
Superset Disassembly:
Statically Rewriting x86 Binaries Without Heuristics

Erick Bauman
University of Texas at Dallas
erick.bauman@utdallas.edu

Zhiqiang Lin
University of Texas at Dallas

zhiqiang.lin@utdallas.edu

Kevin W. Hamlen
University of Texas at Dallas

hamlen@utdallas.edu

Abstract—Static binary rewriting is a core technology for
many systems and security applications, including profiling, opti-
mization, and software fault isolation. While many static binary
rewriters have been developed over the past few decades, most
make various assumptions about the binary, such as requiring
correct disassembly, cooperation from compilers, or access to de-
bugging symbols or relocation entries. This paper presents MUL-
TIVERSE, a new binary rewriter that is able to rewrite Intel CISC
binaries without these assumptions. Two fundamental techniques
are developed to achieve this: (1) a superset disassembly that com-
pletely disassembles the binary code into a superset of instructions
in which all legal instructions fall, and (2) an instruction rewriter
that is able to relocate all instructions to any other location by
mediating all indirect control flow transfers and redirecting them
to the correct new addresses. A prototype implementation of MUL-
TIVERSE and evaluation on SPECint 2006 benchmarks shows that
MULTIVERSE is able to rewrite all of the testing binaries with a rea-
sonable runtime overhead for the new rewritten binaries. Simple
static instrumentation using MULTIVERSE and its comparison with
dynamic instrumentation shows that the approach achieves better
average performance. Finally, the security applications of MUL-
TIVERSE are exhibited by using it to implement a shadow stack.

I. INTRODUCTION

In many systems and security applications, there is a
need to statically transform COTS binaries. Software fault
isolation (SFI) [41], including Control Flow Integrity (CFI) [4],
constrains the program execution to only legal code by rewriting
both data accesses and control flow transfer (CFT) instructions.
Binary code hardening (e.g., STIR [46]) rewrites and relocates
instructions, randomizing their addresses to mitigate control
flow hijacks. By lifting binary code to an intermediate repre-
sentation (e.g., LLVM IR), various compiler-missed platform-
specific optimizations can also be performed [5].

Given so many applications centered around binary code
transformation, significant efforts have been made over the past
few decades to develop various binary rewriters, particularly

This work is supported in part by AFOSR awards FA9550-14-1-0119 and
FA9550-14-1-0173, NSF awards 1453011 and 1513704, and ONR awards
N00014-14-1-0030 and N00014-17-1-2995.

for Intel x86/x64 architectures due to their dominance in
modern computing. Early approaches for transforming these
binaries require special support from compilers or make
compiler-specific assumptions. For instance, SASI [17] and
PITTSFIELD [27] only recognize gcc-produced assembly
code—not in-lined assembly from gcc. CFI [4] and XFI [18]
rely upon compiler-supplied debugging symbols to rewrite
binaries. Google’s Native Client (NACL) [49] requires a special
compiler to compile the target program, and also limit API
usage to NACL’s trusted libraries. These restrictions have
blocked binary rewriting from being applied to the vast majority
of COTS binaries or to more general software products.

More recent approaches have relaxed the assumption of
compiler cooperation. STIR [46] and REINS [47] rewrite
binaries using a reassembling approach without compiler
support; however, they still rely upon imperfect disassembly
heuristics to handle several practical challenges, especially for
position-independent code (PIC) and callbacks. CCFIR [51]
transforms binaries using relocation metadata, which is available
in many Windows binaries. SECONDWRITE [30] rewrites
binaries without debugging symbols or relocation metadata by
lifting the binary code into LLVM bytecode and then performing
the rewriting at that level. However, it still assumes knowledge
of well-known APIs to handle callbacks, and uses heuristics
to handle PIC. Lifting to LLVM bytecode can also yield large
overheads for binaries not easily representable in that form,
such as complex binaries generated by dissimilar compilers.
BINCFI [53] presents a set of analyses to compute the possible
indirect control flow (ICF) targets and limit ICF transfers to only
legal targets. However, BINCFI can still fail when code and data
are intermixed. Recently, UROBOROS [43] presented a set of
heuristics to recognize static memory addresses and relocate and
reassemble them for binary code reuse, but experimental results
still show it has false positives on the SPEC2006 benchmarks.

Thus, nearly all static Intel CISC binary rewriters in the
literature to date rely upon various strong assumptions about
target binaries in order to successfully transform them. While
each is suitable for particular applications, they each lack
generality. End users cannot be confident of the correctness of
the rewritten code, since many of the algorithms’ underlying
assumptions can be violated in real-world binaries. To advance
the state-of-the-art, we present MULTIVERSE, an open source,
next generation binary rewriter that is able to statically rewrite
x86 binaries without heuristics; binaries rewritten without
heuristics have the same semantics as the original.

To this end, we address two fundamental challenges in
COTS binary rewriting: (1) how to disassemble the binary code

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23300
www.ndss-symposium.org

and cover all legal instructions, and (2) how to reassemble
the rewritten instructions and preserve the original program
semantics. To solve the first challenge, we propose a superset
disassembling technique, through which each offset of the
binary code is disassembled. Such disassembling creates a
(usually strict) superset of all reachable instructions in the
binary. The intended reachable instructions are guaranteed to
be within the superset, thereby achieving complete recovery of
the legal intended instructions (i.e., completeness).

To address the second challenge, we borrow an instruction
reassembling technique from dynamic binary instrumentation
(DBI) [26], which mediates all the indirect CFT (iCFT)
instructions and redirects their target addresses to the rewritten
new addresses by consulting a mapping table from old addresses
to new rewritten addresses created during the rewriting. Since
all iCFTs are instrumented in a very similar way to how
dynamic binary instrumentation rewrites the binary at runtime,
the original program semantics are all preserved, achieving
soundness (i.e., all program semantics, including control flow
destinations, are identical to the original binary). Therefore, our
approach is sound and complete with respect to the original
static binary’s intended instructions and execution semantics.

In summary, our main contributions are as follows:

• We present MULTIVERSE, the first static binary rewriter
built on a foundation of both soundness and completeness,
raising assurance in the correct execution of rewritten
binaries.

• We design a superset disassembling technique, which does
not make any assumptions on where a legal instruction
should start and instead disassembles and reassembles each
offset, achieving complete recovery of original instructions.

• We also develop a static instruction reassembling tech-
nique, which translates all indirect control flow transfer
instructions (including those in the library) and redirects
their target addresses to correct ones, achieving the
soundness of original program execution.

• We have implemented these techniques in our prototype,
and evaluated it with the SPECint 2006 benchmark suite.
Experimental results show that MULTIVERSE correctly
rewrites all the test binaries. A comparison with dynamic
instrumentation also shows that the static instrumentation
enabled by MULTIVERSE has better average performance.

• We have also demonstrated one security application of
using MULTIVERSE to implement a shadow stack. In doing
so we provide a sample of the possibilities of the security
applications of MULTIVERSE.

II. BACKGROUND AND OVERVIEW

A. Scope and Assumptions

The goal of this paper is to develop a new binary transfor-
mation algorithm that improves the practicality and generality
of existing code transformation applications, such as binary
code hardening. Our approach generalizes to arbitrary OSes and
Intel-based CISC architectures, but for expository simplicity
we here focus on 32-bit x86 binaries running atop Linux
(ELF-32) generated by mainstream compilers such as gcc
or llvm. We assume no restriction of original program source
code, which can even be hand-written assembly. Although
we focus on mainstream compilers for our presentation, our

approach accommodates most statically obfuscated binaries
(e.g., instruction aliasing, code and data interleaving, etc.). We
do not automatically support code that loads shared libraries
dynamically, such as with dlopen. However, such binaries can
still be rewritten after manual recovery of dynamically loaded
libraries. In addition, like all existing static binary rewriters,
we do not handle any self-modifying or packed code (such
as self-extracting compressed software) or JIT-compiled code.
Support for such code requires dynamic rewriting since such
code is not visible or does not exist in a static binary.

We focus on x86 instead of x64 because legacy x86
applications are less likely to have source available, and many
code transformations target older legacy code. In addition, while
the differences between x86 and x64 for the purposes of binary
rewriting are not too significant, there are some engineering
differences that distract from the discussion of binary rewriting.
Therefore, we focus on x86 for the purposes of this paper.

B. Challenges

There are enormous challenges in designing a general binary
rewriter. To illustrate these challenges clearly, Figure 1 presents
a contrived working example. This simple program sorts an
array of strings in ascending or descending order (depending
on the least significant bit of the program’s pid) using libc’s
qsort API. When printing out the mode (ascending or
descending sort) or printing each array element, the program
uses the function get_fstring, defined in fstring.asm,
to determine the format string it should use. This function is
written in assembly to show a simple example of interleaved
code and data. With this working example, we can organize
the challenges into the following categories:

C1: Recognizing and relocating static memory addresses.
Compiled binary code often refers to fixed addresses, especially
for global variables. Code transformations that move these
targets must update any references to them. However, it is
very challenging to recognize these address constants within
disassembled code and data sections, since there is no syntactic
distinction between an address and an arbitrary integer value.

In our working example, the modes variable (line 17 of
sort.c) is an array of function pointers stored in the .data
section at address 0x0804a03c. Were we to move .data,
we would need to identify and change all references to this array
to point to its new location. In more complicated applications, it
is difficult to reliably differentiate between a pointer-like integer
and a pointer—a major challenge in static binary rewriting.

C2: Handling dynamically computed memory addresses. In
addition to static memory addresses, there are also dynamically
computed memory addresses. A particular challenge concerns
iCFTs whose target addresses are computed at runtime. For
instance, an indirect jump target can be computed from a base
address plus an offset, and a function pointer can be initialized
to a function address also computed at runtime. These pointers
can even undergo arbitrary binary arithmetic, be encoded (e.g.,
using a hash table), or be dereferenced in a number of layers
(e.g., double pointers or triple pointers), before they are used.
Unlike direct CFTs whose targets are explicit, iCFT targets
often cannot be predicted statically. Remapping iCFT targets
reliably is therefore a central challenge for binary rewriting.

