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Abstract—Operating system kernels are appealing attack tar-
gets: compromising the kernel usually allows attackers to bypass
all deployed security mechanisms and take control over the
entire system. Commodity kernels, like Linux, are written in
low-level programming languages that offer only limited type
and memory-safety guarantees, enabling adversaries to launch
sophisticated run-time attacks against the kernel by exploiting
memory-corruption vulnerabilities.

Many defenses have been proposed to protect operating
systems at run time, such as control-flow integrity (CFI). However,
the goal of these run-time monitors is to prevent exploitation as
a symptom of memory corruption, rather than eliminating the
underlying root cause, i.e., bugs in the kernel code. While finding
bugs can be automated, e.g., using static analysis, all existing
approaches are limited to local, intra-procedural checks, and face
severe scalability challenges due to the large kernel code base.
Consequently, there currently exist no tools for conducting global
static analysis of operating system kernels.

In this paper, we present K-Miner, a new framework to
efficiently analyze large, commodity operating system kernels
like Linux. Our novel approach exploits the highly standard-
ized interface structure of the kernel code to enable scalable
pointer analysis and conduct global, context-sensitive analysis.
Through our inter-procedural analysis we show that K-Miner
systematically and reliably uncovers several different classes of
memory-corruption vulnerabilities, such as dangling pointers,
user-after-free, double-free, and double-lock vulnerabilities. We
thoroughly evaluate our extensible analysis framework, which
leverages the popular and widely used LLVM compiler suite, for
the current Linux kernel and demonstrate its effectiveness by
reporting several memory-corruption vulnerabilities.

I. INTRODUCTION

Operating system kernels form the foundation of practically
all modern software platforms. The kernel features many
important services and provides the interfaces towards user
applications. It is usually isolated from these applications
through hardware mechanisms such as memory protection and
different privilege levels in the processor. However, memory-
corruption vulnerabilities in the kernel code open up the
possibility for unprivileged users to subvert control flow or
data structures and take control over the entire system [32],
[70], [72], [47]. For this reason, many defenses have been

proposed in the past [25], [37], [49], [16], [57], [5], [23],
[63], [20]. These defenses are designed specifically for run-
time protection of operating system kernels. Their goal is to
provide countermeasures and secure the kernel against attacks
exploiting memory corruption. Most of these approaches can
be loosely categorized as run-time monitors [49], [16], [57],
[5], [23], [63], [19].

Run-time Monitors vs. Compile-time Verification.
Typically, adversaries are modeled according to their capa-
bilities, and reference monitors are then designed to defend
against a specific class of attacks. For instance, control-
flow integrity (CFI) is tailored towards control-flow hijacking
attacks. However, CFI is not designed to protect against data-
only adversaries resulting in a protection gap that allows for
crucial attacks despite the presence of run-time monitors,
such as CFI, in the kernel [11], [32], [70], [20]. Thus, a
combination of many different defenses is required to protect
the kernel against multiple classes of adversaries. Conse-
quently, commodity operating systems will remain vulnerable
to new types of software attacks as long as memory-corruption
vulnerabilities are present in the code [60].

An alternative approach to employing run-time monitors is
to ensure the absence of memory-corruption vulnerabilities by
analyzing the system before deployment. This was shown to be
feasible for small microkernels with less than 10,000 lines of
code [6], [44], [64], by building a formal model of the entire
kernel and (manually) proving the correctness of the imple-
mentation with respect to this model. The invariants that hold
for the formal model then also hold for the implementation.
However, the formal correctness approach is impractical for
commodity monolithic kernels due to their size and extensive
use of machine-level code [43], which provides no safety
guarantees. Even for small microkernels formulating such a
model and proving its correctness requires more than 10 person
years of work [44], [6]. While dynamic analyses are used to
detect vulnerabilities in OS kernels rather successfully [34],
[35], [22], static approaches have a major advantage: sound
static analysis safely over-approximates program execution,
allowing for strong statements in the case of negative analysis
results. In particular, if no report is generated for a certain
code path by a sound analysis, one can assert that no memory-
corruption vulnerability is present. Hence, static analysis is
also a practical and pragmatic alternative to formal verification,
as it is able to offer similar assurances for real-world software
by means of automated compile-time checks [15].

Static analysis of commodity kernels.
However, static analysis faces severe scalability challenges,
and hence, all analysis frameworks for kernel code are limited
to intra-procedural analysis, i.e., local checks per function.
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In particular, there are five popular analysis frameworks tar-
geting Linux: Coccinelle [52], Smatch [9], TypeChef [38],
APISAN [74], and EBA [1]. None of these support inter-
procedural data-flow analyses, which are required to conser-
vatively approximate program behavior, and reliably uncover
memory corruption caused by global pointer relationships. The
main reason why precise data-flow analysis for kernel code
represents a huge challenge for all existing approaches, is
the huge size and complexity of its monolithic code base:
currently, Linux comprises over 24 million lines of code [14].
Just compiling a common distribution kernel takes several
hours, even on top-of-the-line hardware. While some of the
existing tools allow for the static analysis of kernel code, these
are conceptually limited to local intra-procedural (i.e., per-
function) or simple file-based analysis. This limitation is due to
the fact that the number of possible paths grows exponentially
with the code size, and hence, static analysis approaches face
severe scalability problems [29], [28], [65]. At the same time,
analysis methods have to take all paths and states into account
to remain sound, and hence, pruning or skipping certain parts
of the code would lead to unreliable results. This is why
the resource requirements for conducting such analyses in the
Linux kernel quickly outgrows any realistic thresholds. As a
result, global and inter-procedural analyses, which are required
to uncover memory corruption reliably, remain out of reach of
these existing approaches.

Goals and Contribution.
In this paper, we propose to exploit a distinct and unique
property of kernel software: its interface to user space is highly
standardized [33]. Our idea is to partition the kernel code
along separate execution paths using the system call interface
as a starting point. We show that this significantly reduces
the number of relevant paths, allowing us to conduct even
complex, inter-procedural data-flow analysis in the kernel. To
this end, we present the design and implementation of K-
Miner, the first static analysis framework that enables complex
data-flow analysis for Linux to reliably detect vulnerabilities
in kernel code.

Partitioning the kernel code comes with a number of
challenges, such as the frequent reuse of global data structures,
the synchronization between the per-system call and global
memory states (contexts), and complicated and deeply nested
aliasing relationships of pointers. As we will show, our frame-
work tackles all of these challenges, providing a number of
different analysis passes that analyze system calls simultane-
ously, and reporting a number of real-world vulnerabilities.

