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Abstract—As a new type of blackhat Search Engine Op-
timization (SEO), autocomplete manipulations are increasingly
utilized by miscreants and promotion companies alike to advertise
desired suggestion terms when related trigger terms are entered
by the user into a search engine. Like other illicit SEO, such
activities game the search engine, mislead the querier, and in
some cases, spread harmful content. However, little has been
done to understand this new threat, in terms of its scope, impact
and techniques, not to mention any serious effort to detect such
manipulated terms on a large scale.

Systematic analysis of autocomplete manipulation is challeng-
ing, due to the scale of the problem (tens or even hundreds of
millions suggestion terms and their search results) and the heavy
burdens it puts on the search engines. In this paper, we report
the first technique that addresses these challenges, making a step
toward better understanding and ultimately eliminating this new
threat. Our technique, called Sacabuche, takes a semantics-based,
two-step approach to minimize its performance impact: it utilizes
Natural Language Processing (NLP) to analyze a large number
of trigger and suggestion combinations, without querying search
engines, to filter out the vast majority of legitimate suggestion
terms; only a small set of suspicious suggestions are run against
the search engines to get query results for identifying truly abused
terms. This approach achieves a 96.23% precision and 95.63%
recall, and its scalability enables us to perform a measurement
study on 114 millions of suggestion terms, an unprecedented scale
for this type of studies. The findings of the study bring to light
the magnitude of the threat (0.48% Google suggestion terms we
collected manipulated), and its significant security implications
never reported before (e.g., exceedingly long lifetime of campaigns,
sophisticated techniques and channels for spreading malware and
phishing content).

I. INTRODUCTION

Assume that you enter a query into Google search box.
Figure 1 shows what you would see on May 12, 2017, under
the search term “online backup free download”. Before you can
even finish typing, a list of suggestions pop up to help complete
the query. This functionality is called search autocomplete,
a service provided by search engines to enable users to
conveniently formulate an effective query by providing only a
small portion of it (called trigger), which is then complemented
by a set of suggestions identified from common search terms

Fig. 1: Autocomplete manipulation on Google.

observed by the search engine [43]. This search assistant
service, however, increasingly becomes the target for Spammers
to perform illicit online promotion. As we can see in the figure,
a suggestion being triggered is the name of an online backup
software “strongvault”, which turns out to be a potentially
unwanted program. The software has malicious behaviors like
installing adware, hooking the operating system and hijacking
browser. However, Google recommended it as one of the most
relevant suggestions for the trigger, since it was manipulated
to promote the software.

Autocomplete manipulations. Such autocomplete manipu-
lation takes advantage of the way a search engine ranks
suggestions for a given trigger, which according to prior
research [40], [57] and Google’s own description [28], mainly
relies on the popularity of queries observed from search logs.
The content of the logs becomes biased when a large number
of fake queries are crafted to promote a certain term (an
organization, a product, etc.). This has already been done
systematically, with the services available for selling to push
promotional information (even illicit content) to the public
(Section VI). Such activities are essentially a new type of
blackhat search engine optimization (SEO) [15], which like
other illicit SEO, not only reduces the quality of search results,
with negative impacts on the search engine’s reputation, but
also opens an unchecked avenue for miscreants to broadly
disseminate their attack content, infecting a larger victim pool
than they could through free-riding the users’ trust of search
engines. Indeed, our research shows that almost all major
search engines, including Google, Bing, Baidu, Yahoo! and
Yandex, are victims of this attack. The parties offering such
an SEO service typically have no restrict regulations about
the legitimacy of the content to promote, with phishing, even
malware discovered in our study (Section VI). Also, according
to Google, 60% of today’s searches are from mobile devices [1].
On mobile devices, due to their small form factors making them
hard to type, users may highly rely on autocomplete. Therefore
such an attack may cause even more damage to mobile users.
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To understand and further mitigate this emerging threat, a
direct solution is to analyze the search logs, the sources for
generating suggestions. This approach, however, can only be
done by the search provider, like Google. Even given the logs, a
thorough analysis of the massive amount of data is by no means
trivial. So far, the only effort made is a prior study that utilizes
Yahoo!’s search logs and a set of confirmed manipulations to
identify the promotion campaigns, for the purpose of monitoring
their other searches [50]. With all the resources, the study only
achieves a moderate success in terms of understanding the
threat (only 3,000 terms inspected), not to mention its fragility
to the evasion performed by those continuously changing their
IP identifiers. A truly large-scale study, involving millions of
search terms, by the parties without access to search logs,
cannot be done with the existing techniques. As a result, so
far we know little about the real-world impacts of these illicit
promotions, and could do almost nothing to protect ourselves
against such a threat, in the absence of search engines’ efforts.

Detecting missuggestions with semantics. In this paper, we
report the first large-scale study on autocomplete manipulation,
based upon novel techniques to automatically discover abused
suggestions without access to query logs. Our approach, called
Sacabuche (Search AutoComplete Abuse Checking), leverages
a set of unique observations that lead to the features the
manipulators cannot easily evade. More specifically, we found
that for a query involving manipulated suggestion, there often
exists semantic inconsistency between the trigger phrases
(keywords inside a trigger) and their corresponding target
phrases (keywords in the suggestion). For example, for the
trigger “what is content delivery network”, a keyword “kajabi”
appears in its suggestion; the problem here is the semantics of
the keyword is very different from “content delivery network”,
using the word-embedding technique [7], since the word rarely
shows up together with the trigger phrases. Also observed in
our research are other differentiating features: a legitimate
suggested term tends to be more generic, e.g., “reviews”,
“list” or “companies”, while a manipulated one is often more
specific, for the purpose of promoting a particular product;
besides, the grammatical structure between a legitimate trigger-
suggestion pair and a manipulated one can differ. Using
these features, we trained a classifier that automatically detect
suspicious terms from the autosuggestions iteratively retrieved
from Autocomplete APIs [19][14][36] provided by Google,
Bing and Yahoo!, using a set of seed triggers. In this way,
we avoid massively querying the search engines, which would
negatively affect its performance.

This screening step effectively removes the vast majority of
legitimate suggestions (from over 114 million terms down to
only 1 million (less than 1%)). The remaining, however, can no
longer be analyzed by only analyzing the semantics of trigger
and suggestion. For example, consider the trigger “products and
services example” and the suggestion “b2b products and service
examples”; the term “b2b” seems to be irrelevant to the trigger,
but turns out to be related. Finding such false positives needs
more information, that is, the content of search results. To this
end, our approach automatically crawls search engines with
these suspicious terms, extracting a set of salient features from
the search results. For example, one of such features measures
is the number of results indexed by search engines: even though
the manipulator could forge a large number of queries, it

becomes much harder to create many relevant results indexed
by the search engines; therefore this feature contributes to
distinguish truly problematic suggestions from legitimate ones.
Using these features (Section IV-C), we run another classifier
to capture illicit suggestions. Our study shows this two-step
approach is very effective, with a precision over 96.23% and a
recall over 95.63%. Also, the approach enables us to massively
process over 114 million suggestions, an unprecedented scale
for an in-depth understanding of this emerging threat.

We note that, working on search autocomplete manipulation
detection brings in the challenge of result validation, which
is hampered by the difficulty in obtaining ground truth.
Specifically, the detected autocompletes include a large volume
(estimated 95% based on sampling) of results containing
unpopular products with trigger keywords, which is a common
trait of the ground truth autocompletes that we observed.

Our findings. Looking into the manipulated autocomplete
results reported by Sacabuche, we are surprised to find that
this new threat is indeed pervasive, having a large impact
on today’s Internet. More specifically, over 383K manipulated
suggestions (across 257K triggers) were found from mainstream
search engines, including Google, Bing and Yahoo!. Particularly,
we found that at least 0.48% of the Google autocomplete
results are polluted. The security implications of the attack are
significant. For example, our study shows that at least 20% of
these manipulation cases are used for underground advertising,
promoting content as gambling and even malware. We also
discovered that 3K compromised sites within top-10 search
results were actually related to the manipulated autocompletes.

Also interesting is the ecosystem of autocomplete manipu-
lation, as discovered in our study, including the promotion and
evasion techniques being used, the parties involved and the way
they share revenues and others. As an example, we analyzed
Seopmb[29], a suggestion manipulation tool that automatically
simulates user behaviors to generate search queries, and found
that the party using the tool needs to pay rewards points to
its developer whenever promoting suggestions, and the party
can also receive rewards for running promotional tasks for
others. Further, although the website for the tool runs in USA
(Psychz Networks Ashburn), the server it communicates with
is located in Hong Kong. Such communication is encrypted
to evade detection. Also, such autocomplete manipulation
campaigns apparently are quite successful in evading detection:
the manipulated terms typically have a quite long lifetime (34
days), and also new ones counting for 3.7% of all manipulated
terms appear on a daily basis. Our study further investigates the
potential profit of this underground business, using estimated
click-through rate, which shows that the average revenue per
month for a service recipient is $95 per keyword.

