
Riding out DOMsday: Toward Detecting and
Preventing DOM Cross-Site Scripting

William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, Limin Jia
{billy, anupamd, mahmoods, lbauer, liminjia}@cmu.edu

Abstract—Cross-site scripting (XSS) vulnerabilities are the
most frequently reported web application vulnerability. As com-
plex JavaScript applications become more widespread, DOM
(Document Object Model) XSS vulnerabilities—a type of XSS
vulnerability where the vulnerability is located in client-side
JavaScript, rather than server-side code—are becoming more
common. As the first contribution of this work, we empirically
assess the impact of DOM XSS on the web using a browser with
taint tracking embedded in the JavaScript engine. Building on
the methodology used in a previous study that crawled popular
websites, we collect a current dataset of potential DOM XSS
vulnerabilities. We improve on the methodology for confirming
XSS vulnerabilities, and using this improved methodology, we
find 83% more vulnerabilities than previous methodology applied
to the same dataset. As a second contribution, we identify the
causes of and discuss how to prevent DOM XSS vulnerabilities.
One example of our findings is that custom HTML templating
designs—a design pattern that could prevent DOM XSS vul-
nerabilities analogous to parameterized SQL—can be buggy in
practice, allowing DOM XSS attacks. As our third contribution,
we evaluate the error rates of three static-analysis tools to detect
DOM XSS vulnerabilities found with dynamic analysis techniques
using in-the-wild examples. We find static-analysis tools to miss
90% of bugs found by our dynamic analysis, though some tools
can have very few false positives and at the same time find
vulnerabilities not found using the dynamic analysis.

I. INTRODUCTION

Cross-site scripting (XSS) is the most frequently reported
class of web-application vulnerabilities, constituting 25% of
web vulnerabilities reported in 2014 [9]. By compromising
client-side browser security using XSS, attackers can gain con-
trol over login cookies, passwords, and authentication tokens,
and perform application-level actions as users, for example,
send emails or make financial transactions [25]. Preventing
XSS typically requires website owners to not only sanitize all
untrusted inputs to their web application, but also to sanitize
all input that could be received by the client’s JavaScript
interpreter—a task that can be error-prone due to the complex-
ity of web applications and the widespread use of sensitive
functions in JavaScript. Document Object Model cross-site
scripting (DOM XSS)—a particular type of XSS vulnerability
that occurs entirely in client-side JavaScript—is more and more

of a threat as JavaScript on the web becomes increasingly
complicated. Traditional methods for defending against XSS
vulnerabilities in server-side code—for example, server-side
taint tracking or web application firewalls—typically do not
apply because the vulnerability lies entirely in client code and
servers may not even have logs to detect when an attack occurs.

In this paper, we aim to answer the following questions
about DOM XSS. Are DOM XSS vulnerabilities becoming
more or less common? How do state-of-the-art methods for
detecting DOM XSS vulnerabilities compare? Are web de-
velopers learning to avoid such vulnerabilities through good
coding practices, for example, using encoding schemes or
design patterns such as HTML templating? What are the causes
of DOM XSS? Do shared libraries or web-content-generation
frameworks propagate DOM XSS vulnerabilities across a large
number of sites?

To answer these questions, we use a dynamic approach
to detect DOM XSS vulnerabilities on the Internet. Prior
work showed how to detect DOM XSS vulnerabilities using
taint tracking to track flows of attacker-controllable infor-
mation sources to sensitive sink functions (e.g., eval and
document.write) [8], [22]. The existence of such flows
only indicates that data from a source can reach a sink, but
does not account for whether the data has been sanitized by
the programmer. Thus, once a flow with a potential DOM XSS
vulnerability is observed, the flow must be confirmed to be
exploitable. In this paper, we show how to more accurately
detect whether a flow that is potentially vulnerable is capable
of being exploited. Although an attacker can use several
types of sources (e.g., cross-origin messages and cookies), we
focus, similarly to prior work [22], on confirming flows from
URL-based sources. These are of particular interest because,
compared to other flows, they are easy for attackers to exploit.

We used this methodology to detect DOM XSS vulnerabil-
ities on Internet. We crawled the homepages and five random
subpages of websites on the Alexa Top 10,000 most popular
websites list [11]. Compared to previous work [22], we ob-
served both more flows per web page and determined a higher
proportion of those flows to be vulnerable, even when using the
same methodology as previous work to determine which flows
are vulnerable. Using our improved method for determining
which flows are vulnerable, we found 83% more vulnerabilities
than by using prior methodology [22]. We believe this indicates
that DOM XSS vulnerabilities are becoming more common in
the four years since the previous study was undertaken.

In addition, we qualitatively examined the code paths that
led to the vulnerabilities. We observed, for example, that most
of the vulnerabilities did not share code, implying that the
vulnerabilities we found are due to custom code, rather than

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23309
www.ndss-symposium.org

the inclusion of buggy shared libraries. We also observed
errors in the implementation of HTML templating that allowed
XSS vulnerabilities. Templating can be an effective way to
prevent DOM XSS vulnerabilities, and is similar to using
parameterized SQL queries. We found cases where bespoke
templated HTML designs failed to properly encode template
values, which attackers could then inject code into.

Finally, using our collected dataset of DOM XSS vulner-
abilities, we evaluated static-analysis tools that are designed
to detect DOM XSS. In the past, researchers have com-
pared the effectiveness of vulnerability scanners on synthetic
datasets [16], [36], whereas we used real-world vulnerabili-
ties. We found that static-analysis tools performed poorly at
detecting the vulnerabilities found by the dynamic analysis.
However, some static tools were shown to have low false-
negative rates and at the same time identify DOM XSS issues
not found by the dynamic analysis, suggesting that dynamic
analyses and static analyses are finding qualitatively different
types of vulnerabilities. Our findings on static-analysis tools
suggest that testing using both dynamic and static approaches
may be necessary to secure web applications from DOM XSS.

In summary, our contributions are as follows.

• We improve the methodology to confirm DOM XSS vul-
nerabilities, and find that 83% more detected flows are
vulnerable than suggested by prior work [22].

• We empirically analyze the prevalence of and causes behind
DOM XSS vulnerabilities. This yields a number of insights
for example, that HTML templating is error prone to im-
plement and that DOM XSS vulnerabilities are becoming
more prevalent. We also provide guidance for preventing
DOM XSS vulnerabilities.

• We compare static-analysis tools that detect DOM XSS vul-
nerabilities, finding them to detect different vulnerabilities
than our dynamic analysis.

• We develop a modified version of Chromium for tracking
the taint information of strings, which we are releasing as
open source.1

Next, in Section II, we provide background on DOM
XSS vulnerabilities and compare our work to prior work for
detecting DOM XSS vulnerabilities. Then, in Section III, we
detail our methodology for crawling the Internet for DOM XSS
vulnerabilities, and our improved technique for confirming po-
tentially vulnerable flows. In Section IV we describe the results
of our experiments for detecting DOM XSS vulnerabilities and
evaluating static-analysis tools for detecting DOM XSS. We
describe the limitations of our work in Section V. We discuss
the implications of our findings in Section VI, and conclude
in Section VII.

II. BACKGROUND AND RELATED WORK

Here, we cover background and prior work relevant to
DOM XSS vulnerabilities. First, we give examples of and
general background on DOM XSS vulnerabilities in Sec-
tion II-A. Then, in Section II-B, we give examples of general
XSS defense mechanisms and why those mechanisms fail to
adequately apply to DOM XSS. In Section II-C, we cover

1https://github.com/wrmelicher/ChromiumTaintTracking

document.write(
’<a href="’ + document.location +
’">Link’);

Fig. 1: Example of a DOM XSS vulnerability.
An attacker could inject arbitrary markup using
document.location as an attack vector by crafting
a link that injects an attacker-controlled script into the
page. An attacker may execute code by crafting a link like:
http://[website]/[page]#"><script>CODE</script><!--.

work that discusses the impact of previously discovered vul-
nerabilities. Next, we describe prior work on detecting DOM
XSS vulnerabilities using taint tracking in Section II-D. We
describe prior work on comparing web-application scanners
in Section II-E. Finally, we describe how static-analysis tools
help prevent DOM XSS in Section II-F.