Further, scalable static analysis designed for user space
programs cannot simply be applied in kernel setting: data-
flow analysis expects an initial state from which analysis
passes propagate value flows, which is naturally satisfied by
a program’s main function in user space. K-Miner is tailored
towards this requirement and enables data-flow analysis in the
kernel setting.

To summarize our contributions are as follows:

• Enable global static analysis for kernel code: we present
K-Miner, a novel approach to conduct global static analyses
of the Linux kernel. Our framework allows to systematically
analyze the kernel’s user-space interface and detect possible
memory corruption. To enable precise inter-procedural static

analysis of modern OS kernels we tackle a number of
challenges, such as dealing with the large code base, com-
plex inter-dependencies, and aliasing relationships between
global kernel pointers and memory objects.

• Prototype framework implementation: we provide mul-
tiple analyses for finding classes of vulnerabilities in the
Linux kernel that are typically exploited, and demonstrate
their effectiveness in analyzing many different kernel ver-
sions, using different configurations. Our presented frame-
work is extensible and adding additional analysis passes is
straightforward. K-Miner includes a web-based user inter-
face to ease reporting and collaboration. It also provides
extensive graph-based analysis overviews and statistics on
the number of alerts and performance. We release our
implementation of K-Miner as an open source project [24]
that is built on top of LLVM [46].

• Extensive evaluation: we rigorously evaluate our static
analysis framework implemenation for the Linux kernel
by applying it to all system calls across many different
Linux versions and highlight the effectiveness of our frame-
work through detailed reports and statistics. We demon-
strate the importance of automated and scalable analysis
of commodity kernel code by reliably uncovering several
known memory-corruption vulnerabilities, which previously
required manual inspection of the code, and were used
to conduct real-world kernel exploits against dissidents
and activists [50], [62]. Using K-Miner these bug classes
can now be found automatically through our precise and
reliable static analysis passes. We reported two use-after-
return vulnerabilities that K-Miner uncovered in the kernel.

II. BACKGROUND

In this section we explain the concepts behind static data-
flow analysis and present a classification of memory-corruption
vulnerabilities.

A. Data-Flow Analysis

The general idea of static analysis is to take a program and
a list of pre-compiled properties as input, and find all the paths
for which a given property is true. Examples of such properties
are liveness analysis, dead-code analysis, typestate analysis,
or nullness analysis [41]. For instance, a nullness analysis for
the program a) in Figure 1 could be answered by looking at
its pointer-assignment graph (PAG) depicted in c): since there
is a path in which variable b is assigned a NULL value (b
points to NULL in the PAG) a report will be issued. Another
commonly used data structure is the inter-procedural control-
flow graph (ICFG) in b) — limited to the procedures main
and f for brevity — which propagates control flow globally.
This can be used to conduct path-sensitive analysis. Finally,
taint and source-sink analysis may track individual memory
objects through their associated value-flow graph (VFG) in d).

Static analysis for tracking individual values in a program is
called data-flow analysis. Most data-flow analysis approaches
follow a general concept, or framework, to analyze programs
systematically. The naive approach is to enumerate all possible
program paths and test each graph for a given property. This
is commonly referred to as the Meet Over all Paths (MOP).
In Figure 1, the MOP would be calculated by testing a
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void *a = alloc();
if (cond(a)) {
  free(a);
  return NULL;
}
return a;

void *f() {

}

void *b = f();
printf("%p\n",b);
return 1;

int main(void) {

}

1
2
3
4
5
6

7
8
9

a = alloc();

cond(a)

free(a);

return;

b = f();

printf("%p\n",b);

return;

b

NULL

alloc
node

a

alloc node

a = alloc();

b = f();

a) Program Code b) Inter-procedural Control-Flow Graph c) Pointer Assignment Graph d) Value-Flow Graph

p1
p2

Figure 1: Data-flow analyses utilize graphs to reason about program behavior at compile time.

property against the two alternative program paths p1 and p2.
Unfortunately, in the general case the MOP solution was shown
to be undecidable by reduction to the post correspondence
problem [36].

However, the MOP can be approximated through a so-
called Monotone Framework, which is a set of mathematically
defined objects and rules to analyze program behavior. At the
heart of the monotone framework is a lattice, i.e., a partial
order with a unique least upper bound that must be defined over
the domain of all possible values during program execution.
Further, the analysis framework must specify monotone flow
functions that define how program statements effect lattice
elements (the monotony requirement ensures termination of
the analysis). Finally, sets of domain elements (i.e., values)
must be combined using a merge operator. A commonly
used definition for points-to analysis is the domain of points-
to sets for all pointers in a program. The flow functions
then select all program statements, which potentially modify
any pointer relations and specify their target transitions in
the lattice. The merge operator defines how to combine the
resulting points-to sets for such a transition. The notion of the
monotone framework is significant for static program analysis:
for any monotone framework, there exists a Maximum Fixed
Point (MFP) solution, which safely approximates the MOP
solution [36]. If the flow functions are distributive under the
merge operator that is defined by the lattice, the MFP solution
is identical to the MOP solution. The montone framework is
then called a distributive framework, and data-flow analysis
problems can be solved efficiently by solving a corresponding
graph reachability problem [54].

B. Memory-corruption vulnerabilities

Memory-corruption vulnerabilities represent a vast num-
ber of security relevant bugs for operating system software
(e.g., [12], [10]). Run-time attacks exploit such bugs to inject
malicious code, reuse existing code with a malicious input,
or corrupt integral data structures to obtain higher privileges.
Memory-corruption vulnerabilities are often classified accord-
ing to their root defect: integer overflows (IO), use-after-

free (UAF), dangling pointers (DP), double free (DF), buffer
overflow (BO), missing pointer checks (MPC), uninitialized
data (UD), type errors (TE), or synchronization errors (SE) are
commonly listed classes of memory corruption [11], [60]. Any
instance of memory corruption leaves the program vulnerable
to run-time attacks: each class represents a violation of well-
defined program behavior as specified by the programming-
language standard or the compiler, and hence, the violating
program can exhibit arbitrary behavior at run time. For this
reason an adversary with knowledge about any such vulner-
ability can exploit the program by deliberately triggering the
error to achieve unintended, malicious behavior.

For an operating system, the main interface which exposes
kernel code to a user space adversary are system calls [61].
In our approach we combine different data-flow analysis
passes for the classes listed above to report potential bugs in
kernel code, which are accessible to a user space program
through the system call interface. Since memory-corruption
vulnerabilities account for many real-world exploits [60], we
focus on reporting instances of dangling pointers (DP), user-
after-free (UAF), and double free (DF) in our proof-of-concept
implementation. For instance, dangling-pointer vulnerabilities
occur when a memory address is assigned to a pointer vari-
able, and the memory belonging to that address subsequently
becomes unavailable, or invalid. For heap allocations this can
happen, e.g., when a memory location is freed but the pointer
is still accessible. For stack-based allocations this happens
when the stack frame containing the allocated object becomes
invalid, e.g., due to a nested return statement in or below the
scope of the allocation. Our framework is extensible such that
new analyses passes can be integrated to search for additional
vulnerability classes (cf., Section VI).