2

(d) Partial binary code of sort

(a) Source code of sort.c

(e) Hexdump of ro.data section

(f) Hexdump of.data section

Hex dump of section '.rodata':
0x08048768 03000000 01000200 666f6f00 62617200foo.bar.
0x08048778 7175757a 0062617a 00666c75 7800 quuz .baz.flux.

Hex dump of section '.data':
0x0804a01c 00000000 00000000 70870408 74870408p...t...
0x0804a02c 78870408 7d870408 81870408 00000000 x... }...........
0x0804a03c f4850408 20860408

1 // gcc -m32 -c -o cmp.o cmp.c -fPIC -O2
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5
6 char *array[6] = {"foo", "bar", "quuz", "baz", "f lux"};
7 char* get_fstring(int select);
8
9 void print_array(){

10 int i;
11 for (i = 0; i < 5; i++){
12 fprintf(stdout, get_fstring(1), array[i]);
13 }
14 }
15 int lt(void *a, void *b){
16 return strcmp(*(char **) a, *(char **)b);
17 }
18
19 int gt(void *a, void *b){
20 return strcmp(*(char **) b, *(char **)a);
21 }

C5

C1

1 ;nasm -f elf fstring.asm
2 BITS 32
3 GLOBAL get_fstring
4 SECTION .text
5 get_fstring:
6 mov eax,[esp+4]
7 cmp eax,0
8 jz after
9 mov eax,msg2

10 ret
11 msg1:
12 db 'mode: %d', 10, 0
13 msg2:
14 db '%s', 10, 0
15 after:
16 mov eax,msg1
17 ret

C3

C3

1 // gcc -m32 -o sort cmp.o fstring.o sort.c
2 #include <stdio.h>
3 #include <unistd.h>
4
5 extern char *array[6];
6 int gt(void *, void *);
7 int lt(void *, void *);
8 char* get_fstring(int select);
9

10 void mode1(void){
11 qsort(array, 5, sizeof(char*), gt);
12 }
13 void mode2(void){
14 qsort(array, 5, sizeof(char*), lt);
15 }
16
17 void (*modes[2])() = {mode1, mode2};
18
19 void main(void){
20 int p = getpid() & 1;
21 printf(get_fstring(0),p);
22 (*modes[p])();
23 print_array();
24 }

C4

C4

C2

C1

8048510 <print_array>:
...
8048515: 53 push %ebx
8048516: e8 b1 00 00 00 call 80485cc <__i686 .get_pc_thunk.bx>
804851b: 81 c3 d9 1a 00 00 add $0x1ad9,%ebx
8048521: 83 ec 1c sub $0x1c,%esp
8048524: 8b ab fc ff ff ff mov -0x4(%ebx),%ebp
...
80485a0 <gt>:
80485a0: 53 push %ebx
...
80485cc <__i686.get_pc_thunk.bx>:
80485cc: 8b 1c 24 mov (%esp),%ebx
80485cf: c3 ret

80485d0 <get_fstring>:
80485d0: 8b 44 24 04 mov 0x4(%esp),%eax
80485d4: 83 f8 00 cmp $0x0,%eax
80485d7: 74 14 je 80485ed <after >
80485d9: b8 e9 85 04 08 mov $0x80485e9,%eax
80485de: c3 ret
80485df: 6d insl (%dx),%es:(%edi)
80485e0: 6f outsl %ds:(%esi),(%dx)
80485e1: 64 65 3a 20 fs cmp %fs:%gs:(%eax), %ah
...
80485f4 <mode1>:
...
80485fa: c7 44 24 0c a0 85 04 movl $0x80485a0,0xc (%esp)
8048601: 08
8048602: c7 44 24 08 04 00 00 movl $0x4,0x8(%esp)
8048609: 00
804860a: c7 44 24 04 05 00 00 movl $0x5,0x4(%esp)
8048611: 00
8048612: c7 04 24 24 a0 04 08 movl $0x804a024,(%es p)
8048619: e8 12 fe ff ff call 8048430 <qsort@plt>
...
804864c <main>:
...
8048678: e8 73 fd ff ff call 80483f0 <printf@plt>
804867d: 8b 44 24 1c mov 0x1c(%esp),%eax
8048681: 8b 04 85 3c a0 04 08 mov 0x804a03c(,%eax, 4),%eax
8048688: ff d0 call *%eax
...

C5

C3

C4

C2

C1

(c) Source code of cmp.c

(b) Source code of fstring.asm

C5

C5

Fig. 1: A contrived working example that covers major challenges in x86 COTS binary rewriting.

When our working example calls one of the function
pointers in the modes array, it is difficult to reliably predict
which function will be called until runtime. As shown in the
assembly, the mov at 0x804867d sets eax to the value of
stack variable p, which determines the mode (0 or 1). The
mov instruction at 0x8048681 then assigns eax the address
held in the index of array modes determined by the mode
(the address held at 0x0804a03c+0 or 0x0804a03c+4).
Finally, it calls the address in eax. Statically predicting which
addresses to update, while possible in this simple example, can
quickly become intractable (e.g., if the array were dynamically
allocated with unknown length).

C3: Differentiating code from data. In x86, there is no
syntactic distinction between code and data within binaries [9].
More specifically, code and data can be interleaved. This is
typical in hand-written assembly, and in modern compilers
that aggressively interleave static data within code sections

for performance reasons. Also, code bytes are unaligned—they
can start at any offset within executable segments.

Lines 12 and 14 of fstring.asm exhibit data bytes
amid code bytes. Linear sweep-based disassemblers often
misinterpret these as code bytes, resulting in disassembly errors
that yield garbage instructions and omit subsequent reachable
instructions (e.g., the last mov instruction on line 16). Such
garbage instructions can be seen in the disassembly starting
at address 0x80485df. While a disassembler using recursive
traversal can follow the control flow from the jz instruction
to avoid some of these errors, a more complicated program
with indirect control flow to the after label would make it
difficult to statically determine which offsets are valid.

C4: Handling function pointer arguments (e.g., callbacks).
Functions that expect function pointers as arguments can fail
after binary transformation if the referant code is moved but the

3

referring argument is not updated accordingly. Function pointer
arguments are usually used in callbacks, where a code pointer
is passed from the program as a computed jump destination.
Unlike typical dynamically computed memory addresses (C2),
which are visible to the rewritten binary, callback pointers are
often used in library spaces. As mentioned in C1, it is already
challenging to recognize static memory addresses, and it is
even more challenging to recognize arguments with function
pointer types at the binary level.

Our working example includes a call to the libc function
qsort, which expects a callback function as its last argument,
at lines 11 and 14 of sort.c. It uses this function to compare
each element pair when it sorts the array, and the user must
provide a comparison function that is meaningful for the array
argument. In the example, the function supplied depends on the
mode (ascending/descending). The assembly for the call for
mode 1 is shown starting at address 0x80485fa. The mov
instruction at that address moves the address of the gt function
(0x80485a0) on the stack as the argument for qsort. If we
move the location of gt but do not modify this address, qsort
will call the wrong code.

C5: Handing PIC. While mainstream compilers generate
mainly position dependent code by default, they can also
generate PIC, which can be loaded at arbitrary addresses. PIC
is typically achieved via instructions that dynamically compute
their own addresses and expect to find other instructions or
variables at known relative offsets. These instructions can break
the program if a rewriter fails to identify them.

We compile cmp.c in the working example with the gcc
flag -fPIC, which ensures that all functions in that file are com-
piled as PIC. The results are shown in the disassembly of our
working example. Since PIC uses its own address to compute
offsets, it uses a call instruction to compute its own position
in the form of a special function that retrieves the instruc-
tion pointer. This function, __i686.get_pc_thunk.bx, is
shown at 0x80485cc, and consists only of an instruction
that saves the return address into ebx. The print_array
function uses this address to compute the address of array.
Relocating this code without any modifications causes an
incorrect address to be computed, usually resulting in a crash.

C. Key Insights

Binary rewriting is not a new problem. Over the past few
decades, a tremendous amount of effort has been devoted
to developing various binary rewriters for different purposes
under different constraints. Drawing from these existing efforts,
including related works using dynamic binary instrumentation
(e.g., the widely used PIN [26]), we have derived and system-
atized the following key insights to address each of the above
challenges.

S1: Keeping original data space intact. We can strategically
avoid the need to recognize static memory addresses of data if
we retain and preserve all bytes that the program might read
as data. Since code sections might contain data bytes, we can
preserve such data by retaining an old copy of each code section
at its original location. For security-focused applications, we
can set the original code section non-executable. This approach
is used by several existing rewriters (e.g., SECONDWRITE [30],
BINCFI [53], STIR [46], and REINS [47]).

S2: Creating a mapping from the old code space to the new
rewritten code space. As discussed in C2, there are various
forms of dynamically computed memory addresses. Heuristic
approaches that attempt to statically identify base addresses and
then update each associated offset accordingly are unreliable,
since x86 address spaces are typically flat, allowing any base
address to potentially index any higher address. Fortunately, we
have another unique key observation: Instead of identifying the
base addresses and rewriting them to point to the new location,
we can just focus on the final target addresses and ignore how
it is computed.

More specifically, even though a target address can be
encoded or computed through many layers of pointers, its final
runtime value must eventually flow to the iCFT as its argument.
(Note that direct CFTs are not a problem since their target
addresses are explicit.) Therefore, if we can map each possible
destination address in the old address space to an address in
our new, rewritten code, and if we make the mapping available
at runtime, then we can rewrite each iCFT to look up the new
address immediately after the old destination address has been
computed. This allows us to automatically solve C2 without
relying on any heuristics.