A. DOM XSS vulnerabilities

Cross-site-scripting (XSS) vulnerabilities are a type of
injection vulnerability in which an attacker can inject arbitrary
code into a running web application to, for example, take
control of the data and credentials used in the application. For
example, attackers may get access to the websites’s cookies
(which potentially contain login tokens), or may execute
user actions with respect to the compromised website [25].
In XSS, the injected code is JavaScript that runs in a web
application with the permissions of the compromised website.
Unlike traditional XSS attacks in which an attacker’s injection
might be the result of a server-side failure to sanitize input,
DOM XSS is a relatively new type of XSS vulnerability
that occurs purely as a result of JavaScript executing on
the client. Figure 1 shows a example. In the example, an
attacker could craft a link that breaks out of the href’s single
quoted attribute and inject an arbitrary script; for example,
http://[website]/[page]#"><script>CODE</script><!--.
This link, when clicked, would execute the attacker-controlled
code (CODE). An attacker may convince their victims to
click on the link using social engineering, or may embed
the link in an iframe on a website that the attacker controls.
Like traditional XSS bugs, the details depend heavily on the
website and the victim’s browser. Chromium, for example,
does not encode any characters after the ‘#’ symbol, whereas
Firefox encodes such characters using URL encoding. Hence,
it is not uncommon for a specific exploit to work only in
specific browsers [29].

For a DOM XSS vulnerability to be present, there
must be a flow of information from a potentially attacker-
controlled source to a sensitive sink function. Examples
of potentially attacker-controlled sources include: the URL
of the document, accessed via the document.location
JavaScript object; data passed in cross origin messages us-
ing the postMessage API; cookies, accessed via the
document.cookie object; and the HTTP referrer ac-
cessed by the document.referrer JavaScript object
and other methods. Sinks can include any mechanism to
execute arbitrary code, for example: the eval function,
document.write, JavaScript event handlers (e.g., the

2

“onclick” attribute), and URLs that have a JavaScript scheme
(e.g.,).

B. Generic XSS defenses

Many methods have been used to mitigate or defend against
XSS vulnerabilities in general but do not apply to DOM
XSS. Server-side taint-tracking and static-analysis techniques
fundamentally cannot be applied for detecting client-side vul-
nerabilities [14], [37]. Content Security Policies (CSPs) also
aim to solve the problem. However, the adoption of CSPs
has been limited and developers frequently misconfigure the
policies, allowing unsafe code to execute [15], [38]. Web-
application firewalls attempt to solve the problem by blocking
all requests that match certain patterns (often lists of regular
expressions) that indicate an XSS attack is occurring. However,
web-application firewalls are known to allow many attacks
due to their reliance on simple pattern matching [13], [18].
Furthermore, since DOM XSS exploits might not be sent to
the server, the injection may never be visible to a firewall on
the network. Dynamic taint tracking, a technique to observe the
flows of information throughout a program, has been proposed
as a run-time defense against DOM XSS attacks [34]; however,
it requires large infrastructure changes to web browsers. Addi-
tionally, taint tracking at run time can decrease performance.
The effect of such dynamic instrumentation on performance
can potentially be small; however, it often has high variability,
where a handful of websites have a serious performance
decrease [23]. In contrast, our work uses taint tracking to
detect vulnerabilities, rather than defending against attacks at
run time.

C. Studying the impact of known vulnerabilities

Prior research has studied the impact of known vulner-
abilities on websites. Researchers found that in 2017, 37%
of websites included at least one version of a library with a
known vulnerability [21]. Researchers in that work measured
the prevalence of websites including old, outdated versions of
72 popular libraries. Other work has found that many websites
include third-party JavaScript that does not take all necessary
security precautions [24]. Our focus differs from these works in
that, rather than studying the prevalence of already known vul-
nerabilities, we detect vulnerabilities without prior knowledge
of them. In addition, our approach goes beyond vulnerabilities
in outdated versions of code in popular libraries and allows us
to discover potentially unknown vulnerabilities.

D. Finding DOM XSS vulnerabilities using taint tracking

The state of the art for detecting DOM XSS vulnerabilities
is using dynamic taint tracking. This technique marks poten-
tially attacker-controlled sources as “tainted” and propagates
information about tainted values throughout the program. For
example, the taint-tracking engine might mark the concatena-
tion of one tainted piece of information and one untainted as
also tainted. When a tainted string is used in a sensitive sink,
the taint-tracking engine may flag this as a potential DOM
XSS vulnerability.

A variety of tools and research have used dynamic taint
tracking to detect DOM XSS vulnerabilities. The DOMinator
tool is a Firefox-based technology that tracks the taint status

of strings in JavaScript [8]. It is the oldest tool to apply
taint tracking to JavaScript. In 2013, Lekies et al. showed
that DOM XSS is prevalent, and introduced a method for
detecting DOM XSS using more precise, byte-level taint
tracking of JavaScript code, also accounting for the built-
in encoding functions used in JavaScript [22]. To generate
automated exploits, the researchers used a context-specific
exploit generation methodology designed to create a workable
exploit by analyzing the context in which the tainted string
occurs in the sink. Their technique was tested by performing a
crawl of the Alexa Top 5,000 websites searching for DOM
XSS vulnerabilities. Their work showed that automatically
generated exploits can be created and that DOM XSS vul-
nerabilities affect 9.6% of domains on the Alexa Top 5,000
websites. Our work uses a similar methodology as Lekies et
al.’s work for identifying tainted flows, but we use a new and
novel method for confirming whether flows are indicative of
DOM XSS vulnerabilities. We describe in detail the similarities
and differences between our methodologies and results in
Sections III and VI.

Other work, building upon a system for detecting DOM
XSS vulnerabilities using browser-agnostic taint tracking [29],
provided a method to track taint information and inject an
extension that sanitizes injected strings at run time just before
those strings are inserted into the sensitive sink functions [28].
The browser-agnostic framework allows detecting vulnerabili-
ties that are specific to certain browsers; however, such vulner-
abilities account for a small fraction of all vulnerabilities [29].
Their work focused on their proposed defense mechanism and
the capability of using a browser agnostic taint tracking, in
contrast to our work which provides a measurement of the
prevalence of DOM XSS vulnerabilities and the ability of
static-analysis tools to detect DOM XSS vulnerabilities.

Researchers have also shown how to use taint tracking to
defend against DOM XSS vulnerabilities at run time [34]. That
work began from a list of known DOM XSS vulnerabilities,
and showed that in 73% of cases, current client-side filtering
technology—the XSS Auditor in webkit-based browsers—fails
to filter an attack. The work proposes the use of browser-based
taint tracking to more precisely prevent XSS vulnerabilities.
However, this requires modification of the browser engine and,
as mentioned earlier, can cause performance degradation. The
researchers conclude that many domains make use of partly-
tainted HTML markup injection, and that blocking all such
cases would not be feasible, instead recommending a specific
heuristic policy to separate safe cases from dangerous cases.

Additionally, prior work quantitatively examined DOM
XSS vulnerabilities [35], finding that while many vulnera-
bilities are of low complexity, some are the result of highly
complex JavaScript interactions. The researchers found that
many DOM XSS bugs are the result of vulnerable third-
party scripts, missing knowledge about browser-provided APIs,
unaware developers, or incompatible first- and third- party
code. Our findings about vulnerability complexity and the role
of third-party code are similar; we compare them in detail in
Sections IV-A and IV-C. Differently from previous work, we
also explore the role of advertising domains, the effectiveness
of static-analysis tools, the distribution of vulnerabilities across
and within domains, and design-level prevention mechanisms
such as HTML templating.