III. K-MINER

In this section, we explain our threat model, introduce
the high-level design of K-Miner, and elaborate on challenges
to enable precise, inter-procedural static analysis of complex,
real-world kernels.
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A. Goals and assumptions

With K-Miner we aim to identify and report potential
memory-corruption bugs in the kernel’s user-space interface, so
that developers can fix them before shipping code that includes
such vulnerabilities. Regarding potential malicious processes at
run time we make the following standard assumptions:

• The attacker has control over a user-space process and
can issue all system calls to attack the kernel through the
subverted process.

• The operating system is isolated from user processes,
e.g., through virtual memory and different privilege levels.
Common platforms like x86 and ARM meet this require-
ment.

• An adversary cannot insert malicious code into the kernel
through modules, because modern operating systems re-
quire kernel modules to be cryptographically signed [45],
[48], [3].

• K-Miner should reliably report memory-corruption vul-
nerabilities that can be triggered by a malicious process.

Our assumptions force the attacker to exploit a memory-
corruption vulnerability in the kernel code to gain kernel
privileges through a purely software-based attack. The goal
of K-Miner is to systematically scan the system call interface
for these vulnerabilities.

Since real-world adversaries are not limited to software
vulnerabilities, it is important to note that even with a com-
pletely verified kernel (e.g., seL4) hardware attacks such as
rowhammer [42], [55] still pose a serious threat to the integrity
of the kernel. However, for our work we consider hardware
implementation defects to be an orthogonal problem [7].

B. Overview

K-Miner is a static analysis framework for commodity
operating system kernels. We provide a high-level overview
in Figure 2.

Our framework builds on top of the existing compiler suite
LLVM. The compiler (cf., step 1 ) receives two inputs. First,
a configuration file, which contains a list of selected kernel
features. This configuration file enables the user to select or
deselect individual kernel features. When a feature is disabled,
its code is not included in the implementation. Hence, an
analysis result is only valid for a specific pair of kernel code
and configuration file. Second, the compiler suite parses the
kernel code according to the configuration. It syntactically
checks the code and builds an abstract syntax tree (AST). The
compiler then internally transforms the AST into a so-called
intermediate representation (IR), which essentially represents
an abstract, hypothetical machine model. The IR is also used
for analyzing and optimizing kernel code through a series of
transformation passes.

In step 2 , the compiler suite passes the IR of the kernel
as an input to K-Miner, which starts to statically check the
code by going through the list of all system calls. For every
system call, K-Miner generates a call graph (CG), a value-
flow graph (VFG), a pointer-analysis graph (PAG), and several
other internal data structures by taking the entry point of
the system call function as a starting point. Additionally, we
compute a list of all globally allocated kernel objects, which

Kernel
Code

Compiler

Frontend

Config

➀

K-Miner

Value Flow AnalysisSyscall Analysis

sys_call_xyz:

A) Call-Graph
B) Control-Flow Graph
C) Pointer Analysis
D) Allocation Sites

Context Tracking

global_x global_y

➁

sys_call_xyz :  possible use-after-return within global-y
                        in path do_xyz > __do_xyz > _helper_fun

Memory-Corruption Report

➂

Intermediate
Representation

Figure 2: Overview of the different components of K-Miner.

are reachable by any single system call. Once these data
structures are generated, K-Miner can start the actual static
analysis passes. There are individual passes for different types
of vulnerabilities, e.g., dangling-pointer, use-after-free, double-
free, and double-lock errors. All of these passes analyze the
control flow of a specific system call at a time, utilizing the
previously generated data structures. The passes are imple-
mented as context-sensitive value-flow analyses: they track
inter-procedural context information by taking the control flow
of the given system call into account and descend in the call
graph.

If a potential memory-corruption bug has been detected, K-
Miner generates a report, containing all relevant information
(the affected kernel version, configuration file, system call,
program path, and object) in step 3 .

C. Uncovering Memory Corruption

The goal of K-Miner is to systematically scan the kernel’s
interface for different classes of memory-corruption vulnera-
bilities using multiple analysis passes, each tailored to find
a specific class of vulnerability. The individual analysis pass
utilizes data structures related to the targeted vulnerability
class to check if certain conditions hold true. Reasoning about
memory and pointers is essential for analyzing the behavior of
the kernel with respect to memory-corruption vulnerabilities,
hence, the data base for all memory objects (called global
context) and the pointer-analysis graph represent the foun-
dation for many analysis passes. Individual memory objects
are instantiated at allocation sites throughout the entire kernel
and the variables potentially pointing to them are tracked per
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system call using the PAG. Forward analysis then reasons
about the past behaviour of an individual memory location,
whereas a backward analysis determines future behaviour
(since a forward analysis processes past code constructs before
processing future code and vice versa).

We can also combine such analysis passes, for instance,
to find double-free vulnerabilities: first, we determine sources
and sinks for memory objects, i.e., allocation sites and the
corresponding free functions respectively. We then process
the VFG in the forward direction for every allocation site to
determine reachable sinks. Second, we reconstruct the resulting
paths for source-sink pairs in the execution by following sinks
in the backward direction. Finally, we analyze the forward
paths again to check for additional sinks. Since any path
containing more than one sink will report a duplicate de-
allocation this approach suffers from a high number of false
positives. For this reason, we determine if the first de-allocation
invocation dominates (i.e., is executed in every path leading to)
the second de-allocation invocation in the validation phase.

In similar vein we provide passes that are checking for
conditions indicating dangling pointers, use-after-free, and
double-lock errors. We provide more detailed examples for
the implementation of such passes in Section IV.

D. Challenges

Creating a static analysis framework for real-world operat-
ing systems comes with a series of difficult challenges, which
we briefly describe in this section. In Section IV we explain
how to tackle each challenge in detail.

Global state.
Most classes of memory-corruption vulnerabilities deal with
pointers, and the state or type of the objects in memory that
they point to. Conducting inter-procedural pointer analyses
poses a difficult challenge regarding efficiency. Because inter-
procedural analysis allows for global state, local pointer ac-
cesses may have non-local effects due to aliasing. Since our
analyses are also flow-sensitive, these aliasing relationships are
not always static, but can also be updated while traversing
the control-flow graph. To enable complex global analyses,
we make use of sparse program representations: we only take
value flows into account that relate to the currently analyzed
call graph and context information.