S3: Brute force disassembling of all possible code. Disassem-
bling is a perennial problem for static binary analyses. Unlike
many prior efforts, we observe that while it is challenging to
correctly disassemble arbitrary code, we can instead find a
superset of the disassembled code (by brute force disassembling
every executable byte offset), and the result will contain the
correct disassembly somewhere in the set (which is why we call
our approach superset disassembly). While disassembling from
each offset has been explored in malware analysis [21] [48] [22],
the resulting disassemblies are intended for reverse-engineering
obfuscated code, finding function entry/exit points, and other
analysis purposes; no attempt has been made to link the superset
code and make it runnable. A new challenge for us therefore
concerns linking the instructions in the superset. Fortunately,
if we translate all iCFT instructions (as we do in S2), then we
can link them together by using our old address to new address
mapping table.

S4: Rewriting all user level code including libraries. One
possible solution to C4 is to identify each function that uses
function pointer arguments in external libraries and patch the
function pointer address so that callbacks correctly reference
our new text section. Many prior rewriters use this approach,
including STIR [46], REINS [47], and SECONDWRITE [30].
However, if our transformation algorithm is sufficiently general,
we can instead expand our rewriting to include all program
code including libraries. All callbacks will then be executed
correctly (by S2) without having to identify callback arguments.

This solution also has the considerable benefit of accom-
modating C++ exceptions, wherein the .eh_frame holds
information about exception handler addresses, which may be
called from a different module than the caller, effectively acting
like a callback. By rewriting the instruction that jumps to the
exception handler, C++ exceptions are transparently handled.

S5: Rewriting all call instructions in order to handle PIC.
It is challenging to identify PIC in the binary code, because
there are a great diversity of instructions that derive code

4

Instruction
Rewriter

Superset
Disassembler

.localmapping

Original Executable,

Shared Library

New Executable,

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

Fig. 2: An Overview of MULTIVERSE.

or data offsets from PIC-computed self-addresses. However,
after careful examination of x86 instruction semantics, we find
that only the call instruction, which pushes the instruction
pointer onto the stack, can be feasibly used to compute the base
address used in subsequent PIC offset calculations. Therefore,
we translate each call instruction in the original code into an
explicit push of the old (unmodified) return address followed
by a jmp to a new, rewritten address (computed from the
old target address by querying the mapping table). This
transparently preserves PIC because any subsequent address
arithmetic will compute a correct old code address, which will
be correctly remapped to a correct new address when it finally
flows to an iCFT (by S2). If PIC is used to access data, then
the correct data is accessed because the pushed address does
not flow to an iCFT, and is therefore not remapped.

D. Overview

From the insights above, we have created MULTIVERSE1,
a binary rewriter that accepts an ELF-32 binary or shared
library and transforms it to produce a new rewritten binary.
As illustrated in Figure 2, our system consists of two separate
phases: the mapping phase, and the rewriting phase.

In the mapping phase, we use our superset disassembler to
disassemble the binary at every byte offset starting from the
lowest code address. This produces many copies of the same
code, since instruction sequences at most offsets eventually
align with an instruction disassembled from a previous offset.
We avoid this unnecessary duplication by ceasing disassembly
at the first redundant offset of each sequence, and later inserting
an unconditional jump to the code previously disassembled
for that offset. At a high level, we generate our mapping
by disassembling each instruction, determining the length the
rewritten instruction will have in the final code, and then using
this information to create a final mapping from old addresses
to new addresses that will be used in the next phase and placed
into .localmapping.

In the rewriting phase, our instruction rewriter again iterates
through each disassembled instruction and generates the new

1We call our system MULTIVERSE, since it conservatively assumes that any
instruction path that “can happen, does happen” [13].

bytes that will be placed in the .newtext section. We must
make this second pass because we cannot generate the final code
without already knowing the complete mapping. For instance,
if an instruction in the old code refers to a specific offset at a
higher address that we have not yet disassembled, we will not
know what new offset to use when rewriting the instruction.

Once the new text section is created, we pass it to our ELF
writer (which is not shown in Figure 2), which takes the new
entry address, mapping, and rewritten text and creates the final
rewritten binary. The ELF writer modifies the ELF header and
PHDRs in order to create a new segment to hold the new text.
The original .text section is left in its original location as
non-executable data to support reads from the .text section
(e.g., for jump tables). Next, we present the detailed design
of MULTIVERSE. We first describe our mapping in §III, and
then explain our rewriting in §IV.

III. MAPPING

A. Superset Disassembler

“When in doubt, use brute force.” – Ken Thompson

Our superset disassembler disassembles instruction se-
quences starting from every byte offset in the binary’s text
section. This approach can also be considered a form of brute-
force disassembly, i.e., we are finding the intended sequences of
instructions by brute-force disassembling every possible offset.
However, without any further refinement, this would produce
a huge number of duplicate subsequences. Therefore, we keep
a list of all offsets we have already disassembled, and we stop
disassembly from an offset if we reach an instruction we have
already encountered. We can do this because we can connect a
sequence of instructions to another in our rewriting phase via
insertion of an unconditional jump.

A high-level illustration of how the brute-force disassembly
process works is shown in Figure 3 and algorithm 1. We start
disassembling from offset zero and disassemble instructions
until we reach an illegal instruction. Although we could stop
disassembling at jmp or ret instructions (and disassemble
the bytes after that instruction in a later pass), we simply
try to disassemble as many as possible in each pass, partly
for simplicity and partly for code locality reasons. By
disassembling as many in a sequence as possible and not
breaking up our rewritten code into distant chunks, we are able
to benefit from locality in some cases when a program is using
short unconditional jumps without having to do advanced
analyses. That said, while we currently try to keep long
contiguous instruction sequences, we have no restriction on how
we organize the new instructions. For example, we could easily
break longer sequences into blocks of any size by inserting
jmp instructions in our rewritten code. Since every instruction
in the old code is mapped, we can then move each block to
any location in the new code space. This gives us flexibility
depending on what the use case is for our rewritten binaries
(i.e., we have the capability to freely shuffle the program
instructions, which would be useful for software diversity).

Once we are done disassembling from offset zero, either
because we eventually encountered an illegal instruction or
offset ≥ length(bytes), we start disassembling from offset one.
As illustrated in Figure 3, we show a case that the instruction

5

Offset 0
Offset 1

Offset 2
Offset 3

Offset 4
Offset 5

Offset 6
...

Fig. 3: An illustration of our disassembly strategy.

Algorithm 1: Superset Disassembly
input : empty two-dimensional list instructions
input : string of raw bytes of text section bytes
output : all disassembled instructions are in instructions

1 for start offset ← 0 to length(bytes) do
2 offset ← start offset;
3 while legal(offset) and offset /∈ instructions and

offset < length(bytes) do
4 instruction ← disassemble(offset);
5 instructions[start offset][offset] ← instruction;
6 offset ← offset + length(instruction);
7 if offset ∈ instructions then
8 instructions[start offset][offset] ← “jmp

offset”;

sequence starting from offset one shortly encounters an offset
that we already encountered in our previous pass starting from
offset zero (condition offset /∈ instructions is false for the while
loop at line 3 in algorithm 1), so when we rewrite our code we
simply insert a jump at the end of that instruction sequence to
go to the corresponding instruction from our disassembly from
offset zero (line 8). The same thing happens from offsets two
and five in Figure 3. However, offsets three and six instead
encounter invalid byte sequences that do not correspond to any
valid instruction encoding, so we simply stop the disassembly
from that offset (condition legal(offset) for the while loop
at line 3 is falsified).

We can potentially eliminate all code at the end of an
instruction sequence ending in illegal code starting from the last
CFT instruction (e.g., jmp or ret). We conservatively include
conditional CFT instructions as stopping points, since obfus-
cated code could include garbage bytes after an always-taken
conditional jump. This ensures that the removed bytes are safe
to omit, since that subsequence will never be executed unless
the original program had a fatal error; if those instructions were
executed in the original binary, it would crash when it reached
the illegal sequence. This process continues until we reach the
end of the text section and have disassembled every possible
instruction offset (at which condition offset < length(bytes)
for the while loop is false, and start offset = length(bytes)).

.text

.data

.globalmapping

.newtext

.localmapping

local_lookup

global_lookup

.text (libc)

.data (libc)

.newtext (libc)

.localmapping
(libc)

local_lookup

2
1

3
4

5

6

Fig. 4: A mapping lookup example for a rewritten binary
dynamically linked with our rewritten libc.

B. Mapping Generation

In order to generate the mapping, we retrieve each dis-
assembled instruction from our brute-force disassembler and
determine the length of the rewritten instruction that will be in
our final binary. It is important to note that since instructions
may refer to addresses not yet in our mapping, there is no way
to generate the final rewritten bytes in this phase. Therefore,
we instead calculate how long each rewritten instruction will
be. For most instructions, we make no modifications, and the
length is the same.

Specifically, we rewrite all call, jmp, jcc, and ret
instructions. All the jcc instructions involve simply changing
the offset for the instruction. However, since we are inserting
code, a jump short instruction may not have space for a
larger offset; if a jcc instruction was originally written with
a short encoding, we expand it to the longer jump near
encoding instead, which allows for larger offsets before we
know the actual offsets. The other instructions involve adding
multiple instructions, so it is important to know how many bytes
this adds when we build the final mapping. In practice, we run
our rewriter on the instructions with placeholder addresses to
substitute for the addresses we do not know, and then retrieve
the length of the rewritten instructions in bytes. This strategy
of keeping track of instruction length also makes conversion of
MULTIVERSE to perform instrumentation quite straightforward;
we can simply add the length of inserted instructions to the
length of the rewritten instruction.

