, we report analogous results
for the COCNC blacklist (Section III-B3), including results for
θc = 1, which provide an upper bound for the effectiveness of
the blacklist.

As we can see, from Figure 9, the CBR for the FTC
blacklist is much higher than in the CDR and COCNC cases.
On possible explanation for this is that that users may be
reluctant to report an unwanted call to the FTC unless they
receive multiple calls from the same number, given the official
nature of the complaint to a government agency. In this case,
they complaints would likely include more “stable” source
phone numbers, and naturally filter most of the spoofed calls.
Another factor to consider is that not all users will complain
to the FTC; namely, for a number to appear into the FTC
dataset, it is likely that several users received a call from the
same number, but only one or few users decided to complain.

Unlike the FTC dataset, the CDR dataset includes all
(unanswered) calls to the honeypot, even if a number called
only one time to one of the many honeypot destination
numbers. This explains the lower effectiveness of the blacklist
shown in Figure 8. On the other hand, given the more “casual”
nature of the online user complaints collected in the COC
dataset, it is not surprising to see a CBR reaching between
50-60%, when setting θc = 5 for the COCNC blacklist, as
shown in Figure 10. However, towards the end of our data
collection period, we see a large drop in the CBR, including
in the upper bound (i.e., θc = 1) case. This means that the vast
majority of numbers in the complaints collected every day after
the drop were never seen before. After manual investigation,
we found that many of the new complaints with never-before-
seen source numbers seemed to be related to an IRS scam.
Considering that the drop started in the weeks before the US

tax filing deadline of April 15, it is possible that the drop is
caused by a new large IRS scam campaign that relies heavily
on caller ID spoofing.

E. Evaluating Context-Rich Blacklists
Context-rich blacklists (see Section III-C) tend to be much

more conservative, compared to context-less blacklists, as
clearly shown in Figure 7 (Section IV-C1). Unlike the context-
less case, only numbers that can be attributed to one or more
human-identified spam campaigns are added to the blacklist. In
addition, the HCT dataset only contains a small subset of the
CDR data (i.e., only recorded calls). As expected, Figure 11
shows that the overall blocking rates for the HCT and COC
blacklists are fairly low.

Consider that during training only a small fraction of the
source phone numbers can be attributed to a distinguishable
campaign. To see why this would be the case, let’s consider the
COC data source as an example. Figure 3 shows that a large
number of source phone numbers are complained about only
once or very few times and never again. This means that, in a
particular day, many of the COC user complaints are related
to numbers that were never seen before (and the will never be
seen again). Since most user complaints contain only very short
text, it is difficult to attribute these numbers to a campaign, and
will therefore be excluded from the COC blacklist.

To see how effective the context-rich blacklists are at block-
ing specific spam campaigns, below we analyze two represen-
tative campaigns discovered as part of the HCT blacklist learn-
ing (see Section III-C1). Specifically, we explore the Google
Listings and Free Cruise campaigns, and compute the CBR
for calls from numbers that are assigned (via topic analysis)
to these two campaigns, which are reported in Figures 12(a)
and 12(b). In addition, Figures 12(a) and 12(b) also report the
fraction of calling source numbers blocked and the fraction
of destination numbers that are “protected” from the spam
campaigns. We can notice that the CBR drops significantly on
some days, when many new source phone numbers appeared
that were never seen before. However, the blacklist adapts
fairly quickly to the new sources, by including these numbers
at the next daily blacklist update, thus increasing the campaign
CBR. On average, the CBRs for the two campaigns were 70%
and 84%, respectively. These results suggest that while the
spammers running these campaigns (especially the Free Cruise
campaigns) do periodically churn through new phone numbers,
they do not seem to employ caller ID spoofing as aggressively
as one may think.