Huge codebase.
The current Linux kernel comprises more than 24 million
lines of code [14], supporting dozens of different architectures,
and hundreds of drivers for external hardware. Since K-Miner
leverages complex data-flow analysis, creating data structures
and dependence graphs for such large amounts of program
code ultimately results in an explosion of resource require-
ments. We therefore need to provide techniques to reduce the
amount of code for individual analysis passes without omitting
any code, and allowing reuse of intermediate results. By
partitioning the kernel according to the system call interface,
we are able to achieve significant reduction of the number of
analyzed paths, while taking all the code into account, and
allowing reuse of important data structures (such as the kernel
context).

False positives.
False positives represent a common problem of static analysis,
caused by too coarse-grained over approximation of possible
program behavior. Such over approximation results in a high
number of reports that cannot be handled by developers. K-
Miner has to minimize the number of false positives to an
absolute minimum. As the number of false positives depends
greatly on the implementation of the individual analysis passes
we carefully design our analyses to leverage as much infor-
mation as possible to eliminate reports that require impossible
cases at run time, or make too coarse-grained approximations.
Moreover, we sanitize, deduplicate, and filter generated reports
before displaying them for developers in a collaborative, web-
based user interface.

Multiple analyses.
A comprehensive framework needs to be able to eliminate all
possible causes of memory corruption. This is why K-Miner
must be able to combine the results of many different analyses.
Additionally, individual analyses may depend on intermediate
results of each other. Hence, our framework has to be able to
synchronize these with respect to the currently inspected code
parts. To this end we leverage the modern pass infrastructure
of LLVM to export intermediary results and partially re-import
them at a later point in time.

IV. IMPLEMENTATION

In this section we describe our implementation of K-Miner,
and how we tackle the challenges mentioned in Section III-D.
Our framework builds on the compiler suite LLVM [46] and
the analysis framework SVF [59]. The former provides the ba-
sic underlying data structures, simple pointer analysis, a pass-
infrastructure, and a bitcode file format which associates the
source language with the LLVM intermediate representation
(IR). The latter comprises various additional pointer analyses
and a sparse representation of a value-flow dependence graph.

Since it is possible to compile the Linux kernel with
LLVM [69], we generate the required bitcode files by modi-
fying the build process of the kernel, and link them together
to generate a bitcode version of the kernel image. This image
file can then be used as input for K-Miner. Figure 3 depicts
the structure of our framework implementation. In particular,
it consists of four analysis stages: in step 1 , the LLVM-IR is
passed to K-Miner as a vmlinux bitcode image to start a pre-
analysis, which will initialize and populate the global kernel
context. In step 2 , this context information is used to analyze
individual system calls. It is possible to run multiple analysis
passes successively, i.e., our dangling pointer, use-after-free,
and double-free checkers, or run each of them independently.
In step 3 , bug reports are sanitized through various validation
techniques to reduce the number of false positives. In step 4 ,
the sorted reports are rendered using our vulnerability reporting
engine. In the following, we describe each of the steps in more
detail and explain how each of them tackles the challenges
identified in the previous section.

A. Global Analysis Context

The global context stored by K-Miner essentially represents
a data base for all the memory objects that are modeled based
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Figure 3: Overview of the K-Miner implementation: we conduct complex data-flow analysis of the Linux kernel in stages,
re-using intermediate results.

on the source code. Managing global context information effi-
ciently is a prerequisite to enable analysis of highly complex
code bases such as the Linux kernel. Additionally, we have
to ensure that the context is sufficiently accurate to support
precise reporting in our subsequent analysis. This is why the
pre-analysis steps of our framework resemble the execution
model of the kernel to establish and track global kernel context
information.

Initializing the Kernel Context: The kernel usually ini-
tializes its memory context at run time by populating global
data structures, such as the list of tasks or virtual memory
regions during early boot phase. This is done by calling a
series of specific functions, called Initcalls. These are one-
time functions which are annotated with a macro in the
source files of the kernel. The macro signals the compiler to
place these functions in a dedicated code segment. Functions
in this segment will only be executed during boot or if a
driver is loaded. Hence, most of the memory occupied by this
segment can be freed once the machine finished booting [67].
To initialize the global kernel context, we populate global
kernel variables by simulating the execution of these initcalls
prior to launching the analyses for each system call. The
resulting context information is in the order of several hundred
megabytes, therefore, we export it to a file on disk and re-
import it at a later stage when running individual data-flow
analysis passes.

Tracking Heap Allocations: Usually, user space pro-
grams use some variant of malloc for allocating memory
dynamically at run time. There are many different methods
for allocating memory dynamically in the kernel, e.g., a slab
allocator, a low-level page-based allocator, or various object
caches. To enable tracking of dynamic memory objects, we
have to compile a list of allocation functions which should be
treated as heap allocations. Using this list K-Miner transforms
the analyzed bitcode by marking all call sites of these functions
as sources of heap memory. In this way kernel memory
allocations can be tracked within subsequent data-flow analysis
passes.

Establishing a Syscall Context: Because subsequent anal-
ysis passes will be running per system call, we establish a

dedicated memory context for each of them. We do this by
collecting the uses of any global variables and functions in
each of the system call graphs. By cross-checking this context
information against the global context, we can establish an
accurate description of the memory context statically.

B. Analyzing Kernel Code Per System Call

Although analyzing individual system calls already reduces
the amount of relevant code significantly, the resource require-
ments were still unpractical and we could not collect any
data-flow analysis results in our preliminary experiments. For
instance, conducting a simple pointer analysis based on this
approach already caused our server system to quickly run out
of memory (i.e., using more than 32G of RAM). Through
careful analysis we found that one of the main causes for the
blow-up are function pointers: in particular, the naive approach
considers all global variables and functions to be reachable by
any system call. While this approximation is certainly safe, it
is also inefficient. We use several techniques to improve over
this naive approach, which we describe in the following.

Improving Call Graph Accuracy: We start with a simple
call-graph analysis, which over-approximates the potential list
of target functions. By analyzing the IR of all functions in
the call graph we determine if a function pointer is reachable
(e.g., by being accessed by a local variable). This allows us to
collect possible target functions to improve the precision of the
initial call graph. Based on this list, we perform a two-staged
pointer analysis in the next step.

Flow-sensitive Pointer-Analysis: To generate the im-
proved call graph we first perform a simple inclusion-based
pointer analysis to resolve the constraints of the function
pointers collected earlier. To further improve the precision,
we conduct a second pointer analysis while also taking the
control flow into account. This again minimizes the number
of relevant symbols and yields a very accurate context for
individual system calls. We store these findings as intermediate
results per system call which can be used by subsequent data-
flow analysis passes.