Contributions. The contributions of the paper are as below:

• New techniques for detecting missuggestions. We designed
and implemented the first system that enables the party without
access to search logs to perform efficient and highly accurate
missuggestion detection. Our new techniques are built on top of
novel applications of NLP techniques, which significantly raise
the bar for the attack and control the assumption of resources
on the search engine side, a critical feature for achieving the
scalability of detection.
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• New understanding of autocomplete manipulation. Using our
new techniques, we conducted the first large-scale analysis of
autocomplete manipulation, through automatically discovering
and evaluating over 114 million search terms from major search
engines. For the first time, our study reveals the pervasiveness of
this emerging threat and its significant security impacts. Further
we discovered the adversary’s strategy and made the first
step toward understanding the ecosystem of this underground
business, which is invaluable for mitigating and ultimately
eliminating the threat.

Roadmap. The rest of the paper is organized as follows:
Section II provides the background information; Section III
describes our findings from the ground truth dataset; Section IV
elaborates the design and implementation of our detection
system and the evaluation of its effectiveness is described in
Section V; Section VI reports our large-scale measurement
study and our findings; Section VII discusses the limitations of
the study and potential future research; Section VIII reviews
the related prior research and Section IX concludes the paper.

II. BACKGROUND

Before moving into the details of our study, here we explain
how autocomplete works and the NLP technologies utilized in
our research, together with assumptions made in our research.

Search autocomplete. As mentioned earlier, search autocom-
plete is a query prediction service, which offers suggestions
based upon what others are searching for. Such a service is
designed to speed up human-computer interactions, making
it more convenient for users to complete her query, which is
particularly useful to less technical-savvy individuals and those
handicapped. In the meantime, the statistics collected from
query logs guide the user to better formulate her queries.

Such an autocomplete service is built upon prediction
algorithms that automatically identify relevant terms from the
query logs [28]. From the information publicly available, search
engines select suggestions according to the popularity of their
related queries: that is, the frequencies of the phrases searched
by different people and their freshness (how trending they
are as popular topics). Essentially, such search predictions are
meant to capture public interests manifested by human queries.
So all search providers are against the activities that game
their algorithms for advertising less relevant content, which is
actually a new type of blackhat SEO. For example, Google is
reported to continuously monitor suggestion Spam activities
and change its prediction algorithm to make them harder to
succeed[9], and also explicitly block all abusive suggestions, in-
cluding links to malware, phishing and discriminative, offensive
words[11], though the effectiveness of this effort can be limited
(Section VI-A); similarly, Bing is trying to filter suggestion
Spam, adult and offensive prediction words [8]. Detecting and
understanding such autocomplete Spam is therefore the focus
of our study.

Note that autocompletes may be personalized according to
the client’s location and search history. In some cases, people
won’t really come across the poisoned suggests. Although the
missuggestions detected by us may not show up to some users,
as a first step, we mainly looked into English suggestions
(keywords in other languages also show up, see Section IV-B),

changed our search locations and cleaned up search history
after each query to collect suggestions as broadly as possible.

Natural language processing. To automatically identify ma-
nipulated suggestions from their semantics, we utilized a set
of NLP technologies, as summarized in the following.

Word embedding. Word embedding W : words→ V n is a pa-
rameterized function mapping each word to a high-dimensional
vector (200 to 500 dimensions), e.g., W (“education”) =
(0.2,−0.4, 0.7, ...), to represent the word’s relation with other
words. Such a mapping can be done in different ways, e.g.,
using the continual bag-of-words model [2] and the skip-gram
technique [30] to analyze the context in which the words
show up. Such a vector representation is designed to ensure
that synonyms are given similar vectors and antonyms are
mapped to dissimilar vectors. In our research, we compared the
semantics meanings of different words by measuring the cosine
distance between the vectors. For example, word embedding
technique automatically identifies the words semantically close
to “casino”, such as “gambling” (cosine distance 0.35), “vegas”
(0.46) and “blackjack” (0.48). We leveraged a popular word
embedding tool, Word2Vec [34], which runs an artificial neural
network to construct the model for generating the vectors.

Dependency parsing. Dependency parsing is an NLP technique
for describing grammatical relations among words in a sen-
tence. Such relations include direct object, determinant, noun
compound modifier and others. Also, the content of a relative
clause is further analyzed to identify the dependencies between
the words it includes. The state-of-the-art dependency parser
(e.g., Stanford parser [6]) can achieve a 92.2% accuracy in
discovering the grammatical relations in a sentence.

Lemmatization. A natural language document always includes
words in different forms, due to tenses, abbreviations and
grammatical needs, e.g., “organize”, “organizes”, and “organiz-
ing”. Further, there are derivation words with similar meanings
like “slow” and “slowness”. We need to find out the original
form of each word, then link their appearances across different
terms. This was done using lemmatization techniques, which
reduce inflectional forms and remove inflectional endings and
return the base or dictionary form of a word. A common
lemmatization algorithm is morphological analysis [55] to
find out the lemma (i.e., organize) for each word (e.g.,
“organizes”, and “organizing”). The state-of-the-art algorithm
(e.g., WordNetLemmatizer) can achieve 95% of accuracy [35].

Adversary model. In our research, we consider that an
adversary is capable of forging a large number of queries,
through various sources/locations, to promote illicit, unwanted
or unrelated content. It renders the detection approach based
upon IP identifiers less effective. Also, we do not assume the
availability of query logs since they are hard to get (except
for search service providers), hard to share (due to privacy
concerns) and hard to analyze (given the massive amount of
data they contain). Also, the techniques designed for this setting
are meant to provide the end user immediately protection, even
before the search engines start acting on the threat. On the
other hand, we assume that it is difficult for the adversary to
produce a large amount of web content, distribute it across
many reputable websites to be indexed by search engines. This
certainly needs more resources than faking queries.
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III. UNDERSTANDING MISSUGGESTIONS

In this section, we first present an autocomplete ma-
nipulation ecosystem to explicate how missuggestions are
produced. Then, we elaborate on our analysis of a set of known
missuggestions and the features identified for differentiating
benign suggestions and those manipulated ones. These features
are utilized to build a scanner, Scacbuche, for detecting other
autocomplete manipulations.

A. How is Autocomplete Manipulated: An Example

Autocomplete manipulation has been extensively used by
miscreants for illicit activities. To understand how it works,
we describe the ecosystem of this emerging SEO business
discovered in our study, through purchasing from and interacting
with the service providers. Figure 2 presents a high-level view
about how such services operate, and how the different entities
involved interact with each other. First, a manipulation service
client (a.k.a., promoted site owner) sends a request to a service
provider (Ê). Such a request includes the trigger, the suggestion
and the promotion period. Then, the provider creates a query
task for promoting the missuggestion (trigger+suggestion) and
distributes it to his crowd-sourcing operators (Ë), or directly
generates queries to search for the targeted suggestion (Ì). Once
the missuggestion successfully gets into the search engine, a
user who follows the search results of the suggestion (Í) and
visits the promoted site (Î) could be redirected to a phishing
site (Ï). Accordingly, the manipulation service provider will
get the commission from the promoted site owner, while the
promoted site also gain traffic that can be monetized.

As an example, iXiala [24] is an autocomplete manipulation
system, which provides manipulation service on 19 different
platforms (web and mobile), including search engines (Baidu,
Sogou, 360), C2C (Taobao) and B2C (Tmall, JD) platforms.
To change autocomplete results and display desired phrases, a
user can simply add a block of JavaScript onto his website.

< s c r i p t t y p e ="text/javascript" s r c ="http
://www.ixiala.com/Cache/showJs/id/8
c0e065e3d6b3e4a891c0b60b9a45cf7ce9169ca
.html" async ="async"></ s c r i p t >

The script creates a large number of iframes on the website.
Whenever the site is visited, these iframes automatically fetch
suggestion phrases from the iXiala platform, and submit great
amount of suggestions to the search engines. When searching
for the websites containing such promotional JavaScript code
on PublicWWW [31], a public website source code database,
we found around 10K websites such as by91.com, ael920.com,
and dytbj.com using such a script.

From the suggestions promoted by the iXiala, such as “fresh
air purification system filtech” and “Sanya hotels recommen-
dation - liba.com”, we found that the clients try to advertise
their specific but rarely known products, which are less in line
with the trigger’s semantics than the benign suggestions are
supposed to be. Accordingly, the search results of manipulated
suggestions focus on such promoted products, which are often
semantically inconsistent with the trigger.

These findings indicate that missuggestion has distinctive
features, particularly semantic inconsistency between trigger
terms and suggestions, and inconsistency in the search results

Fig. 2: Operational steps of an autocomplete manipulation
ecosystem. First, a client sent manipulation request to the
manipulation service provider (Ê); Then, the service provider
distributed the query task to his crowd-sourcing operators (Ë) to
search for the targeted suggestion (Ì); Once a victim searched
the manipulated suggestion (Í) and visited the promoted site
(Î), he will be redirected to a phishing site (Ï).