3

E. Web-application scanners

Web-application scanners are commonly used tools to
actively test for a variety of security issues in web applications.
Scanners use different methods to detect security issues, of
which DOM XSS is one. Prior work has surveyed web-
application scanners, finding them to overlook many classes
of vulnerabilities, and to be limited by their ability to crawl
websites; however, that work did not focus on DOM XSS, and
also did not examine web vulnerabilities in the wild, instead
creating a test environment [16]. Other work reports on the
false-positive and false-negative rates of web scanners [36].
That work also tests against a set of manufactured vulnerabil-
ities and not on in-the-wild vulnerabilities and does not focus
specifically on DOM XSS vulnerabilities.

F. Static-analysis tools

Static-analysis tools that support JavaScript, such as
ScanJS [12] and JSLint [10], have gained popularity. Those
tools statically, without executing code, attempt to detect com-
mon programming errors in JavaScript, for example, pointing
out the use of dangerous functions or undefined variables. In
general, static-analysis tools suffer from more false positives
than dynamic approaches [27], [31]. However, static-analysis
tools are becoming a generally accepted part of the way that
software is developed—passing a static analysis without errors
is a requirement often listed in style guides (e.g., [1], [5]).
In part, this is due to their ability to be run practically and
repeatably with little setup, for example, in nightly builds [27].
Some vulnerability detection tools, like Burp Suite [32], also
have a static-analysis component. However, the degree to
which static-analysis tools can detect and prevent real DOM
XSS vulnerabilities is unknown. In addition, JavaScript as
a programming language has traditionally been difficult to
statically analyze because of its dynamic features (for example,
widespread use of the eval function and reliance on dynamic
typing). In this work, we study the ability of static-analysis
tools to detect DOM XSS vulnerabilities in JavaScript.

III. METHODOLOGY

Next, we describe the methodology for our experiments
to detect DOM XSS vulnerabilities on the Internet. In Sec-
tion III-A, we describe how we crawled websites and which
web pages we visited. In Section III-B, we discuss the specifics
of the taint-tracking engine we developed. In Section III-C,
we describe how we confirmed vulnerabilities. Finally, we
detail the methodology for testing static-analysis tools in
Section III-D.

A. Crawling for DOM XSS vulnerabilities

We first crawled the Internet using a browser instrumented
to perform taint tracking. The browser collected information
about what data flows occurred in the page, and output a
log file detailing the flows and the encoding methods applied.
Then, for a subset of flows, we tested whether the flow was
exploitable by generating example inputs crafted to deliver
a payload to the sensitive sink. This methodology builds on
the methodology used in prior work for detecting DOM XSS
vulnerabilities at scale [22]. We describe the differences from
this prior work in this Section and in Section III-C.

document.write(
’<a href="’ + encodeURI(document.location) +
’">Link’);

Fig. 2: Modified example of Figure 1, in which the code
would have a DOM XSS vulnerability if the encoding function
was not applied. In this example, the encodeURI function
encodes the location so that the double-quote character cannot
be injected.

To crawl websites, we started by visiting the Alexa Top
10,000 websites, a list of the globally most popular web-
sites [11]. Then, we collected all the links to other web pages
on the home page of each website, and randomly selected five
web pages that were hosted on the same domain as the original
domain to limit our crawl to a manageable size given our
resource constraints. This crawl is broader, but more shallow,
than Lekies et al.’s [22], and the difference between the two
offers the opportunity for new insights about the incidence
of DOM XSS vulnerabilities (see Section VI-A). We also
obeyed the robots.txt directives, which direct automated
programs—robots—as to which pages may be traversed [7].
We automated the process of visiting web pages and extracting
the links on a page by developing and using a browser plugin.
Whenever any web page did not load correctly—for example,
because of a timeout—we attempted to load the same page
three times. If the failed page was not the top-level page
of a domain, we attempted to load a different web page
in the same domain. Crawling occurred during the summer
of 2017, roughly four years after Lekies et al.’s work was
published [22].

B. Dynamic taint analysis

Like prior work [22], we instrumented Chromium to per-
form byte-precise tracking of the provenance of each byte of
strings in JavaScript. We will not focus on the design of our
taint-aware browser because it is not a core contribution of
our work and the design is similar to prior work. We have
released the source code for our modified, taint-aware version
of Chromium and V8, the JavaScript engine used in Chromium
(see https://github.com/wrmelicher/ChromiumTaintTracking).

To summarize the design of the taint-aware browser:
We first allocated space in each JavaScript string primi-
tive for a one-byte taint value that stores the provenance
of each byte of the string. This allows taint information
to be precisely propagated during string concatenation or
slicing. In addition to the provenance of each string byte,
each bookkeeping byte also records which built-in encod-
ing methods have been applied. For example, using the
encodeURIComponent JavaScript function will modify
the taint information to reflect that the string has been
encoded using the encodeURIComponent function. Dur-
ing taint propagation, matching encoding-decoding pairs will
cancel each other. For example, if a string is encoded
using encodeURIComponent and later decoded using
decodeURIComponent, then the string will be identified
as having no encoding applied. The taint information is only
stored for string types and not for arbitrary JavaScript objects.
This prevents tracking across different data types: for example,

4

parsing a string into an integer and then writing the integer to
a string would remove all taint information.

Our browser checks the arguments of sensitive functions
(e.g., the eval function or document.write; see Ap-
pendix VIII for an exhaustive list) for tainted bytes. If an
argument contains tainted bytes, then a record is written to
a log file describing the flow, including: the type of taint, the
locations of the tainted bytes, the sensitive sink function, and
a stack trace. Afterwards, we analyze the logs to determine
which flows are potentially vulnerable to DOM XSS attacks
and which flows are not.

Whether a flow is vulnerable depends on the context of the
injection in the HTML or JavaScript, the encoding functions
that have been applied, and the source and sink types. For
example, if we detect that a tainted value is not encoded and
begins in the context of an HTML double-quoted attribute,
then that flow is potentially vulnerable. However, if the string is
encoded using the encodeURIComponent built-in function,
then a double quoted attribute is not vulnerable because the
encodeURIComponent function encodes the double quote
as “%22”. Figure 2 shows code that would have a DOM XSS
vulnerability if an encoding function was not applied. This
list of potentially vulnerable flows is then tested to decide
whether the flow is actually vulnerable to XSS attacks using
a process we describe in Section III-C. One example of a
potentially vulnerable flow that is not actually vulnerable to
DOM XSS attacks is when the application performs custom
sanitization of inputs that is not detected by the taint-tracking
engine—for example, by halting execution if the input does
not match a certain form that is known to be safe. The log
files also contain the stack trace for the sink call of each flow.
In addition to making the flow more repeatable for post-hoc
manual analysis, this allows us to examine the code path that
led to the vulnerability (see Section IV-A).

C. Attack confirmation

By crawling web pages using the taint-aware browser
described in Section III-B, we generate a list of poten-
tially vulnerable flows. We then simulate an exploit to test
those potentially vulnerable flows to decide whether they
are actually vulnerable. We experimented with two meth-
ods of automatically crafting injections to test: one used
by prior work, which appends the injection to the end
of the string [22]; and a novel method that attempts to
more accurately pinpoint the specific bytes of the string
in which to inject a payload. For the purposes of auto-
matically crafting injections we limited ourselves to URL-
based sources (e.g., the document.location.href ob-
ject and derivatives like document.location.search,
document.location.hash, etc.). Those types of poten-
tial vulnerabilities are straightforward to generate potential
exploits for, and therefore can be easily verified to be actual
vulnerabilities. For the same reasons, they are the flows com-
monly targeted by attackers [26].

The first method (termed method A), used in prior
work [22], appended the exploit to the end of the URL.
The new method (termed method B), which more accurately
pinpoints where in the string to inject the payload, attempts to
insert the exploit into the bytes of the source string that match

Method A: injection at end of URL
Observed URL:
example.url.com/path?param=test&a=b

Generated injection URL:
example.url.com/path?param=test&a=b#INJECT

Method B: injection into parameter
Observed URL:
example.url.com/path?param=test&a=b

Observed eval-ed string:
var a = 'test';

Observed taint location:
The 9th through 13th bytes of the string—starting with the
first ‘t’ in test and ending with the last ‘t’ in test.