Intersecting Global Kernel State: Finally, we combine
the previously indentified context information for a system call
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a) Pseudo Systemcall b) Pointer Assignment Graph (PAG)

global_o

local_x

p

global_p

local_o

1

2

3

4

5

6 local_x

4

2

5

6

do_foo

remove_x

add_x

1

global_p

3

c) Value-Flow Graph (VFG)

void sys_foo() {

}

1 do_foo();
2 return;

void do_foo() {

}

3 int local_x = 1;
4 add_x(&local_x);
5 if (cond())
6   remove_x();
7 return;

void add_x(int *p) {

}

8 global_p = p;

void remove_x() {

}

9 global_p = NULL;

null

null

Figure 4: Example of a Dangling Pointer vulnerability in a (simplified) system call definition.

with the global kernel context. We do this by determining
the global variables of a system call that contain missing
references and intersecting these with the list of variables of
the global kernel context populated earlier. While possibly
increasing the context information our precision improvents
prevent an infeasible blow-up in this last step.

C. Minimizing False Positives

False positives are a common problem in static analysis and
frequently occur when over-approximating program behavior:
for instance, an analysis may assume an alias relationship
between pointers that do not co-exist at run time, if the control
flow is not taken into account. In the following, we explain how
we designed our analysis to be precise and reduce the number
of false positives, using dangling pointers as an example. We
also provide details on how K-Miner sanitizes the resulting
bug reports to further limit the number of false positives.

Precise Data-Flow Analysis: Figure 4 a) shows the code
of a pseudo system call with a dangling pointer bug. In step 1 ,
the address of the local variable in do_foo is copied into the
parameter p of add_x and subsequently stored in the global
pointer global_p in step 2 . In step 3 , we can see that
remove_x will only be called conditionally. Hence, there is a
path for which global_p still points to the address of a local
variable after execution of do_foo has returned. Looking at
the PAG in Figure 4b) reveals that local_o and global_o
represent the abstract memory objects behind these possible
pointer values. The (simplified) VFG in Figure 4c) shows the
corresponding value flows. Our algorithm to find these kinds
of bugs consists of two phases: first, we traverse the VFG in
forward order starting from local nodes. A reference to a local
node leaves its valid scope, if the number of function exits is
greater than the number of function entries after traversing the

entire path. For the node local_x we can see, that there is
one entry to add_x, an exit from add_x, and an exit from
do_foo at the end of the path. Consequently, there is a path
for which local_x leaves its valid scope, i.e., local_x→
1 → 2 → 3 → 5 → 6 .

In the second phase we traverse the VFG in backward
direction to find (global or local) references to this node,
since any such reference represents a dangling pointer. In this
case the second phase yields the path 6 → 5 → 3 →
2 → global_p. By querying the PAG dynamically during

backward traversal we avoid visiting edges that do not belong
to the currently tracked memory location such as 5 → 4 .
This allows us to minimize inaccuracies resulting from over-
approximation. We store the respective path information along
with the list of nodes and contexts they were visited in as
memory-corruption candidate for sanitizing and future report-
ing.

Sanitizing Potential Reports: Upon completion of the
data-flow analysis, we cross-check the resulting candidates for
impossible conditions or restrictions which would prevent a
path from being taken during run-time execution. Examples
for such conditions include impossible call graphs (e.g., call
to function g preceding return from function f ), or invalid
combinations of context and path information. Additionally,
we eliminate multiple reports that result in the same nodes for
different contexts by combining them into a single report.

D. Efficiently Combining Multiple Analyses

To enable the efficient execution of multiple data-flow anal-
yses, our framework makes heavy use of various optimizations
and highly efficient analysis techniques as we describe below.

Using Sparse Analysis: An important data structure in
our data-flow analysis is the value-flow graph, which is a di-
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Magnitude of Analysis Report Results

Version MLOC Bitcode Avg. Run Time #Functions #Variables #Pointers DP UAF DF

3.19 15.5 280M 796.69s 99K 433K >5M 7 (40) 3 (131) 1 (13)

4.2 16.3 298M 1435.62s 104K 466K >6M 11 (46) 2 (106) 0 (19)

4.6 17.1 298M 1502.54s 105K 468K >6M 3 (50) 2 (104) 0 (31)

4.10 22.1 353M 1312.41s 121K 535K >7M 1 (30) 2 (105) 0 (22)

4.12 24.1 364M 2164.96s 126K 558K >7.4M 1 (24) 0 (27) 1 (24)

Table I: Overview of the specifications, resource requirements, and results for the different kernel versions and data-flow passes
we used in our evaluation of K-Miner.

rected inter-procedural graph tracking any operations related to
pointer variables. The VFG captures the def-use chains of the
pointers inside the kernel code to build a sparse representation
for tracking these accesses. The graph is created in four steps:
first, a pointer analysis determines the points-to information of
each variable. Second, the indirect definitions and uses of the
address-taken variables are determined for certain instructions
(e.g. store, load, callsite). These instructions are then annotated
with a set of variables that will be either defined or used by
this instruction. Third, the functions are transformed into Static
Single Assignment form using a standard SSA conversion
algorithm [17]. Finally, the VFG is created by connecting the
def-use for each SSA variable and made partially context-
sensitive by labeling the edges of the callsites. Using this
sparse VFG representation in a partially context-sensitive way
enables us to conduct precise analysis while reducing the
amount of code.

Revisiting Functions: Using different analysis passes,
functions are potentially visited multiple times with different
values as an input. However, one function might call dozens of
other functions and forwarding all the resulting nodes multiple
times in the same way would be very inefficient. Our analysis
reduces the amount of nodes that have to be forwarded by
processing a function only once for all of its possible contexts
and storing the intermediate results. If a function entry node
is requested by an analysis with a given context, the analysis
checks if this node was already visited and re-uses the pre-
computed results.

Parallelizing Execution: Because certain analysis steps
can actually run independently from each other, we imple-
mented another optimization by parallelizing the forwarding
and backwarding processes using OpenMP [4]. OpenMP pro-
vides additional compiler directives that allow the definition of
parallel regions in the code. In this way, we process some of
the heavy container objects used during the analysis in parallel.