TABLE I: Summary results of the datasets.

# of
suggestions

# of linked
triggers

# of result
pages

Badset 150 145 295
Goodset 300 298 593

Unkown set 114,275,000 1,000,900 1,607,951

of trigger terms (without suggestions) and those for missugges-
tions. These features were utilized in our research for detecting
the manipulated autocomplete.

B. Features of Missuggestions

In our study, we identified a set of features that uniquely
characterize missuggestions. Here we describe the high-level
idea of utilizing the features to capture the manipulations.

Data collection. We first collected a set of confirmed mis-
suggestions (called badset) and legitimate suggestions (called
goodset) as well as their related search results, which are
illustrated in Table I. Here we describe them in details.

• Badset. The badset includes 150 manipulated suggestion
phrases and their corresponding trigger phrases posted online
by autocomplete manipulation companies (such as Affordable
Reputation Management[13] and yincmarketing[37]) to promote
their services. We further validated them through manual
inspections (e.g., looking for illicit content in search result
pages) to ensure that they were indeed bad and live.

• Goodset. The good suggestions were gathered using 1,000
trigger, which were randomly chosen from 1 million most
popular keywords reported by MFA [10]. The triggers cover a
wide range of search interests, over ten categories (technology,
education, financial service, etc.). For each trigger, we took
its top 3 suggestions from the search engines. From all these
3,000 search terms (trigger+suggestion), we further selected
300 that were manually confirmed to be legitimate, using the
validation criteria elaborated in Section V.
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Fig. 3: Discriminative features of missuggestions and benign
suggestions.

• Suggestion related search results. We collected search results
using the search engine API (e.g., Google Search API), with
both aforementioned trigger phrases and their search terms as
inputs. For each query (either a trigger or a search term with
both a trigger and a suggestion), its top 20 results indexed by
the search engine were recorded, including the titles, urls and
the descriptions.

Semantic inconsistency. Our key observation is that a trigger
and its suggestion are often less related when the autocomplete
has been manipulated, presumably due to the fact that a
missuggestion tends to promote a specific and rarely known
product, which is less relevant to the corresponding trigger. For
example, “play free bingo online now at moonbingo.com” and
“free bingo sites for us players” are both suggestions for the
trigger “bingo sites play free”. However, the former, which is
manipulated, is more specific (promoting moonbingo.com, a
bingo site), and therefore less similar to the trigger.

Such a semantic gap is leveraged by Sacabuche to differ-
entiate legitimate suggestions from manipulated ones. More
specifically, we utilize the Word2Vec technique to compare
the semantic meanings of a trigger and its suggestion (which
can have several words and a sentence-like structure), in
terms of sentence similarity Fss. Given two sentences sa and
st, we convert them into two phrase lists pl(sa) and pl(st)
through dependency analysis. Each phrase is identified from
the dependency tree [4] representation of a sentence, which
describes the grammatical relations among different words in a
sentence. Over the tree, we search for the directed paths with
a length of two, which connect two non-preposition and non-
article words together. All such phrases are extracted from each
sentence to form its phrase list. The phrase lists of the trigger
and the suggestion are then compared using the sentence kernel
SK defined over a phrase kernel PK, which is further built
on a word embedding based word kernel WK. We detail the
sentence-level semantic inconsistency features in Section IV-B.

Such a semantic inconsistency feature was found to be
discriminative in our research. Figure 3(a) compares the cu-
mulative distribution function (CDF) of the sentence similarity
between the badset and goodset. As we can see from the
figures, missuggestions tend to have lower sentence similarity
than benign ones: the average sentence similarity is 0.56 for
the missuggestions and 0.67 for the legitimate ones.

Search Result Inconsistency. In addition to the semantic
inconsistency features, we found that the search results of
the missuggestions often show a remarkable inconsistency with
their corresponding triggers, while the good ones will be in line
with those triggers. This is because a manipulated suggestion
is meant to affect the way the search engine prioritizes search
results, making promoted content more prominent in the results.
Figure 4 illustrated the search result inconsistency of the
missuggestion and the benign suggestion. For the search result
of the benign suggestion “norton online backup free download”,
they were similar to those of the trigger “online backup free
download” (e.g., the second search result), while none of the
search results of the missuggestion “strongvault online backup
free download” appeared in trigger’s top 20 search results.

Specifically, we measure the similarity of two ranked
domains lists, one retrieved from the search engine under the
trigger alone and the other under the whole query term (the
trigger and a suggestion). The similarity is calculated by Rank-
Biased Overlap (RBO) function [59], which was designed
to weigh high-ranking items more heavily than those down
the lists, handle nonconjointness and be monotonic with the
increasing depth (i.e., ranks) [59] (see Section IV-C for details).

Figure 3(b) compares the CDF of the domain list similarity
between the search result pages of the badset and goodset. As
we can see from the figure, missuggestions tend to have a lower
search result page similarity than benign ones in term of the
domains in search result pages: the average similarity is 0.08
for the missuggestions and 0.33 for the legitimate ones.

In our research, we characterize the semantic inconsistency
and search result inconsistency in multiple perspectives, besides
the sentence similarity and search result’s domain list similarity.
Such inconsistencies, fundamentally, are introduced by the
attackers who tend to promote less popular products than the
autocomplete service expects, making the promoted content
more prominent in the results. Therefore, the inconsistencies
are inherent to the attack strategies and can be hard to change.

IV. THE DESIGN OF SACABUCHE FRAMEWORK

In this section, we elaborate the technique we used to detect
missuggestions, starting with an overview of the idea behind
Sacabuche, which is followed by its design and implementation
details, and our evaluation of the implementation.

A. Overview

To catch manipulated suggestions, our idea is to exploit
the gap between the semantics of legitimate and manipulated
predictions in a scalable way. Such a gap can be immediately
observed from the semantic inconsistency and other semantic
features of some trigger-suggestion pairs, without even looking
at their query results. In the meantime, the results provide
further evidence for the presence of inconsistency: e.g., the
prediction term supposed to be popular vs. the actual small
number of search results reported for the term. Leveraging
these observations, we build an efficient two-step detection:
first filtering out the vast majority of the legitimate predictions
having no signs of semantic inconsistency, without performing
expensive search queries, and then analyzing the search results
of a relatively small set of suspicious trigger-suggestion pairs
to identify the manipulated ones.
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(a) “online backup free download”. (b) “strongvault online backup free download”. (c) “norton online backup free download”.

Fig. 4: “strongvault” appears in (b) but rarely in (a), while “norton” appear both in (a) and (c).

Architecture. Figure 5 illustrates the architecture of Sacabuche,
including Prediction Finder (PF), Search Term Analyzer (STA)
and Search Result Analyzer (SRA). PF is designed to discover
a large number of autosuggestions: in particular, it iteratively
queries the search engines with depth limit to 3, starting from
a set of seed triggers (Section V-A) as the inputs, to derive a
great number of autocompletes. These suggestions are further
analyzed by STA, which looks at a set of semantic features
to identify suspicious terms (Section IV-B). Such suspicious
terms are then queried against the search engines by SRA, and
their results are inspected, based upon their content features,
to capture manipulated predictions (Section IV-C).

Example. Here we use an example to explain how Sacabuche
works. From a seed trigger “online backup free”, our approach
discovers its suggestion terms “online backup free mac”, “online
backup free download” (¬), etc., which are further used as
triggers to find more suggestions “best online backup free mac”
(), “norton online backup free download” (®),“strongvault
online backup free download” (¯), etc., as showed in Figure 4.
Among these suggestions, ® and ¯ are considered to be
suspicious by STA, since there is quite a semantic distance
between the triggers and their corresponding suggestions
(“norton” and “strongvault” does not seem to be semantically
related with the trigger ¬ and also these suggestions are specific.
Both terms are then further queried on search engines like
Google. From their search results, SRA determines, through
a trained classifier, that indeed there are evidences to believe
that ¯ is a manipulated term: particularly, under the trigger ¬,
the presumably popular prediction “norton” appears frequently
in the top 20 search results, while “strongvault” does not even
show up among top 100 search results of the trigger. As a
result, this term is reported as problematic.

B. Semantics-based Search Term Screening

As mentioned earlier, Sacabuche first analyzes the semantics
of individual query terms to identify those suspicious. These
terms are discovered by PF and pre-processed at this step,
before they are inspected by STA. The inspection involves
extraction of a set of semantic features from the terms and
running of a classifier to find suspicious ones based upon
the features. Here we elaborate these two steps, particularly
individual features utilized by STA.