Figure 13(a) and Figure 13(b) show the CBR for two
prevalent campaigns, the IRS and Tech support scams, that
can be identified from the COC data. The figures show that
the source numbers used in these campaigns are more volatile
than what we observed in the Free Cruise campaign in Fig-
ure 12, for example. This suggests that the spammers running
these campaigns may be more aggressively using caller ID
spoofing, or frequently churning through new phone numbers.
However, the average CBR is above 60% showing that the
COC blacklist can still effectively block a meaningful fraction
of calls belonging to these campaigns.

F. Measuring False Positives
In the previous subsections we have shown how effective

blacklists are at blocking potential spam calls. Naturally, a high
blocking rate should be paired with a low false positive rate,
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for a blacklist to be useful in practice. Ideally, to measure a
blacklist’s false positive rate we would need access to a large
whitelist of legitimate phone numbers that have never engaged
in spamming activities. Unfortunately, we are not aware of the
existence of any such whitelist.

Because no ready-to-use phone whitelist is available, to
estimate the false positive rate of our blacklists we proceeded
as follows. We first built an instrumented browser (using
Selenium WebDriver) capable of crawling the YellowPages
directory [60], which lists the phone numbers of businesses
around the US. The assumption is that the vast majority of
businesses that advertise on YellowPages are legitimate entities
unlikely to engage in phone spam activities.

Using our crawler, we gathered around 100,000 phone
numbers listed across 15 different major US cities and 10
different business categories, including doctors, plumbers,
insurance, restaurants etc. We then checked each of these
numbers against our blacklists, and found that only 10 of them
were present, yielding a false positive rate of only 0.01%.
We further investigated the phone numbers that resulted in
these false positives. We found that 7 of these phone numbers
appeared in the FTC blacklist with 20 complaints per phone
number on the average. The remaining 3 phone numbers
appeared in the CDR blacklist and on the average, they made
14 calls to 7 destinations. We also found that all of these 10
phone numbers have been complained about on 800notes.com
for making unwanted or annoying calls.

According to YellowPages, the phone numbers which led

to false positives belong to medical centers, plumbing busi-
nesses, locksmiths, auto repair shops and grocery stores. In
800notes.com reports, users mentioned that these numbers
were involved in making robocalls about an insurance scam or
the caller claimed to be an Amazon associate asking for money.
Some complaints mentioned the calls came from annoying
telemarketers and debt collectors. One possible explanation for
this is that, while belonging to seemingly legitimate businesses,
these numbers may have been spoofed by spammers as part
of a phone spam campaign. If this is true, the very low false
positive rate suggests that such spoofing is not common.

To assess the FP rate, we used the data described in
Section-II.E. Specifically, we used 100,000 benign phone num-
bers of businesses that were randomly chosen from Yellow-
Pages. While not complete, we believe this set of numbers is
sufficiently large to yield a meaningful and reasonably accurate
estimate of the FP rate.

G. Phone Abuse Campaigns
A natural question is whether the same phone numbers are

used across different spam campaigns. In such cases, including
a phone number on a blacklist due to abuse related to one
scam could also protect users from other scams. Also, are the
campaigns seen across multiple datasets or do they have higher
visibility in a specific data source? We explore these questions
by studying several prominent campaigns (derived from LSI
topic modeling of our COC and HCT datasets). We found that
the Free Cruise scam, shown in Figure 12, is seen in both
the COC and HCT data sources, whereas the Tech Support
and IRS scams shown in Figure 13 are largely seen only in
the COC dataset and the Google Listing scam is seen in the
HCT dataset. Figure 14 shows traffic over time for the top four
campaigns in HCT and COC datasets

We used the COC dataset to further explore various abuse
campaigns. For example, we conducted a pairwise analysis of
a number of additional campaigns, including Home Security
and Pay Day Loan scams, and we found a considerable amount
of overlap in source numbers involved in separate campaigns.
For example, 231 of the 500 phone numbers used in the Free
Cruise scam (see Figure 12) are also used in the Pay Day Loan
scam (notice that both campaigns target consumers). Similarly,
we found around 90 phone numbers that were used for both
IRS and Tech Support scams. While it is possible that different
scammers may use caller ID spoofing and the same phone
number can be spoofed in two unrelated scams, this is highly
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(b) Google Listings
Fig. 12: Campaign call blocking rates over time.
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Fig. 13: Complaints blocking rate for top campaigns.