V. EVALUATION

In this section, we evaluate and test our static analysis
framework for real-world operating system kernels. We run
our memory-corruption checkers against five different ver-
sions of the Linux kernel, using the default configuration
(defconfig). Our test system running K-Miner features an
Intel Xeon E5-4650 with 8 cores clocked at 2.4GHz and 32G

of RAM. Table I shows an overview of the analyzed Linux
kernel specifications and results: on average, our framework
needs around 25 minutes to check a single system call (cf.,
Avg. Time in Table I). This means that a check of the entire
system call interface on this server with all three analyses takes
between 70 and 200 hours for a single kernel version. 1 In
our experiments, K-Miner found 29 possible vulnerabilities,
generating 539 alerts in total, most of which were classified as
false positives (total alerts are given in parenthesis in Table I). 2

Next, we will evaluate the coverage and impact of those reports
and afterwards also discuss the performance of our framework
in more detail.

A. Security

Since K-Miner aims to uncover memory-corruption vul-
nerabilities in the context of system calls, we investigate
its security guarantees by inspecting the coverage of the
underlying graph structures. To demonstrate practicality, we
also present some of the publicly known vulnerabilities we
were able to find statically using our framework.

Coverage: Our goal is to uncover all possible sources
of memory corruption that are accessible via the system call
interface that the kernel exposes to user processes. Hence, we
have to ensure that the analysis passes for a certain class of
vulnerabilities have access to all relevant information required
to safely approximate run-time behavior of the kernel. At the
time of writing, our framework contains passes for DP, DF,
and UAF, hence, other sources of memory corruption are not
covered in this evaluation. However, K-Miner is designed to
be extensible and we are working on implementing further
analysis passes to cover all remaining vulnerability classes.

The most important factors for the coverage of our three
analysis passes are their underlying analysis structures, i.e.,
PAG, VFG, and context information. Because the inter-
procedural value-flow graph and the context information are
derived from the pointer-analysis graph, their accuracy directly
depends on the construction of the PAG. Our pointer analysis
makes two assumptions: 1) partitioning the kernel code along
its system call graph is sound, and 2) deriving kernel context

1Largely depending on the respective kernel version as seen in the average
time per system call in Table I.

2Additionally, we are still investigating 158 memory-corruption alerts for
the most recent version of Linux.
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Figure 5: Wall-clock time per analysis phase for system calls requiring more than 30 Minutes within K-Miner.

information from init calls is complete. We would like to note
that verifying both assumptions requires a formal proof, which
is beyond the scope of this paper. However, we sketch why
these assumptions are reasonable in the following.

The first assumption is sensible, because system calls
are triggered by individual processes to provide services in
a synchronous manner, meaning that the calling process is
suspended until execution of the system call finishes. While
interrupts and inter-process communication may enable other
processes to query the kernel asynchronously, this is orthog-
onal to the partitioning of kernel code, because these operate
under a different context. In particular, our framework allows
analyses to take multiple memory contexts into account, e.g.,
to uncover synchronization errors. Individual analysis passes
then have to ensure that the associated contexts are handled
accordingly.

Our second assumption is derived from the design of the
analyzed kernel code. The init call infrastructure for Linux is
quite elaborate, using a hierarchy of different levels that may
also specify dependencies on other init calls. Additionally, init
calls are used in many different scenarios, e.g., to populate
management structures for virtual memory and processes dur-
ing early boot, or to instantiate drivers and modules at run time.
By including all init call levels following their hierarchical
ordering in the pre-analysis phase, we ensure that the relevant
context information is recorded and initialized accordingly.

Real-world Impact: We cross-checked the reported mem-
ory corruptions against publicly available bug reports and
found two interesting matches. In particular, our dangling
pointer analysis automatically found a bug in Linux kernel
version 3.19, which was previously discovered through manual
inspection and classified as a security-relevant vulnerability in
Linux in 2014 (i.e., CVE-2014-3153). In fact, this vulnerability
gained some popularity due to being used as a tool to allow
users privilegede access (aka ”root”) on their locked-down
Android devices, such as the Samsung S5 [30]. The bug was
later discovered to be exploited by the HackingTeam company
to spy on freedom fighters and dissidents through a malicious
kernel extension [62].

Further, our double-free analysis found a driver bug (i.e.,
CVE-2015-8962) in a disk protocol driver in version 3.19. The
vulnerability allows a local user to escalate privileges and cor-
rupt kernel memory affecting a large range of kernel versions

including Android devices such as Google’s PIXEL [26]. Both
vulnerabilities were classified as critical issues with a high
severity and could have been easily found through K-Miner’s
automated analysis. Moreover, we reported two of our use-
after-return alerts to the kernel developers.

B. Performance

We now analyze the performance, in particular, the run
time, memory consumption, and number of false positives.

Analysis Run Time: As already mentioned, the average
analysis time per system call is around 25 minutes. In Fig-
ure 5 we give an overview of those system calls for which
our analyses took longer than 30 minutes. Most system call
analysis are dominated by the context handling. However there
are some exceptions, notably sys_execve, sys_madvise,
and sys_keyctl. The context handling is time consuming,
because it represents the first phase of any subsequent data-
flow analysis pass. This means, that it conducts multiple inter-
procedural pointer analysis, cross-references the global kernel
context with the syscall context, and populates the underlying
graph data structures for the current system call. This also
involves importing and copying information stored on disk,
which is slower than accessing RAM. In theory, it should be
possible to pre-compute and export the results of the context
handling phase for each system call to disk as well. Any data-
flow analysis pass could then just re-import the respective file
for the current system call, potentially saving some of this
overhead (especially in combination with fast SSD hardware).
However, we did not implement this optimization feature in
the current version of K-Miner.

The UAF checker is notably quicker than the remaining
passes, which is due to its reuse of underlying analysis
structures from the first pass. In contrast to the use-after-free
pass, the double-free analysis has to reconstruct the value-flow
graph, which accounts for the majority of its run time. Taken
separately, the individual analysis phases require between 5
and 35 minutes run time, which is expected for graph-based
analysis, given the magnitude of the input.

Memory Utilization: Initially, our main concern regarded
the memory requirements, because of the size of the interme-
diate representation of the kernel as bitcode image. However,
our approach to partition the kernel per system call proved to
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Figure 6: Maximum memory requirements of K-Miner for system calls requiring more than 11G of RAM.

be effective: on average the analyses utilized between 8.7G and
13.2G of RAM, i.e., around a third of our server’s memory,
with a maximum of 26G (cf., version 4.10 in Table II). We
provide a more detailed overview for different system calls in
Figure 6. Granted that these numbers also depend to a large
extent on the respective kernel version and used configuration,
our overall results demonstrate that complex data-flow analysis
for OS kernels are feasible and practical. In particular, the
memory requirements of K-Miner show that an analysis of
future kernel releases is realistic, even with the tendency of
newer versions to grow in size.