Generated injection URL:
example.url.com/path?a=b#¶m=INJECT

Fig. 3: Explanation of injection methods using an artificial
example. In Method A, the injection is inserted at the end of
the string. In Method B, we attempt to insert the injection into
the parameter value that matches the tainted string in the text
of the observed argument to the sensitive sink. INJECT marks
the point of injection.

the tainted bytes in the sink. An example is shown in Figure 3.
The log files contain the information about which bytes of the
string are tainted and the semantic source label for those bytes
(e.g., from the URL). Therefore, we can infer which bytes of
the source will make their way into the sink by examining
the string that is injected into the sink and comparing it to
the source string. The insight behind this method comes from
the observation that many of the values injected into sinks
are values of parameters provided in the URL. Our method
is designed to capture URL parsing in client-side code. It is
relatively commonplace for JavaScript code to manually parse
query parameters on the client, for example, by parsing the
URL looking for the special characters that signal parameters:
?, &, and =. In this way, the URL is often used to pass
parameters to other links or to control the display of the web
page. While this method of confirming that a flow is vulnerable
is extremely simple, in practice we find the combination of
both methods to generate 83% more exploits than just the first
method (method A).

To test candidate exploits purely in the browser, i.e., with-
out affecting the website, we limit our candidate exploits to the
part of the URL string after the hash (the ‘#’ character), as this
segment of the URL string is not sent to the website hosting the
page, but only processed internally by the JavaScript running
in the browser.

We also did not craft actual valid HTML and JavaScript
exploits for attack confirmation, but rather crafted a unique
string that included characters necessary for an exploit (e.g.,
the single quote character if injecting a value into a single
quoted HTML attribute). In our payload, we injected the string
marker<>’" and then examined our sink injection log files
for this string.

We believe that avoiding the use of valid HTML and
JavaScript in simulated exploits and targeting only the portion

5

of the URL string after the hash—beyond limiting risk to web
servers—leads to simulated exploits that are both easier to
generate and less likely to be caught by client or server-side
filters. Such filters are notorious for being easily bypassable
by humans [13], [18]. However, for an automated injection,
we wanted our approach to scale to many websites and
detect when an exploit could likely be crafted, instead of
being filtered by an easily bypassable defense mechanism. To
confirm that a flow was vulnerable to DOM XSS attacks, we
searched the logs for the unique injection string in the output.
To confirm that our methodology did not yield false positives,
we randomly sampled 40 flows that our process flagged as
vulnerable and manually developed a working exploit. We
found that all 40 instances were vulnerable; therefore, we
believe that the vast majority of cases found by our automated
method were actual vulnerabilities.

After confirming vulnerabilities, we qualitatively examined
a subset of these vulnerabilities for insights into the root
cases of DOM XSS vulnerabilities. For each vulnerability
that we manually analyzed, a researcher manually reproduced
the vulnerability based on the saved stack trace in our log
files. Then, we distilled the vulnerability to a small amount of
code that could describe the flow of data in the vulnerability.
These code snippets were then analyzed to extract the themes
common to vulnerabilities. We classified vulnerabilities by
complexity and also noted other interesting aspects of the
code that had the vulnerability. Our results for this analysis
are presented in Section IV-C.

D. Static analysis

After we collected a list of confirmed DOM XSS vulner-
abilities, one of the analyses we performed was to evaluate
the effectiveness of static-analysis tools to detect these vulner-
abilities. We sampled our dataset in two ways to create test
sets to evaluate the false-positive rate and the rate with which
the tested static-analysis tools detect these vulnerabilities. First,
we sampled websites that have known vulnerabilities from our
dataset of confirmed DOM XSS vulnerabilities, found using
methodology described in Section III-C. Then, we sampled
from all websites that we visited to measure the false-positive
rate. Note that for measuring the false-positive rate, we sam-
pled from all websites, not only from websites where we did
not detect a vulnerability. We sampled in this way so that our
sampling would not be biased towards sites that might be less
buggy. Sampling from our dataset of known vulnerabilities,
rather than using manufactured vulnerabilities, has the benefit
that we are using real-world bugs.

a) Description of static-analysis tools: We evalu-
ated three tools for detecting DOM XSS vulnerabilities:
ScanJS [12], esflow [4], and the static-analysis tools in Burp
Suite Pro [32]. We also attempted to test jsprime [30], but were
unable to get it to work without crashing. We focused on open-
source or inexpensive proprietary tools that statically detect
DOM XSS vulnerabilities. There are variety of other, more
expensive proprietary vulnerability scanning tools, including:
IBM Security AppScan, Acunetix, Trustwave App Scanner,
Retina web application scanner, Qualys web inspect, HP
Fortify static code analyzer, and Coverity’s JavaScript scanner.
However, for our application of scanning a large number of
domains, these were prohibitively expensive. Prior work has

compared a wide variety of these proprietary tools for general
purpose vulnerability detection (i.e., not restricted to DOM
XSS vulnerabilities), and found them to have comparable error
rates to each other [36].

The static-analysis tools that we chose appear to have
different tradeoffs. ScanJS is a tool meant to help people
avoid coding practices that lead to, among other things, DOM
XSS vulnerabilities. As such, it flags code that could be
unsafe without aiming to identify whether the code leads to
an exploitable bug. For example, it may point out all locations
where the document.write function was used with a non-
static string as an argument. While this is a good practice
to avoid, it is not always indicative of a vulnerability. In
fact, the majority of cases are benign. Burp Suite attaches a
confidence rating to each potential vulnerability that it flags,
giving guidance about which findings are most reliable. Burp
Suite also receives code from the website by acting as a
proxy between the browser and the website, meaning that
it has access to code that is dynamically loaded (e.g., by
a <script> tag added during execution) unlike the other
tools; however, it still is not able to analyze code that is
dynamically generated (e.g., by using the eval function).
Esflow is unique in that it often attaches source and sink
information to its issue reports for easier debugging.

IV. RESULTS

We used the taint-tracking and crawling methodology de-
scribed in Section III to collect a dataset of tainted flows. We
visited 44,722 web pages, which had in total 319,481 frames.
One would expect that trying to visit five subpages on each
domain, we would have visited 60,000 web pages: 10,000 top
level pages and 50,000 subpages. However, we skipped loading
1,761 web pages due to robots.txt directives; and we were
unable to load 4,094 web pages after three attempts due to
timeouts, 462 because Chromium would not load the page
(most often due to SSL warnings), and 26 because Chromium
crashed when rendering them. Some of the pages unable to be
loaded were top-level pages; in that case we also did not visit
other pages on that domain.

We describe how we detected DOM XSS vulnerabilities
using our dynamic analyses in Section IV-A. Then, in Sec-
tion IV-B, we use the results from our dynamic analysis
to evaluate different static-analysis tools for detecting DOM
XSS vulnerabilities. Finally, in Section IV-C, we describe the
qualitative trends that we observed from manually analyzing a
sample of our dataset.

A. DOM XSS vulnerabilities detected using dynamic analysis

After crawling our set of web pages, we post-processed the
generated taint-tracking logs to generate a list of observed data
flows. Each flow has a source, through which an attacker could
inject code, and a sink, a sensitive function that consumes
data derived from the source of the flow. We tracked flows
that have sources that could be potentially manipulated by an
attacker, and sinks that could potentially execute JavaScript, in-
cluding functions that directly execute JavaScript (e.g., eval),
functions that inject HTML (e.g., assigning to innerHTML or
calling document.write), and JavaScript event handlers.
A summary of the sources and sinks that we tracked can be
found in Table I.