unlikely for two scams that independently spoof numbers
roughly at random, given the size of the phone numbers space.
Therefore, it is more plausible that the same spammers are
responsible for multiple spam campaigns.
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Fig. 14: Traffic over time

V. DISCUSSION AND LIMITATIONS
The CBR rates shown in Section IV were computed using

cumulative blacklists. In other words, the blacklists were
updated daily by adding new phone numbers, but old phone
numbers were never removed. One may infer that CBR rates

computed in such a way can be overly optimistic, as old phone
numbers may get reassigned to legitimate users. Therefore,
retiring old numbers from the blacklist is a reasonable practice.
To demonstrate the effect of removing older phone numbers
from the blacklist, we recomputed the CBR rates by updating
the blacklist in a non-cumulative way. In other words, we
define a window of size n and remove any phone numbers
that were not seen in the last n days. Figure 15 shows that the
CBR rates of COCNC drop by about 1%-15% depending on
the window sizes. We get similar results with FTC CBR rates.

Our results show that phone blacklists offer meaningful
mitigation for current telephony abuse. However, if such black-
lists are deployed widely, scammers can utilize a number of
techniques to evade them. The ease with which source phone
numbers can be spoofed makes such evasion easy. In fact, we
are already witnessing that scammers spoof a number that has
the same area code as the victim to increase the likelihood that
the call will be picked up by a targeted victim. An analysis of
recent CDR data shows that there has been a 20% rise in such
neighbor spoofing in 2017.

Although spoofing can make phone blacklists less effective,
we believe that this will be more challenging for scammers
in the future because of several recent initiatives [56]. For
example, the Federal Communications Commission (FCC) has
already proposed rules that allow carriers to block calls coming
from unassigned or invalid phone numbers [57]. In absence
of spoofing, the cost of acquiring a new spamming phone
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Fig. 15: COCNC CBR rates with different window sizes

number will be non-negligible. Besides the cost of purchasing
a number, the attacker risks that the carrier from which the
numbers are acquired could block all numbers purchased by
an entity that has been found to engage in any spamming
activities.

Scammers can also evade the blacklists by making fewer
calls from a source phone number so the volume stays below
a threshold such as θc used in the CDR blacklist. However,
this will require that they utilize a larger pool of source
phone numbers either by spoofing or by purchasing additional
numbers. If spoofing can be made more difficult, evading the
threshold will add cost to the phone scam operators. Our
blacklists also rely on user provided data in the FTC and COC
datasets. Scammers could target these data sources by injecting
noise into them to reduce the effectiveness of blacklists. Also,
a user may mistakenly provide incorrect information. For
example, when a user receives multiple scam calls, they could
incorrectly report the context of a call. Similarly, a more
sophisticated attacker may check for liveness before providing
call details in the HCT dataset. If such tactics become common
in the future, the effectiveness of the blacklists could degrade
unless techniques are employed to collect higher quality and
more complete data.

VI. RELATED WORK
Similar to online abuse and scams, telephony abuse has

grown considerably and high volume scams have prolifer-
ated over the phone channel [61], [65]. Security researchers
have explored such abuse and specific scams. For example,
Costin et. al. [53] investigated how phone numbers are used
in various scams based on analysis of crowd sourced web
listings. A detailed analysis of the tech support scam, which
is also explored in this paper, was presented in [32]. This
work presented detailed insights into the online and phone
infrastructure used by tech support scams and it also examined
tactics of scammers by engaging them in calls. However,
their results are for Tech-Support scams only, whereas our
blacklists include a broader range of campaigns. Moreover,
[32] mostly considered phone numbers related to outgoing
calls, whereby the user contacted the Tech-Support number.
Our study instead focuses on incoming calls, in which the
users/honeypot received the calls from the scammers. The
targeting of international students by the IRS scam has been