While we are building our mapping, we maintain a mapping
from each old address to the size of the new bytes. When we
build the final mapping, we convert the size to the corresponding
offset in the new text section. By deferring this to after we
disassemble all bytes, we obtain the flexibility to place blocks of
new bytes in any order in our mapping as long as we end each
block with a jmp instruction to the new instruction address
corresponding to the next instruction in the old binary, or as
long as we split instructions into basic blocks, in which case we
would simply need to change direct control flow destinations.

C. Mapping Lookups

For static memory addresses, we modify instructions
statically using our mapping offline. However, dynamically

6

computed addresses (C2) require our mapping to be present in
the binary at runtime for dynamic lookup and we must use an
efficient data structure for reducing runtime overhead. To this
end, we generate a flat table of four-byte offsets large enough to
have an entry for every byte in the old text section. This allows
us to directly index into the table by computing the offset of
the old address from the base address of the old text section.
For offsets that did not disassemble to a valid instruction, we
simply set the entry to 0xffffffff. For performing lookups
in the table, we insert a small assembly function into the binary
to look up an address from the old text section and return the
corresponding new text section address.

We use the eax register as input to pass the old address
that we want to look up to the function. Then we use our own
PIC (getting the instruction pointer with a call) to obtain the
offset to the mapping and look up the entry of the old address.
If the entry is 0xffffffff, then the original program had
an error and is attempting to jump to an illegal instruction. In
such a case, we immediately trigger a segfault by jumping to a
hlt instruction. If the entry is a valid address, then we return
the address in eax. If the address is outside the range of the
mapping, then the program may be attempting to call a library
function, so we pass the address to be resolved by the global
lookup function, which we discuss in §III-D.

Figure 4 shows a mapping lookup example for a rewritten
binary, showing both its new text and data sections and the
text and data sections of a modified libc. When a rewritten
instruction in .newtext requires that we dynamically look up
an address, we first call local_lookup (¶), which we have
placed at the start of the .newtext section. This function
knows its offset from .localmapping, so it can perform a
lookup of the destination address (·). If the address is in the
range of the old text section, then it simply returns the new
address, our rewritten instruction jumps to that address, and
the process is complete. If the address to look up is outside
the old text section, we must refer to the global mapping.

D. Global Mapping

Since we are rewriting libraries as well as the original
binary, each library has its own local mapping for its new
text section. Since the libraries may be loaded dynamically,
we must maintain a global mapping between the multiple
new text sections that we have generated. As such, we
have created a global mapping table and a global lookup
function (global_lookup) that determines which local
lookup function to call to resolve an address.

Function global_lookup operates at a page-level gran-
ularity. When a library is loaded, its old text section is mapped
to one or more pages. The functionality of global_lookup
is, therefore, to return the address of each library’s local lookup
function for every page in the library’s original text section.
In particular, as shown in Figure 4, if a local_lookup call
does not have an address in its .localmapping, then it must
call global_lookup.

As in the previous example, when an instruction in the
.newtext section needs to perform a dynamic lookup, it
first calls local_lookup (¶). If the requested address
is that of the libc function qsort, then it is outside
the application’s .text section (·). Therefore, it calls

global_lookup (¸), which finds the entry for libc’s
local_lookup in .globalmapping (¹). It calls libc’s
local_lookup (º), which is then able to find the updated
address in its .localmapping (»). Once the new address
is found, libc’s local_lookup returns the address to
global_lookup, which returns the address to the main
binary’s local_lookup, which finally returns the address
to the rewritten instruction.

IV. REWRITING

In our rewriting phase, we use our mapping to rewrite all
the call/jmp/ret/jcc instructions from the old binary
in order to preserve the original program’s CFTs. When
we are rewriting each instruction, we go through the same
instructions that we processed during the mapping phase. When
we encounter a byte offset that has already been disassembled
and rewritten, we insert a jmp instruction to the new address
of the already rewritten instruction at the end of the current
sequence. This allows us to only rewrite the instruction at each
offset once.

Rewriting direct CFT instructions (jcc/jmp/call). All
jcc instructions are direct CFTs, so we statically rewrite each
jcc instruction by changing its offset. In addition, call
and jmp instructions with an immediate operand can also
be statically rewritten by changing the offset. However, jmp
short and jcc short instructions only hold a 1-byte
displacement, which may not be large enough when we expand
our new text section; an instruction’s destination may become
too distant in our new binary. Therefore, we expand these
instructions to their longer encoding (jmp near and jcc
near), allowing for a 4-byte displacement.

Rewriting indirect jmp/call instructions. Our static rewrit-
ing of indirect control flow instructions implements a dynamic
lookup. We must perform a lookup at runtime of the destination
address, since the runtime-computed address will point to
the old text section. The transformations for jmp and call
instructions are slightly different.

• jmp: If the instruction is jmp [target], we rewrite it
to the following six instructions:
mov [esp-32], eax
mov eax, target
call lookup
mov [esp-4], eax
mov eax, [esp-32]
jmp [esp-4]

We save eax to an area outside the stack, move the original
target to eax, and call lookup, which will perform
local_lookup first and then global_lookup if
necessary (detailed in §III-C). We then save the result
(which was returned in eax) outside the stack, restore
eax, and jump to the new destination. Also note that we
are storing eax at esp-32. This is because the lookup
function may push up to seven 4-byte values on the stack,
and we must store the value outside the reach of the
growing stack in order to avoid overwriting the value.

• call: If the instruction is a call [target] instruc-
tion, we also push the old return address (the address of
the instruction after the old call, in order to transparently
handle PIC), resulting in these seven instructions:

7

mov [esp-32], eax
mov eax, target
push old_return_address
call lookup
mov [esp-4], eax
mov eax, [esp-28]
jmp [esp-4]

Note that we restore eax from esp-28 because
we pushed the 4-byte return address on the stack,
decrementing esp by 4.

Rewriting ret instructions. Since we rewrite call instruc-
tions to push the old return address on the stack, we must
perform a runtime lookup of the new return address. In
addition, a ret instruction may also specify an immediate
value specifying a number of additional bytes to pop off the
stack, so we may also need to increment esp an additional
amount. For example, for ret 8 we need to add 8 to esp.
This results in six or seven instructions:

mov [esp-28], eax
pop eax
call lookup
add esp,pop_amount; Only add if immediate
mov [esp-4], eax
mov eax, [esp-(32+pop_amount)]
jmp [esp-4]

The location where we saved the value of eax is relative to
esp, so we must calculate the offset. However, the calculation
32 + pop_amount is performed statically. Also note that
the preceding examples are for rewriting the original binary. We
must insert slightly different code for shared objects because
we do not know the runtime base address for a shared object.
This means we insert PIC (similar to what we do in the
local_lookup) in order to push the correct old return value
on the stack for each call instruction; we must obtain the base
address of the old text section of the shared object, which is
loaded to a random address. This slightly increases the overhead
for shared libraries when compared to the original binary.

V. IMPLEMENTATION

We have implemented MULTIVERSE atop a number of open
source binary analysis and rewriting projects. In particular, we
used the python bindings for CAPSTONE [1] as our underlying
disassembler engine, and we used pyelftools [3] to parse
the ELF data structures. We used pwntools [2] to reassemble
the instructions. Additionally, we developed over 3,000 lines
of our own python code to implement our algorithm and
maintain our data structures, and over 150 lines of assembly,
some of which is embedded as string templates in our python
code. We also developed over 200 lines of C for the global
mapping population function that is run when a rewritten
executable starts. Other than the global mapping population
function, all of the code that we rewrite or insert into the
binary is written in assembly. Note that our system can easily
support any disassembler that can perform linear disassembly.

There are several Linux-specific issues that had to be
addressed. First of all, the Linux kernel loads a special shared
library, the Virtual Dynamic Shared Object (VDSO), which
has no actual corresponding .so file in the filesystem. One
use for this is to run the correct code depending on whether

the kernel supports the sysenter instruction for syscalls
rather than int 80. If it does, then control is redirected to
the VDSO for each system call. Since our solution requires
no changes to the OS, we cannot change the VDSO, so we
must instead rewrite the return address before every call into
the VDSO. Metadata regarding this is passed to every process
in the Auxiliary Vector, which is stored on the stack after the
environment variables before application start. We insert code to
parse this data structure at the new entry point of the rewritten
binary, and we save the address of the VDSO syscall code. Later,
whenever the application is about to jump to an address that
the local lookup function does not recognize, our global lookup
function performs a special check for whether the destination
is the VDSO syscall code. If so, we rewrite the return address
on the stack from the old address to the new address.

In addition, the dynamic linker is loaded before any other
.so file, and libc calls various functions within it. In order
to avoid rewriting the dynamic linker, we instead marked its
address range in the global mapping as a special case, allowing
us to rewrite return addresses whenever it is called. However, for
dynamic function resolution, when an address is first resolved
control first goes to the dynamic linker, and then the dynamic
linker redirects control directly to the destination, not allowing
any of our rewritten code to translate the old address to a new
address. We resolve this by setting the environment variable
LD_BIND_NOW to 1, which forces the loader to resolve all
symbols and place their addresses in the GOT before the
program starts. This prevents the loader from directly rerouting
control to old text sections. This may increase the startup time of
a rewritten binary, and symbols may be resolved that are never
used, but this does not affect the correctness or safety of the
rewritten binary. In fact, disabling lazy loading is part a defense
designed to increase the security of the loader mechanism [19].

Finally, we must populate the global mapping when the
application starts, as we will not know the actual addresses
of each library until they are loaded into memory. Therefore,
we insert the global mapping population function, which runs
before _start in the rewritten binary, to find the address
ranges of each library and write them to the global mapping.
Later, during execution, the global lookup function uses these
mappings to resolve the locations of local lookup functions.