Suggestion discovery and pre-processing. The autocomplete
predictions generated by search engines can be directly obtained
from them, e.g., from the suggestion lists triggered by the
input to their search boxes. A popular search engine typically
provides an API for collecting its complete suggestions with
regard to a given trigger term. In our research, we utilized

over 1 million popular search keywords (see Section V-A)
as “seed” triggers and ran PF to iteratively query the search
engine, with all the suggestions discovered in a round serving
as the triggers for the queries in the next round. In this way,
our approach is able to expand these seed terms and find out
not only their suggestions but those of their related terms:
for example, from “free online games casino”, we can get
other terms in the gambling category, such as “slot machine”,
“roulette”, “blackjack”, and their suggestions.

The discovered suggestions and their corresponding triggers
form search terms. Before handing them over STA, they
need to be pre-processed to remove noise and further identify
meaningful semantic tokens, as follows:

URL formatting. From each trigger and suggestion, our ap-
proach identifies the URLs in it and tokenizes the URLs. For
examples, the link https://www.subdomain.example.com/path1/
path2?q1=v1&q2=v2 is converted into the following tokens:
https www subdomain example com path1 path2 q1 v1 q2 v2.

Content sanitization. All tokens within a query term (a trigger-
suggestion pair) are then inspected to remove those less
useful for the follow-up semantic analysis. We remove special
words and phrases such as numbers, locations and stop words
(extremely common terms such as “the”). These tokens (words
or phrases) introduce noise to our semantic analysis, since
they are too common to be useful for differentiating legitimate
suggestions from illicit ones. Specifically, we identify the stop
words from query terms using stopword datasets [32] and
location tokens, which are also not informative for our purpose,
from a geographical database [18], which includes the names
(in different forms such as abbreviations) of over 11 million
locations across all countries.

Lemmatization. We further lemmatize each word within a search
term to its basic form: for example, “stopped” to “stop”, “best”
to “good” and “companies” to “company”. Specifically, we
firstly assign POS (part-of-speech) tag to each token in the given
sentence (the search term) using Python NLTK package [27].
For example, we can identify “stopped” as verb and “best”
as adjective using POS tagger. POS tagging is to provide the
contextual information that a lemmatizer needs to choose the
appropriate lemma. Then, we run a lemmatizer [35] to map a
search term to its basic form.

Once STR receives pre-processed query terms, it extracts
semantic features from them for detecting suspicious terms.
These features characterize the semantic gap between a trigger
and its suggestion term, which are supposed to be related but
often less so when the autocomplete has been manipulated.
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Fig. 5: Overview of the Sacabuche infrastructure.

Semantic consistency features. As mentioned before (see
Section III-B), we utilized a word-embedding technique based
sentence-level semantic similarity comparison to capture the
semantic gap between the trigger sa and its suggestion st.
Given two sentences, the kernel converts them into two phrase
lists pl(sa) and pl(st), through a dependency analysis. SK is
the sum of PK(pai , p

t
j), where pai is a phrase in the pha (with

1 ≤ i ≤ |pha|) and ptj is a phrase in pht (with 1 ≤ j ≤ |pht|).
PK(pai , p

t
j) is further calculated using a word kernel WK, by

simply multiplying WK(wa1 , w
t
1) with WK(wa2 , w

t
2), and the

word kernel WK(wi, wj) directly runs the word embedding
technique on word wi and wj respectively to convert them
into vectors and then computes the cosine distance between the
vectors. Once a sentence kernel value SK(sa, st) (for sa and st)
is calculated, we normalize it by using

√
SK(sa, sa)SK(st, st)

to divide it. This normalization step is necessary for the
fairness in comparing the semantic similarities across multiple
sentence pairs, since the length of sentences vary, affecting
their similarity values.

The whole similarity comparison is summarized as follows:

WK(wi, wj) =

[
1

2
( 1 + cosineSim(wi, wj))

]α
PK(pa, pt) =

len∏
i=1

WK(wai , w
t
i)

SK(sa, st) =
∑

pa∈pl(sa)
pt∈pl(st)

λ2PK(pa, pt)

Fss(s
a, st) =

SK(sa, st)√
SK(sa, sa)SK(st, st)

where λ is a decay factor of the sentence kernel, α is a scaling
factor of the word kernel and Fss is a feature value of sentence
similarity.

We found that the standard word embedding model trained
by Google Word2Vec team using part of Google News Dataset
turns out to be less effective in covering autocomplete data, only
8.89% of the words in the trigger-suggestion pairs we gathered
from the Google API. So in our research, we trained a different
model using the training sets with Wikipedia documents in
nine languages. The new model achieves a coverage of 36.15%
in terms of unique words in our autocomplete dataset. The

TABLE II: F-score of features.

Label Feature F-score
Fss(s

a, st) sentence similarity 0.597
Fws(w

a, wt) word similarity 0.741
Fif (w

a, wt) infrequent word similarity 0.653
Frs(D

a, Dt) result similarity 0.782
Fci(w

a, Ha, Ht) content impact 0.808
Frp(D

a, Dt) result popularity 0.632
Frs(N

a, N t) result size 0.745

remaining 63.85% are all low-frequency words, counting for
only 0.55% of the total words in the autocomplete dataset with
average frequency of only 1.21 per query term. Further analysis
of them reveals that among all the 605,556 uncovered words,
more than 340K are URLs, and the remaining are rare words
like “hes”, “stongvault”, etc.

The sentence-level similarity alone is insufficient for de-
tecting some manipulated suggestions. As an example, let
us look at the trigger-suggestion pair: (“online backup free
download”, “strongvault online backup free download”). Here,
an unpopular term “strongvault” is promoted onto the Google
suggestion list, for advertising the malware “strongvault”. The
overall similarity between the trigger and the suggestion here
is high, given that most of the words they include are identical.
Semantic inconsistency in this case has been captured when
comparing “strongvault” with other trigger words “online”,
“backup”, “free” and “download”. To identify such suggestions,
Sacabuche performs a fine-grained semantic consistency check
at the word-level. Specifically, for each suggested word, we run
the word-similarity kernel WK to compare it against every
trigger word, which results in a value AV G

each j
(WK(wai ,W

t
j ))

for the word wai to describe its average semantic distances
with regard to all the trigger words {W t

j |1 ≤ j ≤ |st|}. From
these values, the one with the maximum average distance is
selected as the features Fws to capture the word-level semantic
gap between the trigger and the suggestion.

In addition to the semantic features, leveraging our obser-
vation that manipulated predictions are a set of words rarely
appearing in legitimate suggestions: for example, “hes” and
“stongvault”, we further measure the infrequency level (Infreq)
for each suggestion word as follows:

Fif (w
a, wt) =

MAX
each j

(9− log10Freq(wtj))

MAX
each i

(9− log10Freq(wai ))

where Freq(w) is the frequency of word w in our Word2Vec
model. wtj is each word in trigger, and waj is each word
in suggestion. Fif is utilized alongside sentence and word-
level similarities as the differentiating features for detecting
manipulated suggestions. Their differentiating power, in terms
of F-scores, are illustrated in Table II, which were calculated
using our ground truth dataset (the goodset and the badset).

Learning and classification. Using these features, we trained
a support vector machine (SVM) classification model over
the ground truth dataset, including 100 manipulated trigger
and suggestion pairs and 150 legitimate pairs (this dataset
was carefully selected so that pairs with different labels can
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be distinguished without referring to the search results). This
model was evaluated through a 5-fold cross validation, and
achieved a precision of 94.59% and a recall of 95.89%. We
further evaluated the technique over an unknown dataset, which
is elaborated in Section V.

C. Search Result Analysis

The query-term screening step performed by STA is
designed for scalability, filtering through a large number
of autocomplete terms without actually querying the search
engine. The suspicious suggestion terms discovered at this step,
however, need to be further validated by looking at their search
results, so as to collect more evidence to support the finding
and remove false positives. This is done by the SRA module,
through a set of features identified from a series of differential
analysis, which compare the search results with and without
suggestion terms. It models the observations that a manipulated
suggestion tends to have a larger impact on search results, in
terms of promoting its target content, but be less diverse in
search results and also bring in fewer results than expected for
a legitimate popular query term. Note that even though each
single feature may not necessarily fully capture manipulated
suggestions, strategically leveraging multiple features in a
collective manner helps achieve very high detection accuracy,
as to be demonstrated in Section V.

Search result impact. Among the suspicious suggestions
reported by STA, those truly manipulated have large impacts
on search results, distinguishing them significantly from what
are reported by the search engine under the trigger term only.
This deviation is measured in our research through two features:
result similarity that compares the search results of a trigger
with and without a suggestion and content impact that checks
the relations between suggestion words and search content to
understand their impacts on search outcome ranking.