explored in [62].
Our phone blacklists are based on several data sources,

including a CDR dataset from a honeypot. Phoneypot [1], a
phone honeypot, consisted of a pool of phone numbers and
associated infrastructure to collect call detail records (CDRs)
when honeypot numbers are called. Phoneypot demonstrated
the feasibility of augmenting abuse information available in
existing crowd sourced and self-reported datasets like 800notes
and FTC complaint database. Although the data collected from
the honeypot was analyzed to discover various abuse patterns
(e.g., debt collection calls), blacklists were not explored by this
work. Similarly, [2] presents an analysis of a large dataset of
VoIP CDRs, analyzes different call patterns and groups callers
using unsupervised techniques. The features mentioned in [2]
suffice to group users, but they are not designed to differentiate
between spammers and the legitimate callers. Clustering of
transcripts recorded by a phone honeypot to identify and block
calls from major bad actors was explored in [5] . However,
since transcripts is the only abuse information source, it can
only block calls from the campaigns that are seen at the
honeypot.

Profiling of callers has been investigated by several re-
searchers [16], [17], [36]. However, they assume access to
large CDR datasets which have associated privacy concerns
and telephony service providers do not make such datasets
available due to privacy reasons. Yardi et al. [26] characterized
behavioral patterns that disambiguate spammers from legiti-
mate users. Call duration and social network connections are
used to separate legitimate callers from spam/scam callers in
[31] by developing a global reputation based system for callers
Although low reputation can be placed on a blacklist, call
duration information and social connections of phone users
are not available. Furthermore, blacklists and their evaluation
in not addressed by this work.

Blacklists have been investigated for domain names, IP
addresses and other online resources such as URLs to com-
bat email spam and malware infections [4], [19]. However,
these papers typically utilize network, email content and other
application-specific features to blacklist such resources which
differ significantly from information available in our phone
abuse datasets. SMS spam is related to phone abuse and has
been investigated in the past [3]. However, unlike voice calls,
SMS message content becomes available before it needs to be
delivered which allows content-based detection.

To the best of our knowledge, this work is the first one to
systematically explore phone blacklists using context-rich and
context-less datasets. In addition, it provides insights into the
effectiveness of such blacklists.

VII. CONCLUSIONS
Call blocking apps for smartphones are now becoming

commonplace but little is known about the efficacy of such
applications in protecting users from unwanted/scam calls. We
present results of a data-driven study that utilizes multiple data
sources to explore the feasibility and effectiveness of phone
blacklists for blocking such calls . We demonstrate how phone
blacklists can be learned both when the context of a call is
known and when such context is not available due to a variety
of reasons (e.g., privacy concerns, recording overhead etc.).
Our results show that phone blacklists could block a mean-
ingful fraction of unwanted/scam calls (over 55%). We also
demonstrate that blacklists can be an effective defense against
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major phone abuse campaigns that have targeted consumers
and businesses.

Currently phone blacklists can be effective against un-
wanted and scam calls but their effectiveness can suffer with
increased level of caller ID spoofing. If spoofing increases,
we will either need to detect it or make it more difficult to
spoof phone numbers. We will explore efficacy of anti-spoofing
techniques in our future research.
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APPENDIX
To find the “knee” of a topics weight curve (see Sec-

tion III-C1), we use the following algorithm, which is visually
represented in Figure 16:

1) Plot graph of sorted highest topic weights (blue
curve);

2) Fit a low-order (e.g., order 4 or 6) polynomial onto
the curve (red curve);

3) Compute the intersection between the left and right
tangent lines (gray lines with negative slope);

4) Find the line that bisects the angle between the two
tangents (gray line with positive slope);

5) Find the point in which the bisection line intersects
the polynomial;

6) Project this point onto the y axis (dashed horizontal
line).
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