6

Sinks
So

ur
ce

s

A
nc

ho
r

sr
c

C
oo

ki
e

C
ss

C
ss

st
yl

e
at

tr
ib

ut
e

E
m

be
d

sr
c

H
T

M
L

If
ra

m
e

sr
c

IM
G

sr
c

Ja
va

Sc
ri

pt

E
ve

nt
ha

nd
le

r

se
tT

im
eo

ut

L
oc

at
io

n

Sc
ri

pt
sr

c

To
ta

l

Cookie 11,269 256,784 297 297 0 61,164 2,098 115,363 20,469 114 28 582 50,176 518,641
Message 16,704 18,373 311 311 0 20,974 3,475 70,517 1,182,456 98 73 535 24,393 1,338,220
Multiple 4 0 0 0 0 9 3 35 0 0 0 0 15 66
Referrer 62,476 3,670 31 31 0 55,796 3,657 42,193 645 11 11 537 16,659 185,717
Storage 11,023 4,590 112 112 0 3,712 396 7,146 3,541 9 1 23 9,494 40,159
URL 226,214 31,150 418 418 15 237,714 137,364 193,200 2,446 914 140 2,711 238,354 1,071,058
URL hash 1,601 171 2 2 0 1,938 148 2,322 173 0 101 33 2,400 8,891
URL host 3,383 116,967 19 19 0 17,147 10,035 25,394 389 6 3 308 5,716 179,386
URL hostname 21,494 612,759 127 127 0 44,903 24,761 104,664 1,001 269 74 400 16,218 826,797
URL origin 21,225 46 1 1 0 1,801 47,887 3,273 336 0 2 64 1,762 76,398
URL pathname 20,235 9,807 15 15 0 3,913 1,301 102,945 1,457 628 12 193 13,326 153,847
URL search 4,549 2,922 0 0 0 5,665 474 13,425 63 0 0 48 2,759 29,905
URL port 0 0 0 0 0 0 0 2 0 0 0 0 0 2
URL protocol 82,953 661 92 92 1 94,538 20,746 152,501 123 11 33 356 72,075 424,182
window.name 2,109 4,504 8 8 0 24,845 160 3,826 12,621 0 3 67 2,374 50,525
Total 485,239 1,062,404 1,433 1,433 16 574,119 252,505 836,806 1,225,720 2,060 481 5,857 455,721

TABLE I: Source-to-sink flow counts for different source-sink pairs. Rows in the table are sources and columns are sinks. We
focus on the shaded columns and rows in this work. “Cookie” as a sink means assignment to the document.cookie object;
as a source means data originating from document.cookie. “Location” refers to assignment to document.location.

as % of total flows
Step # this work 25m flows [22] this work 25m flows [22]

Seed domains 10,000 5,000
Web pages 44,722 504,275
Frames 319,481 4,358,031

1 Total flows 4,140,873 24,474,306
2 URL∗, referrer, window.name sources to JS, HTML sinks 363,034 1,825,598 8.77% 7.46%

URL∗ sources to JS, HTML sinks 285,147 ‡ 6.89%
3 Flows from step 2 excluding those blocked by encoding methods 97,924 313,794 2.36% 1.28%
4 Flows from step 3 excluding those blocked by natural encoding in Chromium 93,481 ‡ 2.26%
5 Flows from step 4 including only URL-based sources 54,954 ‡ 1.33%
6 Unique† flows from step 5 5,217 ‡ 0.13%
7a Unique† vulnerabilities from step 6 after exploit step using method A§ 1,754 6,167‡‡ 0.04% 0.03%
7b Unique† vulnerabilities from step 6 after exploit step using method A and B†† 3,219 0.08%

Vulnerable iframe URLs 4,668 ‡

Vulnerable domains 364 480
Unique vulnerabilities as percent of pages visited using method A 4% 1.2%
Unique vulnerabilities as percent of pages visited using method A + B 7.3%

TABLE II: Break down of flows comparing replication of prior work with the same methodology [22]. *) Excludes the JavaScript
location.protocol property as it is not readily exploitable. †) Applying the uniqueness filter of hosting domain, code
location, breakout sequence. ‡) not reported in that work. §) Method A appends the injection to the end of the source string.
††) Method B inserts the injection into the bytes of the source string which match the tainted bytes in the sink after encodings
and decodings have been applied. ‡‡) Includes flows from window.name sources because that work includes those exploits.

Overall, visiting 44,722 pages resulted in 4,140,873 de-
tected flows. We focus on flows with URL sources and HTML
or JavaScript sinks, as these are the most straightforward to
exploit. Consistently with that, research has generally focused
on examining this subset of flows or found it to account for
the majority of exploitable flows (e.g., [22], [29]).

Other flows have preconditions that make automatically
exploiting them more difficult at scale. For example, to exploit
a cookie flow, an attacker must find a way to manipulate the
victim’s cookies; for message flows, an attacker must find a
potential flow whose code does not check the message origin
and also send the message at the proper time, when the receiver

is expecting it. With the exception of message flows, URL-
based sources account for the largest number of flows to sinks
that can execute arbitrary JavaScript (HTML and JavaScript
sinks). Hence, these are the flows we analyze, and we show
that they lead to many instances of DOM XSS vulnerabilities.
Of the 4,140,873 flows we detected, 285,147 (7%) had a URL-
based source.

a) Confirmed vulnerable flows: We determine whether
a tainted flow is vulnerable as follows. We first discard
flows in which the tainted value is encoded using a built-in
encoding method, for example, the encodeURIComponent
function; we are certain that such flows would ordinarily not

7

Method # of unique vulnerabilities
Only injection at end 715
Only injection in key-value pair 1,465
Both methods 1,039
Total 3,219

TABLE III: Summary of the injection methods used to confirm
different vulnerabilities. “Only at end” refers to the injection
method that inserts the injection at the end of the source
(Method A). “Only key-value pair” refers to the injection that
inserts the injection in the value of a tainted query key-value
pair (Method B). “Both methods” refers to cases where either
method would have identified the flow.

be exploitable. This eliminates 66% of the flows we focus
on (URL sources to JavaScript or HTML sinks). We next
remove from consideration flows that could not be exploited
in Chromium due to Chromium’s natural encoding of some
URL variables (for example, Chromium automatically encodes
the content of document.location.search to prevent
the occurrence of any character that would not be allowed in
a URL). After removing those types of flows, we determine
which of the remaining 1.33% (54,954 flows) of flows are
actually vulnerable by attempting injections. A summary of the
number of flows removed at each stage compared to previous
work with similar methodology [22] can be seen in Table II.

In our taint-tracking system, we specially mark flows
that have multiple, incompatible encodings with a flag that
represents the use of multiple encodings, but not which specific
encodings or in what order. Such flows accounted for 2% of
flows overall. While we did not attempt to determine whether
these flows were actually vulnerable, there were 716 unique
flows of this type that may have been potentially vulnerable
(i.e., that could have been included in row 6 of Table II). If they
had been included, they would account for 12% of potentially
vulnerable flows.

We used two methods to confirm vulnerabilities—each
described in Section III-C—based on where to insert the
injected payload: inserting the payload at the end of the URL
or inserting the payload into the key-value pair from which
we observed a flow to a sink. We found that 45% of the
confirmed vulnerabilities we detected were due to flows from
key-value pairs, 22% of the vulnerabilities were only the result
of inserting the payload at the end of the source, and 32% of
the vulnerabilities were observed to work with both methods.2
Table III shows the breakdown of how many of the 3,219
unique vulnerabilities came from which injection method. Both
methods of injection work in cases where the entire URL
is concatenated with markup (i.e., document.location,
rather than a specific substring, is included in markup). Our
key-value pair injection method identifies vulnerabilities that
involve parsing URL parameters, while inserting the injection
at the end identifies vulnerabilities in which part of the path
or URL besides the URL parameters is used as part of the
parameter to the sink.

To count unique vulnerabilities, we removed duplicates
using the same method used as Lekies et al. [22]: unique bugs

2Numbers do not add up to 100% due to rounding.