A manipulated suggestion is meant to affect the way the
search engine prioritizes search results, making promoted
content more prominent in the results. As a consequence, the
results reported under such a term will be less in line with
those under the trigger (without suggestions), compared with the
results of legitimate suggestions. To measure such discrepancy,
we utilize a Rank-Biased Overlap (RBO) function [59] to
evaluate the similarity of two ranked lists of domain names,
one retrieved from the search engine under the trigger alone
and the other under the whole query term (trigger +suggestion).
The RBO measurement is characterized by its design to
weigh high-ranking items more heavily than those down
the lists, handle nonconjointness and be monotonic with the
increasing depth (i.e., ranks) of evaluation [59]. Specifically, let
{Dt

i : 1 ≤ i ≤ d} be the element at rank i on the list Dt (the
domain list for the trigger). At each depth d, the intersection of
lists Dt and Da (for suggestion) is I(Dt, Da)d = Dt

1:d∩Da
1:d.

The proportion of two search results overlapped at depth d is
defined as their agreement A(Dt, Da)d = |I(Dt,Da)d|

d . So we
get the two search results’ rank-biased overlaps as below:

Frs(D
a, Dt) = (1− p)

∞∑
d=1

pd−1A(Dt, Da)d

where p is a decay value for tuning the weights for different
depths d. The smaller p is, the more biased toward higher

ranked items the metric becomes. Once p = 0, only the item
on the top of the list matters. This metric is convergent and
its value falls in the range [0, 1] where 0 is disjoint, and 1 is
identical.

Also measuring suggestion impacts is content impact, which
evaluates the relations between suggestion words and the titles
of individual search result items (see Figure 4), with and without
a given suggestion when querying the search engine. We utilize
the aforementioned function, RBO, for differential analysis. The
purpose is to understand whether the suggested content becomes
more prominent under the suggestion words (to the extent they
are more frequently present in the search result titles), which
is a necessary condition for suggestion manipulation. More
specifically, for the search results under a trigger only, our
approach looks for the distribution of suggestion words across
the titles of the result items, and compares it to the distribution
of the same set of suggestion words over the result titles under
the whole query term (the trigger and the suggestion) using
RBO. Formally, let H = {hi|1 ≤ i ≤ |H|} be a title list
retrieved from a search result page, where hi is the ith title on
the list. Given a suggestion word wai , its impact on hi is 1 if
the word shows up in the title and 0 otherwise. In this way,
its distribution over H can be described by a binary vector
V (wai , H). The content impact R of wai is then calculated
as the distance between two ranked lists: R(wai , H

a, Ht) =
RBO(V (wai , H

a), V (wai , H
t)). Based upon the impact of

individual word in a suggestion, we identify an content impact
feature for detecting manipulated suggestion as follows:

Fci(w
a, Ha, Ht) = Min

each i
(R(wai , H

a, Ht))

where wai is the suggestion term.

Result popularity and size. Further we found that fewer results
are reported by the search engine when a truly manipulated
suggestion is queried and the domains involved in the results
often have low Alexa ranking. The observation is characterized
by two collective features: search result popularity that com-
pares the popularity of search results under both trigger and
suggestions, and search result size, which captures the number
of results that Google can find for a given query.

We define the popularity of a given domain Di as P (Di) =
1 − log10AlexaRanking(Di)/7, where AlexaRanking(Di)
is the rank of a domain Di in Alexa Top 1 million. If the
domain does not show up among the top 1 million, we set its
popularity to 1

7 . Again, here we perform a differential analysis
and define a popularity vector AP with its dth element being
the average popularity of the top d domains on the search result
page, i.e., AP (D) = [AV G

i∈[1:d]
(P (Di))|1 ≤ d ≤ |D|]. Let AP t

be the vector for the results of querying a trigger only and
AP a be the vector for querying both trigger and suggestion.
The search result popularity is calculated as follows:

Frp(D
a, Dt) = RBO(AP a(Da), AP t(Dt))

From each search result page, SRA further retrieves the number
of the results discovered by the search engine. Based upon such
information, we identify a feature Frs. Let N t be the number
of results found under the trigger, and Na be the number found
under the trigger and a suggestion. The feature is calculated
as Frs(Na, N t) = Na−Nt

Nt .
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Classification and detection. The differentiation powers of
these features are presented in Table II. Over these individual
features, SRA trains a SVM model and utilizes it to classify the
search results of the individual queries containing suspicious
suggestions, as reported by STA. This two-step analysis
produces a high accurate findings with a precision of 96.23%
and a recall of 95.63% (Section V).

V. EVALUATION

In our study, we ran our implementation of Sacabuche
to automatically analyze 114 millions suggestion and trigger
pairs and 1.6 million search result pages, on an R730xd server
with 40 Intel Xeon E5-2650 v3 2.3GHz, 25M Cache CPUs
and 256GB memories. Here we explain how the data were
collected and analyzed at large scale.

A. Data Collection and Validation

To evaluate Sacabuche, we collected a large number of
trigger-suggestion pairs. For this purpose, we first utilized a set
of keywords to iteratively query the autocomplete services
provided by Google, Bing and Yahoo!. The trigger and
suggestion pairs discovered in this way were then analyzed by
STA to find those suspicious. Such query terms were further
used to search the search engines and gather their result pages.
Altogether, we obtained 114 millions suggestion and trigger
pairs and 1.6 million result pages, as illustrated in Table I.

Trigger and suggestion collection. To collect these seed
triggers, we chose a set of “hot” phrases that represent popular
search interests. These trigger phrases are mainly trending
keywords with a large search volume, totally 1 million collected
from a keyword database [10], covering a broad search interests
(legal service, financial service, home service and education).
However, they miss some content categories suggestion ma-
nipulators aim at, including gambling and pharmacy, etc. To
address this issue, we included in the dataset 386 gambling
keywords [3], [16] and 514 pharmaceutical keywords from
drug lists [5].

Using these “seed” keywords, we utilized the technique
mentioned in Section IV-B to iteratively discover suggestion
phrases through autocomplete APIs: for each given trigger,
its suggestion list is retrieved from the API and then serves
as new triggers to discover their suggestions; this process
continues until a search depth limit is met. In our research, we
set the search depth to 2 for the trending phrases, and to 3 for
gambling/pharmacy phrases, since the latter are known to be
usual targets of suggestion manipulation. Such autocomplete
collection was performed on daily basis for three months,
from 02/09/2017 to 05/09/2017. Altogether, we collected 114
millions unique suggestion and trigger pairs.

Validation. As mentioned earlier, a study on autocomplete
manipulation faces the challenge in getting ground truth, a
common problem for the research on blackhat SEO [38],
[58], [48], [41]. In line with these prior studies, we utilized
a few indicators to manually validate the findings made by
Sacabuche. Specifically, we first randomly sampled those
flagged query terms (trigger+suggestion) by grouping their
suggestions according to their individual categories and then
randomly picked out 100 from each group for an inspection.

Since the inspection cannot be done automatically, we had to
manually analyze each sample (including the search results of
a suggestion and related websites and content) to determine
its legitimacy, based upon whether some indicators are present
or not: (1) a manipulated suggestion must promote a target
whose own reputation cannot make itself stand out in the
search results of the trigger; (2) the manipulated suggestion
and its search results often conflict with the user’s original
search intention. For example, for the suggestion “strongvault
online backup free download”, we identified the website it
promotes “strongvault-online-backup.software.informer.com” in
the search result pages (since the website is highly ranked and
its title and search result descriptions are closely relevant to the
suggestion). We found that the website does not appear in the
search results of its trigger (“online backup free download”).
Also when we manually examined the website, we were
immediately redirected to a phishing website to download
suspicious code reported to be malware by VirusTotal[33].
Therefore we consider this suggestion to be manipulated.

B. Parameter Setting

In the experiments, the parameters of our prototype system
were set as follow:
• RBO decay constant (p). The decay constant is a parameter for
tunning the weights for different depth in rank-biased overlaps
function (Section IV-C). It was set according to the convention
of evaluating the RBO function: p = 0.9.
• Inverse of regularization strength (C). Regularization is a
parameter for reducing the over-fitting to the labeled data when
we built the relation models using logistical regression. In our
implementation, we utilized a C = 10, which gave the best
performance among other C values from 0.3 to 15.
• The Scaling Factor α in Word Kernel. This factor is defined
in the WK kernel to scale the word similarity value. In our
implementation, we adopted α = 5 as suggested by the original
authors to have good performance in multiple datasets.
• The Decay Factor λ in Sentence Kernel. λ is defined in
the sentence kernel SK(sa, st) to penalize length of the given
phrases. Like α in the Word Kernel, we adopted λ = 1 as
recommended by the original work.

C. Results

Accuracy and coverage. We first evaluated STA over 100
manipulated trigger suggestion pairs and 150 legitimate pairs,
and then examined SRA over the search result pages of 150
manipulated trigger suggestion pairs from the bad set (focusing
on top 20 result items), together with 300 legitimate pairs from
the good set and their search results, using a five-fold cross
validation. Overall, our prototype achieved a precision of a
precision of 96.23% and a recall of 95.63%.