Note that the global mapping only needs to be inserted for
executables (i.e., only executables have .globalmapping,
while all executables and shared libraries have their own
.localmapping). Specifically, we define the global lookup
and mapping to start at the constant address 0x7000000,
which places it below all the sections of most binaries. For
unusual binaries with a different layout, we can place it at a
different constant address if necessary. Shared libraries will
need to call the global lookup function, but since we place it
at a fixed address, it does not need to appear in the shared
libraries; all the dynamic libraries will call the same global
lookup function address because they know it will be mapped
there at runtime. This is not restrictive, as we can simply rewrite
all the libraries again if we need to change the global mapping
to a different address.

VI. EVALUATION

In this section, we report our evaluation results. We first
report how we evaluate effectiveness in §VI-A, and then

8

Benchmark Dir. Calls Dir. Jumps Ind. Calls Ind. Jumps Cond. Jumps Rets .text (KB) .newtext (KB) Size Inc. (×)

400.perlbench 30888 24778 3896 4442 126876 22306 1047 5146 12.88
401.bzip2 1100 1050 170 152 7342 874 55 268 70.71
403.gcc 110122 64532 8916 15680 380920 45410 3225 15290 10.32
429.mcf 276 216 44 78 1300 250 12 57 202.98
445.gobmk 23548 14946 3550 3480 117378 20918 1488 6520 5.39
456.hmmer 8020 4942 556 666 28924 4106 277 1279 22.56
458.sjeng 2566 2338 256 658 12236 1570 132 604 36.17
462.libquantum 1094 758 94 146 3376 812 40 181 93.73
464.h264ref 7124 6518 1782 2000 47850 6318 520 2441 16.23
471.omnetpp 33578 10032 3830 1782 51642 14326 635 3029 13.49
473.astar 912 552 162 160 3314 750 39 184 92.52
483.xalancbmk 115154 58678 39392 14630 307122 75674 3850 17369 7.60

libc.so.6 32798 33370 9816 9012 189384 32458 1735 8435 9.77
libgcc s.so.1 2158 2514 374 484 12862 1740 112 538 9.70
libm.so.6 5450 8870 874 892 21796 7406 277 1268 9.51
libstdc++.so.6 22456 10418 4300 4008 144516 15784 900 4258 9.53

TABLE I: Statistics of MULTIVERSE rewritten binaries and libraries

report the MULTIVERSE performance overhead in §VI-B. For
our benchmarks, we used all 12 SPECint 2006 benchmark
programs. We also had to rewrite the shared libraries used by
the benchmarks. We did not test with the SPECfp benchmarks
because we did not focus on rewriting Fortran programs, of
which there are several in SPECfp. However, in theory, our
rewriter should work on Fortran programs as well. Our test
machine runs Ubuntu 14.04.1 LTS, and has an Intel i7-2600
CPU running at 3.40GHz, with 4GiB of RAM.

A. Effectiveness

We first demonstrate the effectiveness of MULTIVERSE’s
implementation by comparing the output of the original and
rewritten binaries. By showing that all rewritten binaries
produce identical output to the original, we can be confident
of the correctness of the implementation of our design. To this
end, we executed both the rewritten version and the original
version of the corresponding benchmark, and compared their
output. All the rewritten binaries run correctly, producing the
same output as the original program. We did not attempt to
exhaustively run all the branches of the two versions and simply
used the same configuration to run them.

Table I summarizes the rewriting statistics, including
the binaries and libraries we had to rewrite for the SPEC
benchmarks. One interesting detail is the similarity in size
overhead for each of the text sections; they all increase in size
between 4–5 times. In most x86 binaries, instructions are on
average a little over 3 bytes [7], so we speculate that may
explain this consistent size increase. For every instruction on
average, it may only take an offset of 3-4 bytes to encounter an
offset that was already assembled in a previous starting offset
(i.e., every 4–5 bytes). We will investigate the implications of
this in future work.

The .newtext sections shown in the table do not include
the local mapping, which is always 4 times larger than the
original due to the fact that we must store 4-byte entries for
every byte offset in the text section. In addition, every binary
also contains the slightly more than 4MB global mapping. It
would be possible for us to allocate the global mapping to
.bss in future work and eliminate this static file overhead,

but for now we fill the space with 0xffffffff bytes. The
effect of this can be seen in the last column of Table I. The
size overhead for 429.mcf looks remarkably high because
the original binary is very small, and the fixed overhead of the
global mapping dominates the rest of the code. Therefore, for
large applications, this increase will be less noticeable and the
percent increase in size will be much less. This means that
as the size of the initial binary increases, size overhead will
approach the increase in size of the new text section plus the
local mapping, which averages to only around 9 times (4-5
times for .newtext, plus 4 times for the local mapping). Also
notice that this pattern is demonstrated in the shared libraries
we rewrote; since we do not need to include a global mapping
in an .so, the overhead is lower and more consistent.

Real-World Binaries. We also tested MULTIVERSE with other
real-world software to demonstrate its effectiveness. First, we
rewrote all the binaries in the GNU Core Utilities, which contain
the implementations of utilities found on all Unix-like systems.
This provides a diverse set of utility applications. We also tested
MULTIVERSE by rewriting a number of other applications,
including a graphical browser, web server, and graphical game,
among others. In total we rewrote 126 binaries and 77 libraries
(the applications shared many common libraries) comprising a
total of 54MB. All worked as expected.

B. Performance

We also measured the runtime overhead of our rewritten
binaries. We ran the SPECint benchmarks 10 times each, both
on the original binaries and our rewritten binaries. We took the
averages from the benchmark results.

Rewriting Performance. We first rewrote both the benchmarks
and all their required shared libraries. As shown in the first
bar in Figure 5, a few benchmarks had very high overhead,
especially 471.omnetpp and 483.xalancbmk. This is
because of our very generic handling of control flow during
the rewriting. Since we make very few assumptions (discussed
in §II-A) about the instructions in a binary, this sometimes
results in surprisingly high overhead. Both 471.omnetpp
and 483.xalancbmk are C++ applications, and therefore we
suspect the high overhead results from the use of C++ features

9

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

288.3% 129.9%128.2%

Binary + Libraries
Binary Only

Binary Only w/o Generic PIC

Fig. 5: Percent runtime overhead for each of the reported benchmarks.

that become very expensive after being rewritten. In addition,
frequent calls to library functions require a more expensive
call to the global lookup, so this may be a factor. However, the
other benchmarks all have less than 100% overhead, and most
are below 50%. The average runtime overhead when rewriting
the main binary and libraries was 60.42%.

We then investigated the impact of some optimizations. In
particular, since the contents of libraries are often known, it is
acceptable in some use cases to rewrite only the main binary.
Therefore, we decided to implement the other approach we dis-
cussed for solving C4: only rewriting the main binary (and leav-
ing the libraries unmodified), and treating callbacks as a special
case. This requires a list of library functions that take callbacks,
since all callback parameters must be rewritten to point to their
corresponding addresses in .newtext. Since it is difficult
to compute this list automatically, we populated it manually.
With this approach, we were able to reduce overhead, in some
cases significantly (e.g., 456.hmmer and 471.omnetpp).
The results are shown in the second bar in Figure 5, and average
overhead was 34.17%. This also allows the global lookup to be
omitted, shrinking the size of the rewritten binary in addition
to improving overhead. Rewriting the main binary makes sense
in many use cases; sometimes the libraries do not need to be
instrumented, or are more trustworthy than the main binary.

In most binaries, PIC uses the get_pc_thunk function
to get the code address. We found that if we added the
extra assumption that code would never attempt to get its
own address without using get_pc_thunk (a reasonable
assumption for well-behaved x86 binaries), we addressed C5 far
more efficiently. This is a significant optimization because we
no longer need to rewrite all call and return instructions to push
and translate old addresses. The effect of this change is clearly
shown in the third bar in Figure 5. Average overhead with this
optimization was 8.29%. This demonstrates how a few well-
chosen assumptions can result in vastly improved performance.
Therefore, in the future we can add settings for other common
patterns in binaries to improve practical performance when

certain properties of a binary are known, while keeping the
core rewriter generic enough to handle almost any binary.

It is important to emphasize that writing only the main
binary and removing generic PIC rely upon significant assump-
tions. Specifically, rewriting only the main binary assumes
knowledge of all callback arguments for functions, and remov-
ing generic PIC assumes that the only PIC in the binary is the
thunk. Thus, these two optimizations will not work for certain
binaries. However, we demonstrated these optimizations to show
the performance improvements they would provide, and to show
the potential for adding assumptions in cases in which it is safe
to do so. Our core rewriter does not make these assumptions.

Instrumentation Performance. Making no changes when
rewriting a binary is of limited utility. Binary instrumentation
is a much more interesting application that MULTIVERSE
facilitates, since we can insert arbitrary code around any existing
instruction. We implemented a straightforward instrumentation
API to add assembly before any instruction.

Since many tools already perform binary instrumentation,
we decided to compare the performance of our instrumented
binaries with PIN [26], a widely-used framework for dynamic
binary instrumentation from Intel that does not use any heuris-
tics to dynamically disassemble and instrument a binary. We
chose PIN due to its popularity and its avoidance of heuristics
when rewriting. The goal of this evaluation is to show that the
cost of our mapping lookups compares favorably with the state-
of-the-art, and thus that instrumenting with our tool is practical.