While the default configuration for the kernel offers a
good tradeoff between feature coverage and size, real-world
distribution kernels usually have larger configurations, because
they enable a majority of features for compatibility reasons.
Our current memory utilization is within range of analyzing
kernels with such feature models as well. Although we expect
to see increased memory requirements (i.e., 128G or more),
this does not meet the limit of modern hardware, and K-Miner
is able to conduct such analyses without requiring any changes.

C. Usability

Our framework can be integrated into the standard build
process for the Linux kernel with some changes to the main
build files, which will then generate the required intermediate
representation of the kernel image. Using this bitcode image
as main input, K-Miner can be configured through a number
of command line arguments, such as number of threads,
which checkers to use, and output directory for intermediate
results. Results are written to a logfile, which can be inspected
manually or subsequently rendered using our web interface to

Version Avg. Used Max Used

3.19 8,765.08M 18,073.60M
4.2 13,232.28M 24,466.78M
4.6 11,769.13M 22,929.92M
4.10 12,868.30M 25,187.82M
4.12 13,437.01M 26,404.82M

Table II: Average and maximum memory usage of K-Miner

get an overview and check reports for false positives.

Reporting Engine: The web interface for our framework
is written in Python. It parses the resulting logfile to construct
a JSON-based data model for quick graphing and tabular
presentation. We attached screenshots in Appendix A to give
an impression of an exemplified workflow. While relatively
simple, we found this web-based rendering to be extremely
helpful in analyzing individual reports. Developers can already
classify and comment upon alerts and reports, and we plan to
incorporate the possibility to schedule and manage the launch
and configuration of analyses from the web interface in future
versions.

False Positives: Similar to other static analysis approaches
like the Effect-Based Analyzer (EBA) [1], Coccinelle [52],
Smatch [9], or APISAN [74], K-Miner naturally exhibits
a number of false positives due to the necessary over-
approximations. For instance, the use-after-free analysis still
shows a high number of false alarms, and leaves room for
improvement. In particular, our investigation showed that there
are many cases in the kernel code where a conditional branch
based on a nullness check is reported as potential use-after-
free. Including these cases in our sanitizer component should
be straightforward to further reduce this number. However,
there will always be a certain number of false positives for
any static analysis tool and developers have to cross-check
these alerts, similar to how they have to check for compiler-
warnings. Overall K-Miner demonstrates that this scenario is
practical through some post-processing and intelligent filtering
in our web-interface.

VI. DISCUSSION

In this section we discuss our ongoing improvements of
K-Miner, various possible extensions, and future work.

A. Soundness

While K-Miner currently does not offer a proof of sound-
ness, we sketched an informal reasoning of why the kernel-
code partitioning along the system call API is a sensible
strategy in Section V. There are additional challenges for a
formal result: first, in some cases the kernel uses non-standard
code constructs and custom compiler extensions, which may
not be covered by LLVM. However, for these constructs the
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LLVM Linux project maintains a list of patches, which have
to be applied to the kernel to make it compatible to the LLVM
compiler suite. Second, some pointer variables are still handled
via unsigned long instead of the correct type. These
low-level “hacks” are difficult to handle statically, because
they exploit knowledge of the address space organization or
underlying architecture specifics. Nonetheless, such cases can
be handled in principle by embedding the required information
in LLVM or by annotating these special cases in the source.
Finally, our memory tracking component currently relies on
a list of allocation functions. For cases like file descriptors
or sockets the respective kernel objects are pre-allocated from
globally managed lists and individual objects are retrieved and
identified by referring to their ID (usually an integer number).
This can be resolved by considering all objects from the same
list to be modeled as objects of the same type, and marking
functions for retrieval as allocations.

B. Future Work

As K-Miner is designed to be a customizable and extensible
framework, implementing additional checkers is straightfor-
ward. To this end, we already implemented additional double-
lock and memory-leak checkers, thereby covering additional
bug classes. Up to this point we only verified that these addi-
tional pass implementations are able to detect intra-procedural
bugs.3 However, as our other analysis passes in K-Miner, the
double-lock implementation covers inter-procedural double-
lock errors in principle, including bugs spanning multiple
source files. Similarly, implementing analyses to find buffer
overflows, integer overflows, or uninitialized data usage re-
mains as part of our future work to cover all potential sources
of memory corruption as mentioned in Section II.

While primarily analyzing the system call API, we found
that analyzing the module API in a similar way should be
possible and provide interesting results, since many bugs result
from (especially out-of-tree) driver and module code. Although
this interface is not as strict as the highly standardized system
call API, the main top-level functions of many drivers are
exported as symbols to the entire kernel image, while internal
and helper functions are marked as static. Hence, we should
be able to automatically detect the main entry points for most
major driver modules by looking at its exported symbols and
building a call graph that starts with the exported functions. We
can then analyze this automatically constructed control flow
of the drivers by applying the data-flow analysis passes to the
resulting code partitions. In addition to our current approach,
this would allow for an extension of our adversary model to
include malicious devices and network protocols. We included
a prototypical draft of this functionality to analyze module
code using K-Miner in the future.

C. Automated Proof-of-Concept Generation

Finding a valid user-space program to provide the neces-
sary input data to reliably trigger a bug is non-trivial in many
cases. At the same time, kernel developers will often ignore
bug reports without a proof-of-concept. K-Miner’s reports
already contain all the necessary path information, and hence,

3In particular, the lock errors introduced in commits 09dc3cf [53],
e50fb58 [13], 0adb237 [18], and 16da4b1 [2] of Linus’ tree.

it should be feasible to find matching inputs that lead to
the execution of that particular path, e.g., by processing the
path constraints using a SAT-solver [21]. Alternatively, we
could leverage concolic execution [8] or selective, guided
fuzzing [58] to generate such proof-of-concepts.

D. Machine Learning

Another possible perspective for interesting future work
is to combine our static analysis framework with machine
learning, such as deep learning, reinforcement learning, and
classifier systems. This would allow for the extraction of
common bug patterns and automated pattern mining [73], or
scalable classification of generated vulnerability reports, e.g.,
to build a ranking system for K-Miner’s generated reports
similar to how APISAN handles the large number of detected
semantic function API violations [74]. One of the problems of
machine learning approaches is that their results highly depend
on the quality of the training data [31].

VII. RELATED WORK

In this section we give a brief overview of the related
work and compare K-Miner to existing frameworks and
tools. In contrast to dynamic run-time approaches, such as
KASAN [39], TypeSan [27], Credal [71], UBSAN [40], and
various random testing techniques [34], [35], [22], our ap-
proach aims at static analysis of kernel code, i.e., operating
solely during compile time. As there already exists a large
body of literature around static program analysis [51], [41],
we focus on static analysis tools targeting operating system
kernels, and data-flow analysis frameworks for user space that
influenced the design of K-Miner.