Then, we ran Sacabuche on the unknown set with 114
millions suggestion and trigger pairs. Altogether, our STA
found 1 million pairs to be suspicious. These pairs were further
inspected by SRA, which reported 460K to be illegitimate.
Among all those detected, 5.6% of manipulated suggestions
include links to compromised or malicious websites in their
top 20 search results (confirmed by CleanMX[17] and Google
Safebrowsing[22]). In this step, we manually inspected 1K
suggestion trigger pairs, and concluded that Sacabuche achieved
a precision of 95.4% on the unknown set.
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TABLE III: Running time at different stages. Estimated
search query fetching time is 0.864s per query [23].

Sacabuche average time
(ms/pair) Sacabuche-C average time

(ms/pair)
PF 0.29 PF 0.29

STA 2.54 - -
Search Query 11.45 Search Query 1486.08

SRA 1.47 STA+SRA 4.01
total 15.75 total 1490.38

As mentioned earlier, Sacabuche is characterized by a
two-step analysis (STA and then SRA), first filtering out
the terms unlikely to be manipulated and then querying the
search engine with the remaining terms to inspect the results.
This strategy is designed to minimize the overheads incurred
by the queries (reducing the number of search queries by a
factor of 110 on search engines), which is crucial for making
our system scalable. In the meantime, there is a concern
whether the performance benefit comes with an impact on the
technique’s effectiveness, making it less accurate. To understand
the problem, we compared our implementation of Sacabuche
with an alternative solution, called Sacabuche-C, which queries
Google for every trigger +suggestion pair and then utilizes
the combined features of STA and SRA to detect manipulated
suggestions. This approach is fully tuned toward effectiveness,
completely ignoring the performance impact. In our research,
we also trained Sacabuche-C over the labeled datasets as
described in Section III and evaluated it using the five-fold
cross validation. This alternative approach has a precision of
97.68% and a recall of 95.59%, which is in line with the
original Sacabuche, indicating that our two-step design does
not affect effectiveness in detection.

Performance. To understand the performance of Sacabuche,
we measured the time it takes to process 100K suggestion
trigger pairs from the unknown set, on our R730xd server
using a single process. The breakdowns of the delays observed
at each stage (PF, STA, and SRA) are reported in Table III.
As we can see here, on average, 28.06 seconds were spent
on preprocessing those 100K suggestion trigger pairs. Also,
only 1,326 search queries were issued to Google. The results
demonstrate that Sacabuche scales well and can easily process a
large number of suggestion terms without generating too many
queries. Further we looked at the performance of Sacabuche-C
(Table III). As we can see, in the absence of the STA step
to first filter out legitimate terms, the performance overhead
became overwhelming: introducing a delay at least 94 times
as large as our two-step approach, not to mention the pressure
on the search engine, which makes it impossible to scale.

VI. MEASUREMENT

On the 114 million trigger-suggestion pairs in the unknown
set, we performed a measurement study to understand how
today’s autocomplete services are being abused. Our study
reveals the pervasiveness of autocomplete manipulations, with
0.4% of the suggestions we collected found to present traits
typical of illicitly promoted autocompletes. More concerning
is that the threat continues to evolve, becoming even more
serious over time. We further looked into the ecosystem of

this emerging SEO business (see Figure 2), through purchasing
and interacting with the manipulation service providers. This
effort leads to the discovery of their strategies, including query
log pollution and utilization of compromised sites, and their
revenues, as high as $569K per week. Also we report our
analysis of an attack toolkit and a large-scale malvertising
campaign, involving 245 manipulated suggestions and 1,672
websites.

A. Landscape

Scope and magnitude. Our study reveals that manipulated
suggestion terms are pervasive across multiple search engines’
autocomplete services. Of 14 million trigger phrases on Google,
Bing and Yahoo!, we found that 256K were manipulated, which
relate to 383K manipulated suggestions. Figure 6(a) illustrates
the number of the abused suggestions we discovered on different
search engines in a single day. Among them, Google is the most
popular (0.48%) in our dataset, followed by Bing (0.37%) and
Yahoo! (0.2%). Also, in Google autocomplete service, 16.6% of
manipulated suggestions were ranked in the top 3 autocomplete
results, which is 14.2% in Bing and 29.1% in Yahoo!.

We further investigated the impacts of suggestion manipula-
tions on different search content. For this purpose, we grouped
all trigger keywords into 10 categories. Table IV presents the
number of manipulated suggestion terms under each category.
As we can see here, such abused suggestions cover a vast
range of topics, including home services, education, legal and
lending products, technology, gambling and others. Among
all these categories, Lending Products (4.13%) has the largest
portion of trigger phrases with manipulated suggestions, which
is followed by Home Services (2.47%) and Pharmaceutical
Services (2.09%). When we looked at polluted triggers in the
category of Lending Products, we found 536 “payday loan”
related polluted triggers with manipulated suggestions such
as “online payday loans get cash now - cashnow.com” and or
“payday loans cash advances www.quickquid.co.uk”. Note that
Google bans ads for payday loans to show in search results [12].
These payday loan websites were able to promote their lending
products in search engines through autocomplete manipulation.

Evolution and lifetime. To understand how this emerging
threat evolves over time, we collected 67 million distinct
autosuggestions from the Google Autocomplete API from
02/09/2017 to 05/09/2017. Among them, Sacabuche found
324,610 manipulated trigger-suggestion pairs on Google. Fig-
ure 6(b) illustrates the evolution of the attack, in terms of
the cumulative number of newly-appearing manipulated terms
observed during that period. We found that large amount of
manipulated suggestions are newly appeared, with 71.3% of
newly-appearing manipulated suggestions related to the newly-
appearing polluted triggers. Also, we observed that on average
1.9% of trigger phrases were polluted. This number jumped to
2.1% on 03/21/2017. In general, the trend exhibits a substantial
increase in the number of manipulated suggestions.

When looking into the lifetime of the manipulated sug-
gestion terms, we were surprised by the effectiveness and
stealthiness of suggestion manipulation campaigns: they have
been there for a long time, without being detected. Figure 6(c)
illustrates the distribution of the lifetime for those missuggestion
terms, which were estimated through continuously crawling
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TABLE IV: Categories of the polluted triggers.

Trigger Category # of
terms

# of
manipulations

Vol-
ume

Lending Products 1389 1580/34629 4.13%
Home Services 17059 16712/413836 2.47%
Pharmaceutical 3715 3876/93929 2.09%

Technology 29115 32696/762548 0.91%
Auto Services 3477 3916/92220 1.08%

Education 17311 17628/423352 0.81%
Shopping 30465 32986/773087 0.72%
Gambling 413 454/10314 0.68%

Travel 6434 6554/153842 0.48%
Legal Services 14064 14084/348548 0.55%

autocomplete of the seed keywords every day from 02/09/2017
to 05/09/2017. As we can see from the figure, 39.3% of the
manipulated suggestions stay on Google’s suggestion list for
more than 30 days, with the average lifetime of 34 days, which
is comparable with the lifetimes of legitimate suggestions, that
is, 63 days on average.

Manipulation content and pattern. Our research shows that
multiple triggers have been utilized to promote one suggestion.
We found that 20% of manipulated terms are related to more
than one trigger. For example, the missuggestion “free web
hosting and domain name registration services by doteasy.com”
is associated with 123 trigger phrases such as ”free web hosting
without domain name” and ”web hosting free domain name
registration”. Therefore, finding one manipulation suggestion
can help to detect other polluted triggers.

Another interesting observation is that different manipulated
suggestions tend to have similar grammatic structures, as shown
in Table V. For example, we found that 1,446 manipulated
suggestions are characterized by a pattern trigger phrase
relevant content+by+URL, such as “custom t shirt design
software and application tool by panaceatek.com”,“free web
hosting and domain name registration services by doteasy.com”
and “site hosted for free by xfreehosting.com”. To identify such
semantic patterns, we grouped the manipulated suggestions
based on their content components unrelated to the semantics
of trigger (such as “by+URL”). More specifically, we first
removed all trigger phrases and their related phrases (identified
by Word2Vec) from the suggestion. Then from the remaining
suggestion content, we manually inspected the words occurring
frequently across different suggestion terms (such as “by” and
“-”). Table V illustrates the top 5 most popular patterns. These
patterns are characterized by the locations of their promotion
targets (e.g., “strongvault”, “panaceatek.com”), which tend to
appear at the beginning or the end of a suggestion, being
connected to the rest of the term through “-”, “by”,“at”, “from”,
“+” and other common conjunctions. The rest of the manipulated
suggestions carry their promotion targets in the middle of
the terms. We found that such a promotion phrase often
has a compound relation with a trigger-related phrase, such
as “how does the backup software strongvault work”, where
“strongvault” is a compound term for “backup software”.