1

3

10

30

100

300

1000

1 10 100
Domain rank

of

 b
ug

s
fo

un
d

on
 d

om
ai

n

Fig. 4: Distribution of unique vulnerabilities across domains.
The y-axis shows the number of unique vulnerabilities found
on a particular domain in log scale. The x-axis shows domains
sorted by frequency; for example, ten on the axis shows the
domain with the 10th most vulnerabilities. For example, the
domain with the most vulnerabilities had nearly 1,987 unique
vulnerabilities.

are identified by their domain, their location in the script, and
the context (e.g., inside a double-quoted attribute or the name
of an element attribute) of the tainted section of the string
argument to the sensitive sink.

We also computed the number of unique vulnerabilities
across different domains, as shown in Figure 4. We found
that the majority of vulnerabilities come from a handful of
domains, and that many domains had only a few unique
vulnerabilities or one vulnerability: the ten domains with the
most vulnerabilities had in total 2703 unique vulnerabilities;
the remaining 354 domains accounted for the remaining 516
vulnerabilities.

Interestingly, when performing the vulnerability confirma-
tion crawl we observed vulnerabilities in six iframe URLs that
were not previously seen in our first crawl. These iframe URLs
were part of the confirmation crawl because either they or
the top-level pages that included them had previously been
marked as potentially containing a vulnerability. The difference
in time between collecting data and confirming vulnerabilities
was nine days.

b) Vulnerability attribution by domain and domain cat-
egory: We next attempted to shed light on the cause of the
vulnerabilities that we observed by examining where they
occurred. Were they due to third-party scripts, old versions
of popular libraries, custom code for each website, or other
causes? For this measurement, we used the URL of the frame
where the vulnerability was found, since this is the context
in which an attacker would be able to execute JavaScript,
rather than using the URL of the top-level frame. We used the
location of the sink as a starting point for determining to which
entity to attribute the vulnerability. In particular, we examined
the distribution of vulnerabilities in three ways: (1) the domain
on the iframe in which the script executed; (2) the domain on
which the script was hosted (web pages often import scripts
from other domains); and (3) the domain of the top-level page
that the user was visiting. Rather than reporting results about
individual domains, we report them by the topic category of the

8

W
eb

 A
ds

/A
na

ly
tic

s
N

ew
s/

M
ed

ia

En
te

rta
in

m
en

t
Ed

uc
at

io
n

Te
ch

no
lo

gy
/In

te
rn

et

Bu
si

ne
ss

/E
co

no
m

y
Sh

op
pi

ng
H

ea
lth

Se
ar

ch
 E

ng
in

es
/P

or
ta

ls
G

am
es

H
ac

ki
ng

Fi
na

nc
ia

l S
er

vi
ce

s

C
on

te
nt

 S
er

ve
rs

Sp
or

ts
/R

ec
re

at
io

n
R

ea
l E

st
at

e

M
ix

ed
C

on
te

nt
/P

ot
en

tia
lly

R
ef

er
en

ce

U
nc

at
eg

or
iz

ed
Po

rn
og

ra
ph

y

Au
di

o/
Vi

de
o

C
lip

s

M
al

ic
io

us
 S

ou
rc

es
/M

al
ne

ts

Ad
ul

t/M
at

ur
e

C
on

te
nt

Ve
hi

cl
es

Tr
av

el

Po
lit

ic
al

/S
oc

ia
l A

dv
oc

ac
y

Br
ok

er
ag

e/
Tr

ad
in

g

Pe
rs

on
al

s/
D

at
in

g

N
ew

sg
ro

up
s/

Fo
ru

m
s

G
ov

er
nm

en
t/L

eg
al

C
ha

rit
ab

le
 O

rg
an

iz
at

io
ns

W
eb

 H
os

tin
g

Su
sp

ic
io

us

So
ci

et
y/

D
ai

ly
 L

iv
in

g

R
es

ta
ur

an
ts

/D
in

in
g/

Fo
od

Jo
b

Se
ar

ch
/C

ar
ee

rs

Fi
le

 S
to

ra
ge

/S
ha

rin
g

W
ea

po
ns

So
ci

al
 N

et
w

or
ki

ng
Ph

is
hi

ng

Pe
rs

on
al

 S
ite

s

1

10

100

1000

10000

26
45

12
6

76

52 46 45

28 26

19 18 17

9 9 8 8 8 7 6 6 6 5 5 4 4 4 4 3 3 3 3

2 2 2 2 2 2

1 1 1 1

26
81

91

39 43

10

16

22 20

7 8

3

2

4 5

2

1

2 2

1 1 1 1 1 1 Website topic
Script topic

Fig. 5: The count of URL domains and script domains in different website categories. The bar height shows the number of script
domains or frame domains with the corresponding category in our dataset of unique vulnerabilities. The y-axis is in logarithic
scale. Script domains are the domains that the vulnerable scripts were hosted on. Frame domains are the domain of the frame
where the vulnerability was located. Note: the numbers for script domains do not add to 3,219 because some sinks did not have
a script URL. This may happen when the sink location is in dynamically generated code.

domains. We use the Blue Coat K9 classification of domains
into topics [2] for this purpose.

We found that the vast majority, 2,645 of 3,219 of our
unique vulnerabilities (82%), were found to execute inside
iframes with domains that were known to serve web advertise-
ments or perform analytics. Other domain types that accounted
for many vulnerabilities included shopping and news.

We also analyzed what type of domains hosted the scripts
in which we found vulnerabilities. Similarly to the above
result, we found that 2,681 of 3,219 vulnerabilities (83%) were
in scripts hosted on advertising and analytics domains. Figure 5
shows the analysis of the types of script domains and website
domains with confirmed vulnerabilities. For this measurement,
we used the domain of the script where the sink function call
was found. While advertising domains were the most popular
source of vulnerable scripts, our data-collection infrastructure
did not capture enough information to similarly categorize
scripts that did not have potentially vulnerable flows. Hence,
while we can report that, in web pages that had at least one
flow, 38% of the time the flow originated in a script that
was categorized as an advertising script, we cannot determine
whether the fraction of advertising-domain scripts that was
vulnerable was greater than the fraction of scripts from other
domain categories.

We matched the unique vulnerabilities that we found with
the top-level web pages that contained those vulnerabilities in
our dataset. Many of the vulnerabilities that we found were on
subframes of other web pages, and we wanted to understand
how much exposure users would have if they visited the top-
level pages in our dataset. Table IV shows the categories of
these top-level web pages. Note that there are significantly
more data points than unique vulnerabilities because some

0.0

0.1

0.2

0.3

0.4

1 10 100 1000
Script rank

%
 o

f v
ul

ns
 s

cr
ip

t w
as

 p
re

se
nt

Fig. 6: The percent of stack traces from the dataset of unique
vulnerabilities that scripts were found in. The x-axis shows the
rank in log scale of the scripts in a sorted list; for example, 10
shows the script that was 10th most frequently present in stack
traces. The y-axis is the percent of script URLs that were less
than that rank. For example, the first script was present in the
stack traces of 0.34% (11 of 3,219) unique vulnerabilities.

vulnerabilities were present in web pages that were subframes
of multiple web pages. In contrast to Figure 5, where the most
popular category was web ads and analytics, here the popular
topics are news/media (27.7%) and entertainment (12.9%).