We decided to compare the overhead of a simple instruction
counting instrumentation. Pintool has example tools for instruc-
tion counting, and for our evaluation we selected the example
Pintool that inserts a call to increment a counter for every in-
struction. Pin has more efficient strategies for instruction count-
ing, such as inserting instrumentation at the basic block level
and incrementing by the number of instructions in each basic
block, but our tool does not currently use a basic block abstrac-
tion. Therefore we had to compare instrumentation of individual
instructions, resulting in higher overhead than would normally

10

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

0x

2x

4x

6x

8x

10x

12x

14x

16x

25.3x 24.4x 23.7x 84.8x23.7x 23.7x 20.8x 81.2x

MULTIVERSE

MULTIVERSE w/ Binary Only
MULTIVERSE w/ Binary Only w/o Generic PIC

Pintool
Pintool w/ Binary Only

Fig. 6: Runtime overhead (times) for the benchmarks with instruction counting instrumentation.

be expected from an instruction counting Pintool. However, this
demonstrates a case in which a static approach is preferable:
When each individual instruction requires greater analysis, there
is greater advantage in performing the analysis offline.

We wrote our own MULTIVERSE script to insert almost
identical assembly to that inserted by Pin for each instruc-
tion. (Our insertions are not quite identical to PIN’s due to
optimizations PIN implements when inserting code, making
our inserted assembly slightly less efficient.) We rewrote the
SPECint benchmarks with our tool for the main binary with all
libraries, as well as with our two optimizations (rewriting only
the main binary and rewriting the main binary without generic
PIC). Similarly, we used the instruction counting Pintool that
instrumented all instructions, and we also created a modified
version to only instrument the main binary. We compared the
performance by taking the average of running each benchmark
10 times and computing the overhead relative to the results
from the unmodified benchmarks.

The results are shown in Figure 6. MULTIVERSE out-
performed PIN in many of the benchmarks, and in four
cases (400.perlbench, 403.gcc, 462.libquantum,
and 483.xalancbmk), PIN’s performance was substantially
worse than MULTIVERSE. This is likely because PIN uses
dynamic instead of static instrumentation; any new code
encountered by PIN must be analyzed and instrumented on the
fly. For benchmarks such as 400.perlbench or 403.gcc,
there are likely many new paths that are encountered throughout
execution, whereas some of the benchmarks with similar
performance between MULTIVERSE and PIN may have more
loops that PIN can instrument once, leaving only the analysis
code to run every subsequent loop. Thus, the additional
overhead of Pintool’s runtime instrumentation code is probably
the cause of such high runtime overhead.

Pintool does run slightly faster for a few benchmarks (e.g.
401.bzip2 and 464.h264ref). These are likely the result
of PIN’s superior optimization of inserted code. For the inserted
MULTIVERSE assembly, we saved and restored flags before and
after every inserted set of instructions. PIN, on the other hand,
was able to analyze instructions as it encountered them, inserting

code to save and restore flags only when necessary based on
analysis of the instrumented code. Therefore, once analysis
code is actually inserted, the resulting assembly produced by
Pin should be faster than that produced by MULTIVERSE.
(Manual analysis of instrumented assembly showed various
optimizations performed by PIN.) Since we did no analysis to
optimize our inserted code, we have the opportunity to perform
static optimizations in the future and increase our performance.
Regardless, MULTIVERSE’s performance is already promising.

Another interesting result is that the performance improve-
ments from our heuristic optimizations were less significant in
most benchmarks when compared to the overhead introduced
by the instrumentation. This shows that despite the higher
overhead of MULTIVERSE without heuristics, it can be practical
in certain instrumentation contexts and can be used for
instrumenting binaries that do not obey common assumptions
without introducing unacceptable overhead when compared to
existing production tools.

VII. SECURITY APPLICATIONS

There is potential for many interesting security applications
with MULTIVERSE. Binary rewriting is a foundational technique
for increasing security in programs without source available, and
MULTIVERSE makes this more practical for arbitrary binaries
by making rewriting without heuristics possible. Because of
this, and to show the potential of the framework, we used
MULTIVERSE to implement a shadow stack.

Shadow stacks are used to protect return addresses on
the stack by allocating a separate memory region for the
shadow stack, and inserting code that saves return addresses
to the shadow stack whenever a function is called. When a
function returns, the inserted code either checks whether the
return address in the stack and shadow stack match, or simply
overwrites the address in the stack with the one stored in the
shadow stack. This ensures that an attacker cannot overwrite
return addresses in the stack during ROP attacks. Shadow stacks
can therefore be considered a form of backward-edge CFI [20].
We implemented an overwriting, no-zeroing, parallel shadow
stack [14].

11

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

0%
20%
40%
60%
80%
100%
120%
140%
160%
180%
200%
220%
240%
260%
280%
300%

2069.01% 1369.05% 1034.26% 891.91% 7190.70%

MULTIVERSE

MULTIVERSE w/ Shadow Stack
Pintool w/ Shadow Stack

Fig. 7: Percent runtime overhead for the benchmarks instrumented with a shadow stack.

Implementing a shadow stack with our framework was quite
straightforward, requiring only the insertion of instructions for
every call and ret instruction and allocating shadow stack
memory. Since we rewrite call instructions in MULTIVERSE
to a push/jmp pair that pushes the original return address,
we must insert our code after the push but before the jmp.
We insert the following two instructions for each call, which
writes the return address on the top of the stack into the parallel
shadow stack:

pop [esp + (shadow_stack_offset - 4)]
sub esp, 4

MULTIVERSE rewrites ret instructions into pop/jmp instruc-
tions, in which the return address at the top of the stack
is popped and passed to the lookup function to determine
the rewritten jump target. Therefore, we simply insert two
instructions directly before the rewritten ret code to overwrite
the return address on the stack with the corresponding shadow
stack contents (hence an overwriting shadow stack):

add esp, 4
push [esp + (shadow_stack_offset - 4)]

We rewrote the SPECint benchmarks and their libraries
without either of our optimizations, because the shadow stack
does not work when only rewriting the main binary. Some
functions in libc call code in the main binary, and since
libc is not rewritten when we use our optimizations, it does
not push the return address on the shadow stack. Therefore,
when the main binary returns to libc, there is no entry in the
shadow stack and the program crashes. This is not a limitation
of our framework, but rather an implementation challenge for
shadow stacks if one does not intend to instrument all calls.
Therefore, for our shadow stack proof-of-concept, we focus
only on our general approach of rewriting everything.

Shadow Stack Performance. We ran the SPECint benchmarks
10 times and computed the overhead relative to the results of the
unmodified benchmarks. The results are shown in the second
column of Figure 7. Performance results are similar to our
framework with no instrumentation, with an average increase

of 11.64% when compared to the overhead in the first column
(the overhead of MULTIVERSE with no instrumentation, which
is the same as the first column in Figure 5). The benchmark
with the highest increase over no instrumentation was
483.xalancbmk, with an increase of 44.49%, which was
also the benchmark with the highest overhead for all shadow
stack implementations in [14]. Several other benchmarks have
a very low increase in overhead, such as 429.mcf (0.19%)
and 473.astar (2.44%); and one benchmark, 456.hmmer,
was in fact faster (-4.02%). Speed improvements are reported
for several benchmarks in the reference implementation [14]
as well, so this is not too surprising.

The overhead difference over our baseline rewriter for
SPECint is more significant than the overhead shown in [14];
however, the data presented there is for SPECint benchmarks
compiled with -O3, which the paper claims is marginally faster
than the default -O2 optimization level we used. In addition,
the reference implementation [14] assumes knowledge of the
correct assembly, and inserts the instrumentation before the
object files are assembled, yielding the lowest instrumentation
cost possible. Finally, that implementation instruments function
prologues instead of call instructions; we instrument call
instructions because we do not have reliable information about
function entry points, which may result in more instrumentation
(and less code locality). These differences likely contribute
to the higher increase in overhead for MULTIVERSE when
compared to a near-optimal shadow stack implementation.

We also decided to implement the same type of shadow
stack in PIN and compare the performance. We attempted to
implement the shadow stack as close as possible in behavior
to our implementation in MULTIVERSE. However, the inserted
code was written in C++ instead of assembly, and we used the
PIN API to access the value of esp since it has a different value
when our inserted analysis code accesses it directly. The results
are shown as the third column in Figure 7, and the performance
is significantly slower than MULTIVERSE’s implementation.
While we do believe that the PIN implementation can be
optimized, the PIN API appears to make it difficult to directly
access register values in an original instruction’s context

12

as efficiently as assembly code directly inserted before that
instruction. This may be one reason for the significant overhead.

VIII. LIMITATIONS AND FUTURE WORK

Our current implementation of MULTIVERSE is merely a
proof of concept. While our general approach can support
x64 applications and other operating systems, our prototype
currently supports only x86 Linux ELF executables and .so
files. In this section, we discuss some of the limitations of our
system and outline how we plan address them in future work.

Supporting x64 applications mainly entails changing the
assembly language of the rewritten instructions and lookup
functions, but there are a few more significant changes needed.
For example, in x64, instructions can directly access the
contents of the rip register, so PIC does not require thunks.
This changes the way PIC must be handled by the rewriter,
since all references to rip must be modified to accommodate
the position of the new code. Our progress on x64 support is
almost complete.

Our system has several aspects that can be optimized.
Since our priority was generality, we do not address special
situations in which we could optimize away some of our more
expensive runtime computations, especially when rewriting both
.so files and the main binary. Meanwhile, in optimizing our
mapping data structures for speed, we have made the tradeoff
of additional space overhead. As shown by the optimizations
we have already performed, we expect that future refinements
will yield gains in both speed and size.

In addition, while we have developed a fundamental building
block for rewriting binaries, we have demonstrated only one
concrete application. However, as discussed at the end of §VI-B,
our prototype instrumentation framework using MULTIVERSE
facilitates instrumentation, such as counting the number of
instructions executed. In addition, we have demonstrated a
practical example of instrumentation with a shadow stack. We
will expand on this instrumentation ability and its use cases in
future work.