It is important to note that applying static analysis frame-
works designed for user space programs is not possible a priori
in the kernel setting: data-flow analysis passes expect a top-
level function, and an initial program state from which analysis
passes can start to propagate value flows. These requirements
are naturally satisfied by user space programs by providing a
main function, and a complete set of defined global variables.
However, operating systems are driven by events, such as
timer interrupts, exceptions, faults, and traps. Additonally, user
space programs can influence kernel execution, e.g., by issuing
system calls. Hence, there is no single entry point for data-flow
analysis for an operating system. With K-Miner we present the
first data-flow analysis framework that is specifically tailored
towards this kernel setting.

A. Kernel Static Analysis Frameworks

The Effect-Based Analyzer (EBA) [1] uses a model-
checking related, inter-procedural analysis technique to find
a pre-compiled list of bug patterns. In particular, it provides
a specification language for formulating and finding such
patterns. EBA provides lightweight, flow-insensitive analyses,
with a focus towards double-lock bugs. Additionally, EBA re-
stricts analysis to individual source files. K-Miner provides an
expressive pass infrastucture for implementing many different
checkers, and is specifically tailored towards the execution
model of the kernel allowing complex, context and flow-
sensitive data-flow analyses, potentially spanning the entirety
of the kernel image.
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Coccinelle [52] is an established static analysis tool that
is used on a regular basis to analyze and transform series
of patches for the kernel. While originally not intended for
security analysis, it can be used to conduct text-based pattern
matching without the requirement for semantic knowledge or
abstract interpretation of the code, resulting in highly efficient
and scalable analyses. In comparison to our framework, Coc-
cinelle is not able to conduct any data-flow, or inter-procedural
analysis.

The Source-code Matcher (Smatch) [9] is a tool based on
Sparse [66], a parser framework for the C language developed
exclusively for the Linux kernel. Smatch enriches the Sparse
syntax tree with selected semantic information about underly-
ing types and control structures, enabling (limited) data-flow
analyses. Like Coccinelle, Smatch is fast, but constrained to
intra-procedural checks per source file.

APISAN [74] analyzes function usage patterns in kernel
code based on symbolic execution. In contrast to other static
analysis approaches, APISAN aims at finding semantic bugs,
i.e., program errors resulting from incorrect usage of existing
APIs. Because specifying the correct usage patterns manually
is not feasible for large code bases, rules are inferred proba-
bilistically, based on the existing usage patterns present in the
code (the idea being that correct usage patterns should occur
more frequently than incorrect usage patterns). In comparison
to K-Miner, APISAN builds on LLVM as well, but only
considers the call graph of the kernel and is not able to conduct
any inter-procedural data-flow analyses.

TypeChef [38] is an analysis framework targeting large C
programs, such as the Linux kernel. In contrast to our work,
TypeChef focuses on variability-induced issues and analyzing
all possible feature configurations in combination. For this, it
provides a variability-aware pre-processor, which extracts the
resulting feature model for the kernel, e.g., by treating macros
like regular C functions. TypeChef does not conduct any data-
flow analysis on their resulting variability-aware syntax tree.

B. User Space Static Analysis

The Clang Static Analyzer [46] consists of a series of
checkers that are implemented within the C frontend Clang
of the LLVM compiler suite. These checkers are invoked via
command-line arguments during program compilation and can
easily be extended. As part of the Linux LLVM project [69]
there was an effort to implement kernel-specific checkers.
However, to the best of our knowledge, this effort has since
been abandoned.

The Static Value-Flow (SVF) [59] analysis famework en-
hances the built-in analysis capabilities of LLVM with an
extended pointer analysis and a sparse value-flow graph repre-
sentation. K-Miner builds on top of LLVM and leverages the
pointer analyses provided by SVF to systematically analyze
kernel APIs, such as the system call interface.

Mélange [56] is a recent data-flow analysis framework
for user space, that is able to conduct complex analyses to
find security-sensitive vulnerabilities, such as unitialized reads.
Mélange is able to analyze large C and C++ user space code
bases such as Chromium, Firefox, and MySQL.

Astrée [15] is a proprietary framework for formal veri-
fication of C user programs for embedded systems through
elaborate static analysis techniques. It operates on synchronous
programs, i.e., analyzed code is not allowed to dynamically
allocate memory, contain backward branches, union types, or
other conflicting side effects. Astrée is able to provably verify
the absence of any run-time errors in a program obeying these
restrictions and was used to formally verify the primary flight
control software of commercial passenger aircraft.

Soot [68] is a popular and widely used static analysis
framework capable of conducting extensible and complex
data-flow analyses. However, Soot is targeted towards Java
programs, and hence cannot analyze programs written in C
or C++.

VIII. CONCLUSION

Memory-corruption vulnerabilities represent an important
challenge for the security of today’s operating systems. Any
instance of one of these bugs exposes the system to a variaty
of run-time attacks. Such attacks therefore pose a severe
threat to the OS, since they can be launched by unprivileged
user processes to exploit a particular vulnerability, e.g., by
corrupting memory used by the kernel to gain read and write
access to kernel space. This access can then be exploited to
escalated privileges of the attacker process to root or achieve
arbitrary code execution in the kernel.

Bugs such as dangling pointers, use-after-free, double
free, or double-lock errors are introduced through human
error during routine programming. Since the code bases of
modern kernels are also highly complex, many vulnerabilities
are typically hard to find using simple text-based analysis
tools. Additionally, finding deeply nested vulnerabilities using
dynamic analyses, such as fuzzing, is usually difficult, as every
nested layer of call indirection decreases the chances of the
fuzzer to randomly trigger the required path. Furthermore,
dynamic testing does not offer any guarantees in the case of
negative results.

In this paper we present K-Miner, as the first data-flow
analysis framework targeting operating systems. We enable
scalable, precise, and expressive static analysis for commodity
kernels, and demonstrate high practicality by identifying crit-
ical vulnerabilities. K-Miner tackles a number of challenges
with respect to the huge and highly complex code bases
of modern kernels, and provides several analysis passes for
finding memory-corruption vulenrabilities such as dangling
pointers, use-after-free, double free, and double-lock errors.
Our extensive evaluation shows that K-Miner is able to ana-
lyze recent versions of Linux in different configurations and
uncover real-world vulnerabilities.
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APPENDIX A: WEB INTERFACE OF K-MINER

Figure 7: Web interface overview.

Figure 8: Web interface details.
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