In total, for 282 (8.8%) of the vulnerabilities we found the
domain the script was hosted on was different from the domain
of the iframe in which the script executed. This suggests
that while a non-trivial fraction (8.8%) of vulnerabilities may
be caused by developers relying on third-party scripts, the

9

% Count Category of top level website
27.7% 2856 News/Media
12.9% 1337 Entertainment
9.9% 1026 Technology/Internet
5.1% 523 Games
4.4% 453 Education
4.1% 424 Sports/Recreation
3.6% 376 Reference
3.5% 362 Shopping
2.8% 289 Hacking
2.7% 280 Business/Economy
2.4% 246 Society/Daily Living
2.0% 202 Mixed Content/Potentially Adult
1.7% 178 Newsgroups/Forums
1.6% 164 Health
1.4% 143 Search Engines/Portals
1.2% 119 Brokerage/Trading
1.1% 114 Political/Social Advocacy
1.1% 113 Financial Services
1.0% 107 Travel
0.9% 98 Vehicles
0.8% 80 Restaurants/Dining/Food
0.7% 76 Uncategorized
0.7% 71 Real Estate
0.6% 62 Job Search/Careers
0.5% 55 File Storage/Sharing
0.5% 51 Audio/Video Clips
0.5% 50 Government/Legal
0.4% 46 Software Downloads
0.4% 43 Religion
0.4% 43 Pornography
0.4% 39 Adult/Mature Content
0.4% 37 Alternative Spirituality/Belief
0.3% 31 Email
0.3% 28 Social Networking
0.3% 28 Personal Sites
0.2% 24 Malicious Sources/Malnets
0.2% 21 Office/Business Applications
0.2% 21 Auctions
0.2% 18 Phishing
0.1% 14 Humor/Jokes
0.1% 13 Suspicious
0.1% 13 Charitable Organizations
0.1% 8 Scam/Questionable/Illegal
0.1% 7 Web Hosting
0.1% 6 Intimate Apparel/Swimsuit

<0.1% 5 Weapons
<0.1% 5 Placeholders
<0.1% 5 Gambling
<0.1% 4 Web Ads/Analytics
<0.1% 4 Personals/Dating
<0.1% 3 Nudity
<0.1% 2 Military
<0.1% 2 Chat (IM)/SMS

10325 Total

TABLE IV: Categories of top level domains that contain an
iframe with a DOM XSS vulnerability. The count column
shows the number of top level pages in a category that
contained a frame with a vulnerability. The percent shows the
percent of top level pages with that category.

vast majority of vulnerabilities are in the developers’ own
scripts (or at least scripts hosted locally on their domains). The
fraction is smaller than reported in prior work, which found
that 22% of code attributable purely to an error by a third
party [35]. This difference could be the result of our different
methodology for confirming DOM XSS vulnerabilities.

c) Vulnerability attribution by script: We additionally
examined the scripts in the entire stack trace for each vulnera-
bility. The goal of this analysis was to determine whether some
scripts occurred in stack traces of vulnerabilities particularly
often. Such scripts could be good candidates for adding
encoding functions, or for other remediation, as that would

prevent many vulnerabilities. At the same time, if some scripts
occur in many stack traces of vulnerabilities, this could indicate
that developers misunderstand how to correctly use that script.

For our 3,219 confirmed vulnerabilities, we identified the
scripts in the stack trace of each vulnerability, and then
counted how many stack traces each script was present in.
For this analysis we removed jQuery from our results because
many websites use various HTML rendering functions (e.g.,
the html or append jQuery methods) that are working as
intended, but misused by the caller. Hence, we removed any
script name that contained the string “jquery” without respect
to character case.

We found that the majority of vulnerable scripts was
present in only one unique vulnerability stack trace—implying
that the causes of vulnerabilities are unique. Figure 6 shows
the percentage of stack traces that each script is seen in.

d) Vulnerabilities in commonly blocked content: Inter-
net folklore has often claimed that ad blocking software pro-
tects your computer from XSS vulnerabilities common in ad
networks [19]. Because we found that many of both the target
web pages and the vulnerable scripts were located on domains
that hosted advertising, we tested how much protection a
normal user who uses an ad blocker would have from such
vulnerabilities. For this analysis, we used the adblockparser
Python library [6] to simulate what scripts would not be
executed if the user was running ad blocking software that
obeyed the rules defined in the Adblock EasyList, a popular
rule list of advertising content to block [3]. We counted a
vulnerability as being blocked if the Adblock EasyList would
block either the script or the entire target URL when the target
URL is loaded inside an iframe and not as the main frame. We
found that, of the 3,219 unique vulnerabilities, 2,039 (63%)
would have been blocked by this simulated configuration of
Adblock.

B. Effectiveness of static-analysis tools

We next examine whether the vulnerabilities we found
could be detected at development time using off-the-shelf
static-analysis tools. We find that most could not, although
static-analysis tools sometimes found additional bugs.

More specifically, with our dataset of confirmed vulnerabil-
ities IV-A, we tested static-analysis tools to evaluate their abil-
ity to find the same vulnerabilities that the dynamic analysis
found. To target JavaScript, dynamic analysis traditionally is
seen as having fewer false positives [27]; however, static analy-
sis is often more helpful for programmers during development
because of the lack of customized analysis for adding new
code—developers can set up a static-analysis toolchain once
to automatically check new code. In addition, static analysis
can be more complete—able to detect vulnerabilities in code
that was not executed on a particular run of the program.
The majority of the vulnerabilities that were caught in our
experiment only by static-analysis tools were in this category.

a) Overlapping vulnerabilities: We compared the rates
at which different tools, described in Section III-D, found
the vulnerabilities that we had previously compiled using the
dynamic analysis. We found that the tools we tested usually
failed to detect the DOM XSS vulnerabilities from our dataset.

10

% of detected vulnerabilities # of reported issues
Esflow 0% 4
ScanJS 8% 2700
Burp Suite 10% 39

TABLE V: The percent of vulnerabilities detected by the
dynamic analysis that were detected by different static-analysis
tools out of a total of 50 web pages with known vulnerabilities.

The full results comparing different tools are provided in
Table V. Notably, while Burp Suite, the most promising tool,
had a low rate of finding the same errors as the dynamic
analysis, it pointed out many potential issues not found by
the dynamic analysis. We next describe these findings in more
detail.

We randomly sampled 50 of the 3,219 unique bugs we
found using our dynamic analysis. Then, for the two tools
that scanned JavaScript code, we downloaded the web page
where the vulnerability was located, and all the accompanying
JavaScript, and used the downloaded JavaScript as input to
the tools. We included any JavaScript embedded in HTML
in addition to externally loaded JavaScript. Because the tool
was examining the web page statically, we were not able
to include JavaScript that is dynamically loaded during the
execution of the page. For Burp Suite, we loaded the web page
in the Chromium web browser and connected Burp Suite to the
browser via a proxy. In this way, all the JavaScript requested
by the browser was analyzed by Burp Suite’s static-analysis
tool. Therefore, it was able to access external scripts that were
dynamically loaded during execution.

We counted a tool as successfully identifing one of these
vulnerabilities if it output any error message related to DOM
XSS referring to the code where the sink for the vulnerability
was located. For Burp Suite and esflow, we manually reviewed
all messages and counted how many referred to the exact line
number and character offset of the sink that was vulnerable.
For ScanJS, we counted messages that referred to the same
script location (line number and script name) as the vulnerable
sink, provided that they warned of a potential XSS vulnerabil-
ity. We explicitly terminated the analysis of any program that
took longer than one hour. This affected four of the 50 web
pages tested with esflow. In practice, we believe that this is
realistic in that static-analysis tools must give results within a
reasonable time to be useful to developers. We do not count
as matches cases in which the tool detects a vulnerability that
was not a part of our dataset.

b) False positive rates: We compared the false positive
rates of the tools by sampling tool output and manually
deciding whether the particular snippets of code that the tool
flagged could be exploitable. We found Burp Suite to have no
false positives, while the other tools had many false positives.
Table VI shows the results for all tools.

We randomly sampled 50 out of all the URLs that we
visited in our dataset. We randomly sampled from all URLs,
and not just URLs for which we did not confirm vulnerabilities,
so that our results for false positive rates would not be biased
towards websites that are more secure, and therefore more
likely to have false positives than true positives. We then

Tool False positive % # of reported issues
Esflow 95% 19
ScanJS 100% 3764
Burp Suite 0% 36

TABLE VI: Empirical false positive rate computed from a ran-
dom sample of 20 reported errors over 50 randomly sampled
web pages.

analyzed the scripts on those pages with each of the tested
static-analysis tools. Each tool would report findings on the
pages related to DOM XSs. We randomly sampled 20 of those
findings, except for esflow, which only reported 19 findings.
We then manually examined each finding, and the piece of
code that it referred to, to determine whether that piece of
code could be exploitable. In doing so we aimed to simulate
how a developer assessing the same code and reviewing the
output of the tool would categorize the bug.