For example, we found a malicious autocomplete campaign
sharing similar manipulation content and pattern. From our
dataset, we correlated 245 manipulated suggestions and 1,672

websites from their search results. These suggestions all share
the same pattern: target term +“-”+ trigger relevant content, such
as “hesna ims - internet marketing solutions”, and once their
top result items are clicked, all the redirection URLs generated
have a similar format, particularly, all including a campaign ID
“campaign id=20”. Our analysis shows that most top 20 search
results produced by these suggestions are malicious, directing
the visitors to those attack websites to download malware.

B. Autocomplete Manipulation Service

We found that manipulating suggestion has already become
a booming business, with tens of services available online.
To understand their promotion strategies and ecosystem, we
studied such services through communicating with some of
them to understand their services and purchasing the service
to promote suggestion terms. In this way, we were able to get
access to the tools they use, find out their strategies and collect
materials for estimating their operational cost and revenues.

Manipulation techniques. We found that these services ma-
nipulate suggestions typically through two strategies: search
log pollution and search result pollution, as explicated below:

• Search log pollution. Some of service providers we contacted
(Table VI) explained to us the way they promote a given
suggestion term and the tools they use. A key strategy here is to
pollute search logs through crowd-sourcing. Specifically, these
providers often install software on their clients’ systems, which
can simulate web users’ behaviors to query search engines.
As a prominent example, Seopmb[29] is one of such tools
that performs automatic searches in one’s browser. The clients
running the tool need to pay rewards points to the provider. In
the meantime, they also get rewards by either paying for them
or running promotional tasks for others. In this way, a large
number of clients under the same provider can work together
to promote each other’s suggestion keywords.

Since the illicit practice of manipulating autocomplete
service can lead to SEO penalty [28], the service providers
often deploy evasion mechanisms to avoid being detected. For
example, Seopmb encrypts the communication between the
client and the server; also interestingly, although the provider’s
website is hosted in USA (Psychz Networks Ashburn), the
software distributed from the site communicates with a server
located in Hong Kong. Also, the providers usually hire a
lot of people from different locations with different IPs to
perform searches manually. They can even customize such
crowd-sourcing according to customers’ requests. For example,
if one wants to promote a suggestion for a specific geo-location,
the provider can find people from that location to do the job.

To understand the effectiveness of such promotion efforts,
we purchased the service from a provider Affordable Reputation
Management[13]. This provider hired crowd-sourcing operators
around the United States to perform the search. They utilized
the crowd-sourcing manipulation strategy as follows: 1) search
for the target suggestion phrase on Google, 2) click the client’s
website and 3) click any other link from this website. In this
way, they generated real searches on Google and real visits
to the search results. We set up a website to track the visitors
with the “Referrer = google.com”, assuming most of them
working for the service provider (we only recorded the visiting
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TABLE V: Top 5 manipulation patterns.

Pattern # of manipulations Example
trigger relevant content+target 195,738 phoenix divorce attorney sampair
target+trigger relevant content 188,238 strongvault online backup free download

target+“ - ”+ trigger relevant content 2,278 bd&j - los angeles personal injury lawyers
trigger relevant content+by+URL 1,446 custom t shirt design software and application tool by panaceatek.com

trigger relevant content+from+URL 427 reliable web hosting from webhostinghub.com

TABLE VI: List of Manipulation Service Providers.

Service Provider Country Supported Platforms Cost Time
Affordable Reputation Management USA Google, Bing, Yahoo!, Amazon etc. $370 / m 1 - 3 months
Search Reputation USA Google, Bing, Yahoo! $1200 / m 3 months
Google Autocomplete Changer USA Google, Bing, Yahoo! $2500 (fixed) 3 months
Seopmb China Baidu, Sogou, 360 $1 ∼$20 / d 1 month
iXiala China Baidu, Sogou, 360, Taobao etc. $2 ∼$12 / d 3 - 15 days

information without requiring user’s input). We found that 102
different hosts visited our websites from 78 different locations
such as California, Portland (the company’s location) and
Columbia. These visits happened through multiple platforms,
from desktops to mobile devices, and the average number of
visit was 5.4 per day. Surprisingly, the operation took effect
in just one month with our suggestion phrase ranks first in
the autocomplete list. The service provider claimed that this
approach was difficult to detect since the searches were real
and the operations performed by the crowd-sourcing operators
were unrecognizable as the normal activities.

• Search result pollution. In addition to search log pollution,
we also found that suggestions can be manipulated through
polluting search results. A potential rationale for the strategy
is that the ranking (e.g. PageRank) of the web pages with the
keyword could impact the positioning of suggestion terms on
the suggestion lists triggered by search terms [20].

In our research, we ran malware scan (Google Safebrowsing,
CleanMX and VirusTotal) on the websites retrieved from
manipulated suggestion phrases’ search result pages, and
found that 2,928 websites (related to 5.6% of suggestions)
were compromised to include manipulated suggestion phrases.
Among them, 39.1% were among Alexa Top 1 Million websites,
such as virginia.edu, liceomedi.gov.it, and ub.ac.id. Figure 6(d)
shows the cumulative distribution of their Alexa ranks.

Further, we found 120K webpages, which appeared on the
free hosting list [26], turned out to be Spam hosting related to
9% manipulated suggestions. Here we determined that a page
from the search result is Spam hosting if it looks very similar
to other pages also in the results. The similarity here was
measured by the cosine similarity between two pages (>0.98)
in terms of their content’s TF-IDF (term frequency-inverse
document frequency) vectors [39]. Taking a close look at these
pages, we discovered that several blackhat SEO techniques are
used to increase their page ranking, such as keyword stuffing
(i.e., the repetition of keywords in the meta tag and web page
content), link farms (i.e., constructing networks of websites
that link to each other) and traffic Spam (i.e., adding unrelated
keywords to manipulate the relevance).

Traffic monetization. Then we looked into how the manipu-
lated phrases are used to monetize traffic. Beside commercial
promotion, we found that manipulation campaigns get profits

by attracting victims to download malware or visit phishing
sites, or selling the victims’ traffic through an affiliate program.

We observed in our study that the parties promoted by
manipulated suggestions monetize the traffic through search
redirections: when a visitor clicks the link on a search result
page, she will be redirected to a different site. Such redirections
were detected by a Firefox add-on we implemented, which uses
the browser to automatically visit each link on a manipulated
suggestion’s search result pages, using google.com as the
referrer, and records all the web activities it triggers (network
requests, responses and browser events). Running the crawler,
we found that 315K pages related to 18% suggestions utilize
search redirections to monetize traffic.

We further discovered several campaigns using suggestion
manipulation. These campaigns were identified from the
affiliation networks and affiliation IDs on the URLs generated
by search redirections. Such information was recovered through
finding the most common 3-grams on search redirection URLs,
which were then manually inspected to determine whether
they are affiliate IDs and if so, which network they belong
to. Then, we grouped the search redirection chains according
to their affiliate IDs. Table VII shows the top 3 affiliate
networks utilized by most traffic campaigns. A prominent
example of such networks is alldownloads.hapc.gdn, whose
redirection doorway sites have the largest presentation (related
to 245 manipulated suggestions) in the search results for
all manipulated suggestions we detected. That network aims
to promote potentially unwanted programs (PUP), so the
adware publisher can generate pay-per-click revenues. Also, we
found that some traffic abusers (promoted through suggestion
manipulation) collaborate with reputable affiliate network such
as admarketplace.com.

Revenue analysis. To understand the economic motives behind
the suggestion manipulation business, we analyzed the revenue
of the service providers, who profit from autocomplete promo-
tion, and their customers, who profit from traffic monetization.

For estimating the revenue, we contacted five of them to
find out the financial cost and time for running a suggestion
manipulation campaign. As shown in Table VI, we found that
promoting a suggestion phrase takes from $300 to $2,500 per
month, depending on target search engines and the popularity
of the phrase. It needs 1-3 months to have the suggestion visible
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Fig. 6: Study on manipulated suggestions.

TABLE VII: Top 3 search redirection manipulated sugges-
tion campaigns with most manipulated suggestions.

Name
# of

manipula-
tions

# of links Traffic mon-
etization

alldownloads.hapc.gdn 245 1,672 malvertising
mobioffertrck.com 130 1,203 malvertising

admarketplace.com 93 871 affiliate
network

on the autocomplete results. Hence, the average revenue for the
service providers to successfully manipulate one suggestion is
$2,544. While it is challenging to measure profitability of the
service providers directly, we have one anecdotal data point.
Through the communication with the provider iXiala, we found
that the 10K sites requested suggestion manipulation on it,
which related to a revenue of $569K per week with 465K
manipulated suggestions. At the same time, iXiala had a group
of operators, who earned a commission of $54K per week.
Hence, iXiala earned a profit of around $515K per week.