Other applications of MULTIVERSE, such as binary harden-
ing and other transformations that alter some of the original
instructions in a binary, may require minor changes to be com-
patible with our mapping and lookup strategy, but MULTIVERSE
should not impose significant challenges to implementing
known techniques such as SFI. In fact, the mapping could
potentially be used to assist enforcement for some security
policies. We are working on applications such as these for
future work.

IX. RELATED WORK

Rewriting binary code can be dated back to the late
1960s [16], when it was first used for flexible performance
measurement. Later in the late 1980s and early 1990s, rewriting
binaries for RISC architectures (e.g., Alpha, SPARC, and
MIPS), in which code is well-aligned and instructions have
a fixed length, became quite popular in applications such as
instrumentation (e.g., PIXIE [12], ATOM [38]), performance
measurement and optimization (e.g., QPT [23] and EEL [24]),
and architecture translation [35]. In contrast to RISC archi-
tectures, rewriting binaries for CISC such as x86 is much

more challenging. We traced the earliest attempt to rewrite
x86 binaries to ETCH [32]. In the following, we review prior
efforts of x86 static binary rewriting and compare them with
MULTIVERSE. We here omit a survey of dynamic binary
rewriting (e.g., PIN [26]), since it encounters a different set of
challenges.

Targeting instrumentation, profiling, and optimization,
ETCH [32] made a first step towards rewriting arbitrary
Win32/x86 binaries, potentially without any relocation entries
or debugging symbols. However, the implementation details of
ETCH are not open and it is very likely that ETCH used heuris-
tics for disassembling, recognizing static memory addresses,
handling callbacks and PIC. Instead of rewriting arbitrary x86
binaries, SASI [17] focused on rewriting only gcc produced
binaries for SFI [41]. Similarly, PITTSFIELD [27] and Native
Client (NACL) [49] also require cooperation from compilers.

Unlike stripped binaries, object code contains rich infor-
mation, such as where the code is located, and which data
contains static memory addresses. Therefore, a number of
efforts focused on rewriting x86 object code without heuristics.
PLTO [33] and DIABLO [31] are both examples that target
program optimization and profiling. With debugging symbols
(which is almost as informative as source code), VULCAN [37]
(and PEBIL [25]) can correctly rewrite x86 binaries without
using any heuristics. VULCAN was later used in two security
systems: CFI [4] and XFI [18]. PEBIL was later extended and
used in STACKARMOR [11] for stack memory protection.

BIRD [29] is the first system that targets COTS binary
rewriting. In particular, BIRD first uses compiler idioms and
various assumptions to disassemble as many instructions as
possible, and it further improves results with an on-demand
runtime disassembler. Meanwhile, with a runtime exception
mechanism, BIRD can also safely handle PIC and callbacks.
In addition to regular applications such as profiling, BIRD has
been used to harden a binary for foreign code detection.

SECONDWRITE [30] lifts the disassembled code into
LLVM IR [5] to optimize the original binaries for better
runtime performance by leveraging the strength of LLVM
optimization. While SECONDWRITE can rewrite a binary
without supplementary information [36], it still uses heuristics
for binary code disassembling and callback handling, and it
also does not handle PIC in its current implementation [36]. It
also inherits limitations of the LLVM IR, which cannot easily
encode certain native code programs containing instruction
sequences that LLVM compilers do not generate.

DYNINST [6] is a framework that supports both static and
dynamic binary instrumentation. While the published literature
on DYNINST is unclear on whether it supports PIC and
callbacks, our investigations showed that it uses heuristics
to handle PIC based on particular patterns. DYNINST has
been improved and used in various applications, such as
performance studies and binary hardening (e.g., PathArmor [39],
TypeArmor [40], and CodeArmor [10]).

STIR [46] and REINS [47] preserve the original program’s
functionality by tracking basic block addresses and then random-
izing them or in-lining them with security logic (respectively)
to mitigate attacks. Both systems rely on a shingled disassembly
strategy that resembles our superset disassembly, but that applies
imperfect machine learning heuristics to optimize rewritten code

13

Systems Year w/o
Relo

cation

w/o
(Debugging) Symbols

w/o
Heurist

ics
for Static

Addres
s

w/o
Heurist

ics
for PIC

w/o
Heurist

ics
for Callbacks

w/o
Heurist

ics
for Disa

sse
mble

Instr
umentation

Profiling

Optim
iza

tion

Binary
Code Hardening

Contro
l Flow Integ

rity

Binary
Code Reuse

ETCH [32] 1997 X X 7 7 7 7 X X X 7 7 7
SASI [17] 1999 7 7 X X X X 7 7 7 X 7 7
PLTO [33] 2001 7 7 X X X X X X X 7 7 7

VULCAN [37] 2001 X 7 X X X X X X X 7 7 7
DIABLO [31] 2005 7 7 X X X X X X X 7 7 7

CFI [4] 2005 X 7 X X X X 7 7 7 X X 7
XFI [18] 2006 X 7 X X X X 7 7 7 X 7 7

PITTSFIELD [27] 2006 7 7 X X X X 7 7 7 X 7 7
BIRD [29] 2006 X X 7 X X 7 X X X X 7 7

NACL [49] 2009 7 7 X X X X 7 7 7 X 7 7
PEBIL [25] 2010 7 7 X X X X X X X 7 7 7

SECONDWRITE [30] 2011 X X X 7 7 7 X X X X 7 7
DYNINST [6] 2011 X X 7 7 X 7 X X X X X 7

STIR/REINS [46], [47] 2012 X X X 7 7 X 7 7 7 X X 7
CCFIR [51] 2013 7 X X X 7 7 7 7 7 X X 7

BISTRO [15] 2013 X X X 7 7 7 7 7 7 X 7 X
BINCFI [53] 2013 X X X X X 7 7 7 7 X X 7

PSI [52] 2014 X X X X X 7 X X X X X 7
UROBOROS [44] 2016 X X 7 7 7 7 X X X X X X

RAMBLR [42] 2017 X X X 7 7 7 X X X X X X
MULTIVERSE 2018 X X X X X X X X X X X X

TABLE II: Comparison w/ existing x86 binary rewriters.

sizes [48]. Subsequent work has leveraged these foundations
to implement Opaque Control-flow Integrity [28]. Callback
support for these systems has recently been automated by
the advent of Object Flow Integrity [45], but PIC support
remains heuristic-based. Lookup table implementation in these
systems is also less robust than MULTIVERSE, since it adopts
an encoding that assumes iCFT targets are at least 5 bytes
apart—an assumption violated by many COTS binaries.

CCFIR [51] leverages relocation information to disassemble
program code. While CCFIR does not have any issues in recog-
nizing addresses or handling PIC due to the use of relocation
information, it still uses heuristics for disassembly and handling
callbacks. Also assuming correct disassembly, BISTRO [15]
rewrites binaries for binary code hardening and reuse [8], [50].
It also uses heuristics to handle PIC and callbacks.

To our knowledge, BINCFI [53] is the first system that
can safely handle static memory addresses, PIC, and callbacks.
While it also has attempts for better disassembly, BINCFI
still cannot handle interleaved code and data well. PSI [52]
makes BINCFI more general as a framework for binary
rewriting in various other applications such as profiling.
UROBOROS [43] makes binary disassembly reassemblable by
using the same disassembling algorithm from BINCFI, but
it still uses a number of heuristics to differentiate memory
addresses and constant integers when relocating a binary. The
recent extension of UROBOROS [44] has been made to be a
more general static binary instrumentation framework.

Most recently, RAMBLR [42], built atop angr [34], has
attempted to remove the static memory heuristics used by
UROBOROS [43]. For example, UROBOROS [43] assumes
that code pointers in the data section are n-byte aligned
and only point to function entry points or jump table entries.
RAMBLR [42] instead performs localized data flow and value-
set analysis to recognize pointers and integers. Note that
RAMBLR and angr do not aim to solve other disassembly
problems such as handling PIC and callbacks without using
heuristics, which is the core focus of MULTIVERSE.

Compared to all of the existing works, we notice that
MULTIVERSE is the first system that is founded on an approach
starting with no heuristics in x86 COTS binary rewriting. It
can be used in all existing applications, such as profiling,
optimization, binary code hardening, CFI, and binary code
reuse. A summary of our comparison is presented in Table II.

X. CONCLUSION

We have presented MULTIVERSE, the first static binary
rewriting tool that can correctly rewrite an x86 COTS binary
without using heuristics. It consists of two fundamental tech-
niques: superset disassembly that completely disassembles the
binary code into a superset of instructions that contain all legal
instructions, and instruction rewriting that is able to relocate
instructions to any other location by interposing all the iCFTs
and redirecting them to the correct new addresses. We have
implemented MULTIVERSE atop a number of binary analysis
and rewriting tools (e.g., CAPSTONE, pyelftools and
pwntools), and tested with SPECint 2006. Our experimental
results show that MULTIVERSE is able to rewrite all of
the testing binaries and the runtime overhead for the new
rewritten binaries is still reasonable. Comparison with another
solution without heuristics (dynamic instrumentation) also
shows that the static instrumentation enabled by MULTIVERSE
can achieve better average performance, and our shadow stack
implementation shows that MULTIVERSE can be used for actual
security applications.

XI. AVAILABILITY

The source code of MULTIVERSE is made available at
github.com/utds3lab/multiverse.

REFERENCES

[1] Capstone: The ultimate disassembler. http://www.capstone-engine.org/.
[2] Pwntools. https://github.com/Gallopsled/pwntools.
[3] Pyelftools. https://github.com/eliben/pyelftools.
[4] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity

principles, implementations, and applications. ACM Trans. Information
and System Security (TISSEC), 13(1), 2009.

[5] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and
R. Barua. A compiler-level intermediate representation based binary
analysis and rewriting system. In Proc. 8th ACM European Conf.
Computer Systems (EuroSys), pages 295–308, 2013.

[6] A. R. Bernat and B. P. Miller. Anywhere, any-time binary instrumentation.
In Proc. 10th ACM SIGPLAN-SIGSOFT Work. Program Analysis for
Software Tools (PASTE), pages 9–16, 2011.

[7] E. Blem, J. Menon, and K. Sankaralingam. Power struggles: Revisiting
the RISC vs. CISC debate on contemporary ARM and x86 architectures.
In Proc. 19th IEEE Int. Sym. High Performance Computer Architecture
(HPCA), pages 1–12, 2013.

[8] J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary code
extraction and interface identification for security applications. In Proc.
17th Annual Network & Distributed System Security Sym. (NDSS), 2010.

[9] J. Caballero and Z. Lin. Type inference on executables. ACM Computing
Surveys, 48(4):65:1–65:35, 2016.

[10] X. Chen, H. Bos, and C. Giuffrida. CodeArmor: Virtualizing the code
space to counter disclosure attacks. In Proc. 2nd IEEE Sym. Security
and Privacy (EuroS&P), pages 514–529, 2017.

[11] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida.
StackArmor: Comprehensive protection from stack-based memory error
vulnerabilities for binaries. In Proc. 22nd Annual Network & Distributed
System Security Sym. (NDSS), 2015.

14

github.com/utds3lab/multiverse
http://www.capstone-engine.org/
https://github.com/Gallopsled/pwntools
https://github.com/eliben/pyelftools

[12] F. C. Chow, M. I. Himelstein, E. Killian, and L. Weber. Engineering a
RISC compiler system. In Proc. 31st IEEE Computer Society Int. Conf.
(COMPCON), pages 132–137, 1986.

[13] B. Cox and J. R. Forshaw. The quantum universe: everything that can
happen does happen. Penguin, 2012.

[14] T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of
shadow stacks and stack canaries. In Proc. 10th ACM Sym. Information,
Computer and Communications Security (AsiaCCS), pages 555–566,
2015.

[15] Z. Deng, X. Zhang, and D. Xu. Bistro: Binary component extraction and
embedding for software security applications. In Proc. 18th European
Sym. Research in Computer Security (ESORICS), pages 200–218, 2013.

[16] P. Deutsch and C. A. Grant. A flexible measurement tool for software
systems. In Proc. IFIP Congress, Volume 1, pages 320–326, 1971.

[17] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies:
A retrospective. In Proc. New Security Paradigms Work. (NSPW), pages
87–95, 1999.

[18] Ú. Erlingsson, S. Valley, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces. In Proc. 7th
USENIX Sym. Operating Systems Design and Implementation (OSDI),
2006.

[19] A. D. Federico, A. Cama, Y. Shoshitaishvili, C. Kruegel, and G. Vigna.
How the ELF ruined Christmas. In Proc. 24th USENIX Security Sym.,
pages 643–658, 2015.

[20] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin. PT-CFI: Transparent backward-
edge control flow violation detection using Intel processor trace. In Proc.
7th ACM Conf. Data and Application Security and Privacy (CODASPY),
pages 173–184, 2017.

[21] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly
of obfuscated binaries. In Proc. 13th USENIX Security Sym., 2004.

[22] E. Ladakis, G. Vasiliadis, M. Polychronakis, S. Ioannidis, and G. Portoka-
lidis. GPU-Disasm: A GPU-based x86 disassembler. In Int. Information
Security Conf., pages 472–489, 2015.

[23] J. R. Larus and T. Ball. Rewriting executable files to measure program
behavior. Software Practice and Experience, 24(2):197–218, 1994.

[24] J. R. Larus and E. Schnarr. EEL: Machine-independent executable
editing. In Proc. 16th ACM Conf. Programming Language Design and
Implementation (PLDI), pages 291–300, 1995.

[25] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. PEBIL:
Efficient static binary instrumentation for Linux. In Proc. IEEE Int. Sym.
Performance Analysis Systems and Software (ISPASS), pages 175–183,
2010.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proc. 26th
ACM Conf. Programming Language Design and Implementation (PLDI),
pages 190–200, 2005.

[27] S. McCamant and G. Morrisett. Evaluating SFI for a CISC architecture.
In Proc. 15th USENIX Security Sym., 2006.

[28] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz. Opaque
control-flow integrity. In Proc. 22nd Annual Network & Distributed
System Security Sym. (NDSS), 2015.

[29] S. Nanda, W. Li, L.-C. Lam, and T. Chiueh. BIRD: Binary interpretation
using runtime disassembly. In Proc. 4th IEEE/ACM Int. Sym. Code
Generation and Optimization (CGO), pages 358–370, 2006.

[30] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and A. D.
Keromytis. Retrofitting security in COTS software with binary rewriting.
In Proc. 26th IFIP TC Int. Information Security Conf. (SEC), pages
154–172, 2011.

[31] L. V. Put, D. Chanet, B. D. Bus, B. D. Sutter, and K. D. Bosschere.
DIABLO: A reliable, retargetable and extensible link-time rewriting
framework. In Proc. 5th IEEE Int. Sym. Signal Processing and
Information Technology (ISSPIT), pages 7–12, 2005.

[32] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy,
B. Bershad, and B. Chen. Instrumentation and optimization of
Win32/Intel executables using Etch. In Proc. USENIX Windows NT
Work., pages 1–7, 1997.

[33] B. Schwarz, S. Debray, G. Andrews, and M. Legendre. Plto: A link-
time optimizer for the Intel IA-32 architecture. In Proc. Work. Binary
Translation (WBT), 2001.

[34] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna.
Firmalice – automatic detection of authentication bypass vulnerabilities
in binary firmware. In Proc. 22nd Annual Network & Distributed System
Security Sym. (NDSS), 2015.

[35] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G. Robinson.
Binary translation. Communications ACM (CACM), 36(2):69–81, 1993.

[36] M. Smithson, K. Elwazeer, K. Anand, A. Kotha, and R. Barua. Static
binary rewriting without supplemental information: Overcoming the
tradeoff between coverage and correctness. In Proc. IEEE 20th Working
Conf. Reverse Engineering (WCRE), pages 52–61, 2013.

[37] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a
distributed environment. Technical Report MSR-TR-2001-50, Microsoft
Research, 2001.

[38] A. Srivastava and A. Eustace. ATOM: A system for building customized
program analysis tools. In Proc. 15th ACM Conf. Programming Language
Design and Implementation (PLDI), pages 196–205, 1994.

[39] V. van der Veen, D. Andriesse, , E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida. Practical context-sensitive
CFI. In Proc. 22nd ACM Conf. Computer and Communications Security
(CCS), pages 927–940, 2015.

[40] V. van der Veen, E. Göktaş, M. Contag, A. Pawlowski, X. Chen, S. Rawat,
H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida. A tough call:
Mitigating advanced code-reuse attacks at the binary level. In Proc.
37th IEEE Sym. Security & Privacy (S&P), pages 934–953, 2016.

[41] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In Proc. 14th ACM Sym. Operating
System Principles (SOSP), pages 203–216, 1993.

[42] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna. Ramblr: Making reassembly great again. In
Proc. 24th Annual Network & Distributed System Security Sym. (NDSS),
2017.

[43] S. Wang, P. Wang, and D. Wu. Reassembleable disassembling. In Proc.
24th USENIX Security Sym., pages 627–642, 2015.

[44] S. Wang, P. Wang, and D. Wu. UROBOROS: Instrumenting stripped
binaries with static reassembling. In Proc. IEEE 23rd Int. Conf. Software
Analysis, Evolution, and Reengineering (SANER), pages 236–247, 2016.

[45] W. Wang, X. Xu, and K. W. Hamlen. Object flow integrity. In Proc.
24th ACM Conference on Computer and Comunications Security (CCS),
pages 1909–1924, 2017.

[46] R. Wartell, V. Mohan, K. Hamlen, and Z. Lin. Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code. In Proc.
19th ACM Conf. Computer and Communications Security (CCS), pages
157–168, 2012.

[47] R. Wartell, V. Mohan, K. Hamlen, and Z. Lin. Securing untrusted code
via compiler-agnostic binary rewriting. In Proc. 28th Annual Computer
Security Applications Conf. (ACSAC), pages 299–308, 2012.

[48] R. Wartell, Y. Zhou, K. W. Hamlen, and M. Kantarcioglu. Shingled
graph disassembly: Finding the undecideable path. In Pacific-Asia Conf.
Knowledge Discovery and Data Mining (PAKDD), pages 273–285, 2014.

[49] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A sandbox for
portable, untrusted x86 native code. In Proc. 30th IEEE Sym. Security
& Privacy (S&P), pages 79–93, 2009.

[50] J. Zeng, Y. Fu, K. Miller, Z. Lin, X. Zhang, and D. Xu. Obfuscation-
resilient binary code reuse through trace-oriented programming. In Proc.
20th ACM Conf. Computer and Communications Security (CCS), pages
487–498, 2013.

[51] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou. Practical control flow integrity and randomization for binary
executables. In Proc. 34th IEEE Sym. Security & Privacy (S&P), pages
559–573, 2013.

[52] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar. A platform for secure
static binary instrumentation. In Proc. 10th ACM SIGPLAN/SIGOPS
Int. Conf. Virtual Execution Environments (VEE), pages 129–140, 2014.

[53] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In
Proc. 22nd USENIX Security Sym., pages 337–352, 2013.

15

	Introduction
	Background and Overview
	Scope and Assumptions
	Challenges
	Key Insights
	Overview

	Mapping
	Superset Disassembler
	Mapping Generation
	Mapping Lookups
	Global Mapping

	Rewriting
	Implementation
	Evaluation
	Effectiveness
	Performance

	Security Applications
	Limitations and Future Work
	Related Work
	Conclusion
	Availability
	References