As mentioned earlier, the recipient of the manipulation
service monetizes the traffic from the victims who follow the
search results produced by manipulated suggestions. We utilize
the following model [48] to estimate their revenues: R(t) =
Nv(t)×Pa×Ra, where the total revenue R(t) during the time
period t is calculated from the total number of actions taken
(i.e., total number of click Nv(t) times the probability of action
after the click Pa), and the average revenue per action Ra.

The total number of clicks per manipulated suggestion
can be estimated from individual keyword’s search volumes
reported by Keywordtool API [25], a mainstream search engine
keyword research instrument adopted by many companies such
as Microsoft and eBay. From the statistics of the 189,808 ma-
nipulations indexed by Keywordtool, we found that the search
volume of manipulated suggestions is about 111 million/month
in total, 584/month per keyword on average. The average cost of
the keyword is $0.23 per click. Also for each search result page,
there is a probability 71.3% [21] for visitors to click on a result
item. Altogether, we can estimate the average revenue per month
for a service recipient who monetizes traffic is $95/keyword.
Note that manipulated suggestions also indirectly monetize
traffic (i.e., traffic monetization through the second time of
search query after querying trigger phrases). The recipients of
the manipulation service also earn promotion profit even the
victims do not conduct the second search.

VII. DISCUSSION

Limitations of Sacabuche. Like any machine learning ap-
proach, our detection in theory can be evaded by making
both search terms and search results mimic the benign ones.
For example, an adversary may utilize a trigger with similar
semantic as the legitimate search terms and pollute the trigger’s
all top 20 search results. However, this will very likely cause
the manipulated suggestion to be less attractive to the visitors
and increase the cost of the manipulation. Overall, we believe
Sacabuche significantly raises the bar for the attack due to the
inherent semantic inconsistency between the trigger and target
as well as a set of salient features from the search results of
the manipulated terms.

Again, it’s worth to note that our detected autocompletes
are difficult to be verified as manipulations. In our study, we
consider them to be missuggestions due to the exhibition of
illicit indicators as the confirmed manipulated ones. Indeed, our
study shows that a large volume of the missuggested results
include unpopular services or products, which are not supposed
to appear on autocomplete, even when the context is right and
the promoted products are legitimate.

Another limitation is the lack of ground truth and the manual
efforts involved in our evaluation. To ensure our evaluation
results are trustworthy, we exerted our best efforts to collect
a reasonable size of manipulated examples posted by real
autocomplete manipulation companies. As web security experts,
we adhere to several concrete, intuitive, and easy-to-follow
guidelines (Section V) when performing manual analysis. We
also analyzed and observed other indicators like search term
patterns as side-validation for the unlabeled data. Despite all
above efforts, we admit that the validation process is laborious
and may possibly include inaccuracies.

So far our work focuses on offline analysis. Nevertheless
our low detection overhead (Table III) makes it entirely feasible
to convert Sacabuche into an online system, for the purpose
of helping users avoid autocomplete scams. The Sacabuche
service can be maintained by the search engine providers or,
more attractively, 3rd-party organizations (recall that Sacabuche
does not require query logs). We leave this as future work.

Our current implementation of Sacabuche focuses on
detecting missuggestion on search engines. In the meantime,
e-commerce platforms’(such as Amazon and eBay) search
services are also vulnerable to similar attacks. A natural follow-
up is to develop the detector to protect those services.
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Comparison with traditional blackhat SEO. We found that
the manipulators always promote unpopular terms which are
within the same context as the triggers. This is because it is
more effective to advertise the targets and evade detection.
Specifically, the autocompletes can be regarded as long-tail
keywords. As studied in [48] and [47], searching for the long-
tail keywords, which relate to specific terms, will make it more
easy to convert the traffic to sales than generic searches. From
the description of the manipulators and the missuggestions
they promoted (see Section III), they indeed tend to promote
specific targets in coherence with the triggers. Note that on the
other hand, different from autocomplete manipulation, some
traditional blackhat SEO techniques (such as keyword stuffing)
pollute the search results by adding irrelevant keywords.
However, they have a different goal for content promotion.
Instead of achieving a higher traffic conversion rate, they tried
to gain traffic from other popular keywords which are out
of search intentions. In the autocomplete manipulation, users
already have search intentions (as the trigger terms). As a result,
the manipulators targeted a higher conversion rate by adding
unpopular while coherent terms.

Lesson Learnt. Based on our findings, we identified several
potentially effective mitigation strategies besides the detection
efforts from the third party such as Sacabuche. First, search en-
gine operators do have responsibilities to act more aggressively
on detecting and removing manipulated suggestion. They could
detect similar phrase patterns from the search logs, or degrade
the positioning of autocomplete phrases with highly similar but
low-quality search result contents. Further, the affiliate networks
could monitor HTTP refers and identify other indications that
their affiliates are engaging in autocomplete manipulation. We
found that most of the affiliate networks currently have reactive
policies, such as abuse reporting to restrict illicit practices of
affiliates. A more proactive policy might help to mitigate the
surge of autocomplete manipulation.

Responsible Disclosure. Since the discovery of manipulated
suggestions, we have been in active communication with
the parties affected. So far, we have reported 100 sampled
manipulated phrases to Google, Bing, and Yahoo!. By now,
Google has responded to our report. However, considering the
size of the manipulations, the full-scale reporting and validation
process takes time and is our on-going work.

VIII. RELATED WORK

Detection on Autocomplete Manipulation. To the best of our
knowledge, the work most relevant to ours was done by Liu et.
al [50] who used query logs to detect promotion campaigns. The
authors proposed a framework to detect promotion campaigns
abusing autocomplete service, and then extended it to identify
the promotion target (e.g., drugs). Their core technique is
to construct and analyze a user-query bipartite graph that
captures the relationship between promoters and manipulations.
Their technique requires (usually proprietary) search query logs,
manual annotation of thousands of terms, and even promoters’
IDs (through cookies). In contrast, our NLP-based technique is
fully automated and requires neither query logs nor promoters’
IDs that are easy to spoof. We further conducted a large-
scale measurement to reveal the pervasiveness of autocomplete
manipulation and its significant security impacts.

Abusing Search Engines. Numerous malicious activities lever-
aging blackhat SEO have been reported in the literature. To
name a few, Leontiadis et al. conducted a measurement study on
search redirection attacks for online pharmacy promotion [46].
Lu et al. developed a browser plug-in for detecting malicious
search redirections [51]. Moore et al. performed a measurement
of the abuse of “trending” terms, which are usually obtained
from popular search terms or tweets, for web search-engine
manipulation and social-network spam [52]. Invernizzi et al. de-
signed an efficient system called Evilseed to identify malicious
webpages indexed by search engines, which adopts prefiltering
techniques to speed up the inspection process [45]. Different
from these works, our paper designed and implemented a system
to perform efficient and highly accurate missugestion detection,
a different type of blackhat SEO.

Attacking recommendation systems. Prior research has also
reported attacks on manipulating the results of recommendation
systems as well as devised mitigation strategies. For example,
Xing et al. proposed pollution attacks that utilize cross-site
requests to inject fake information in order to perturb web
services’ personalization algorithms [60]. Yang et al proposed
attacks on the co-visitation recommendation systems [61].
Gelernter et al. introduced an attack to pollute the personalized
search history and therefore the auto-suggest list of the
victim [42]. The bar for the attack is high: the victim must log
into the search engine service (e.g., Google account), and she
has to visit the malicious website controlled by the attacker. This
attack is therefore different from our studied crowd-sourcing
autocomplete manipulation attack, which can be regarded as
an emerging type of attack on recommendation systems.

Security Analysis Leveraging NLP. Recently, researchers
leverage natural language processing for security and privacy
research. Examples include analyzing web privacy policies [62],
generating Android privacy policies [54], inferring mobile app
permission through apps’ descriptions [54], [56], detecting sen-
sitive user input [44], [53], and website promotional infection
detection [49]. Our work identifies a novel application of NLP,
i.e., scalable detection of autocomplete manipulations.

IX. CONCLUSION

In this paper, we present the first technique that supports a
large-scale semantics-based analysis of autocomplete manipula-
tions, an emerging threat with significant security implications.
Our system, called Sacabuche, utilizes a two-step approach to
filter through a large number of trigger-suggestion pairs, based
upon a lightweight NLP analysis, thereby avoiding expensive
queries to search engines. Only a small set of suspicious
suggestions are run against the search engines to acquire search
results for a more in-depth analysis. Our study shows that
this approach achieves a high effectiveness (96.23% precision,
95.63% recall) and also enables a large-scale measurement
study involving 114 million query terms. Our findings reveal
the significant impact of the threat, with hundreds of thousands
of manipulated terms promoted through major search engines
(Google, Bing, Yahoo!), spreading low-quality content and even
malware and phishing. Also discovered in the study are the
sophisticated evasion and promotion techniques employed in
the attack and exceedingly long lifetimes of the abused terms,
which call for further studies on the illicit activities and serious
efforts to mitigate and ultimately eliminate this threat.
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