Our guiding criteria for manually counting true and false
positives in the tools’ output was to look for flows from
exploitable sources (e.g., URLs, cross-origin messages) to
exploitable sinks (e.g., document.write, eval) without
encoding that would render the flow benign. Thus, we counted
flows as true positives even if the identified block of code was
not executed during the page load during which our dynamic
analysis detected a vulnerability. This may happen because the
function is dead code, or because that particular page load did
not happen to execute the vulnerable function. We believe this
method of measuring false positives is a conservative estimate,
because in reality some of the identified vulnerabilities may be
in dead code. We also did not include findings that were not
related to DOM XSS vulnerabilities—for example, warnings
about bad coding practices—as either false positives or false
negatives. We aimed to measure the number of actionable
vulnerabilities that could be detected by our tested static-
analysis tools.

Deciding whether a “bug” reported by a static-analysis tool
is exploitable was a judgment call. We believe that any bias in
the judgment is likely to be biased towards marking something
as non-exploitable when it could be exploited, because it is
easier to show how a piece of code might be dangerous,
but much harder to confirm that code is safe in all cases.
In practice, we believe this closely matches how an engineer
reading the output of such a tool would label the output.

C. Qualitative trends in DOM XSS vulnerabilities

To gain greater insight into the causes that give rise to
DOM XSS vulnerabilities, we manually, qualitatively analyzed
two subsets of the vulnerabilities detected by our dynamic
analysis. First, we randomly selected from the unique vulner-
abilities; however, we noticed that a large portion of these
vulnerabilities was semantically very similar, despite being
unique bugs according to our uniqueness criteria (script lo-
cation, hosting domain, and context; also used in previous
work [22]). Therefore, we also selected a separate subsample
of vulnerabilities, in which we first randomly selected 20
domains on which vulnerabilities had been found, and then
selected a random vulnerability on each domain. This allowed
us to get a sample that is conceptually more representative

11

of the types of bugs that occur across different domains,
and hence of the types of problems that are likely to be
encountered by different organizations. A summary of the
trends we observed is located in Table VII.

a) Vulnerability complexity: First, we found that some
bugs were extremely simple, such as concatenating the entire
URL into an HTML or JavaScript execution function. Exam-
ples of why this happened were creating a form where the
form submission attached a return URL for the current page,
or passing the web page’s URL as a query parameter for the
source of an iframe. In addition to simple concatenation, we
also found cases where the URL was stored in a non-local
variable that could be assigned to in code that was far away
from the sink (e.g., in a different file or function).

b) Failed mitigation behaviors: In addition, for eight
of the forty vulnerabilities the relevant code was more com-
plex and spanned multiple functions. Three of those eight
utilized custom template processing that did not perform
encoding based on the context in the template, resulting
in insecure templating code. Another vulnerability was due
to an attempt to perform custom, but highly incomplete,
filtering—removing all instances of <script> tags, but still
leaving open many other ways for an exploit to occur, for
example, by using event handler code like <img src=x
onerror='INJECTION'/>. For two other vulnerabilities,
code involved in the flow was dynamically generated using the
eval function, meaning that such code would typically not
be visible to static-analysis tools.

We did not observe any failed attempts to use custom
encoding functions. Combined with the fact that many of the
bugs were shallow—a finding echoed by [35]—this suggests
that perhaps engineers were not aware that URLs could contain
characters that could be used to inject markup.

When manually reproducing vulnerabilities, we also ob-
served cases where complex control-flow paths must be fol-
lowed to execute the vulnerable piece of code. For example, we
could not reproduce one specific vulnerability until realizing
that the vulnerable code was only executed if the screen width
was larger than 1,024 pixels, as it had been in our original data
collection. In another case, the vulnerable section of code was
executed on some page loads but not on others. We discuss
code coverage further in Section VI.

V. LIMITATIONS

Despite being less straightforward to automatically exploit
in the context of a live website, other types of flows besides
the ones we focused on (URL to HTML and JavaScript flows)
may also be vulnerable. For example, we observed (during
manual analysis) a flow from a cookie source to an HTML
sink that could be exploitable by a second flow from a URL
source into a cookie sink on the same web page. The page
could be exploited by crafting a special URL, from which
content would flow through the document’s cookie into the
HTML sink. Other work has observed XSS vulnerabilities
that derive from cookie sources and could be exploitable by
web attackers [39]. Vulnerabilities that exploit the JavaScript
postMessage API have also been reported [33]. Location
sinks can be leveraged to create more potent phishing websites,
in which an attacker may craft a URL that points to the

By domain By unique bug
Simple concatenation 8 1
Simple except for variable usage 4 18
Spans multiple functions 8 1
Custom templating 3 0
Custom filtering 1 0
Dynamically generated code 2 0

TABLE VII: Description of types of vulnerability qualities
observed during qualitative coding of bugs. We randomly
sampled our vulnerability dataset in two ways, by domain
and by unique vulnerabilities; each sample contained a total
of 20 vulnerabilities. “Simple concatenation” refers to bugs
that were a simple concatenation of the entire source with
HTML or JavaScript markup. “Multiple functions” refers to
vulnerabilities that spanned multiple functions. “Simple except
for variable usage” refers to bugs where a variable with the
source value was concatenated with HTML or JavaScript code.
Custom templating refers to code that attempted to use a
custom templating library, but without encoding. Dynamically
generated code refers to instances where code involved in
the bug was dynamically generated, and would generally be
outside of the abilities of static analysis.

target website but is redirected to a phishing website via
assignment to document.location in JavaScript. A victim
might assume that they were on a benign website because the
hostname in the URL they clicked on was benign. We speculate
that these other types of flows might be similar to the types of
flows we study here and would be a good avenue for future
work.

We sampled only a subset of the web pages on the Internet,
and on the pages we sampled, we did not exercise much
dynamic functionality—for example, by clicking on web-
page elements or entering text—nor were we able to visit
web pages behind log-in barriers. On one hand, this allowed
our analysis to scale to large numbers of vulnerabilities and
websites, but on the other, the vulnerabilities we detected may
not be representative of all vulnerabilities. Nonetheless, we
found many vulnerabilities through our analyses. Our manual
analysis of vulnerabilities may also exhibit similar biases: We
performed a more in-depth analysis only of a subset of our
results. This subset was by necessity small so that it would
be feasible to manually analyze. We do not suggest that the
examined vulnerabilities are representative of our dataset, but
we analyzed them in depth to give greater insight into at least
some vulnerabilities.

Due to slight differences in methodology, the comparison
of our results to previous work may not be perfectly accu-
rate. Differences in results may be due to implementation
differences, although for the parts of methodology that are
shared between our work and Lekies et al.’s [22], we tried to
reproduce previous methodology faithfully.

VI. DISCUSSION

We performed this study to measure the prevalence of
DOM XSS vulnerabilities, evaluate and inform the design of
static-analysis tools, and assess the viability of other methods
for preventing DOM XSS vulnerabilities. We first discuss

12

how the raw results of our measurement study compare to
previous work that used similar methodology to measure XSS
vulnerabilities (Section VI-A), teasing out which differences
are the result of methodology and which reflect a change in
the prevalence of DOM XSS vulnerabilities. We then leverage
our quantitative and qualitative analyses of the sources and
nature of DOM XSS vulnerabilities to discuss the weaknesses
of some suggested countermeasures (Section VI-B). Finally,
we further interpret the results of our examination of static-
analysis tools and suggest how these tools could be improved
to catch more DOM XSS vulnerabilities (Section VI-C).

A. Comparing measurements on DOM XSS vulnerabilities

Our methodology for detecting DOM XSS vulnerabilities
replicates and builds on Lekies et al.’s [22]. We extend Lekies
et al.’s methodology by adding another method for determining
whether a bug is exploitable, namely, inserting a potential
exploit into query key-value pairs rather than just at the end of
the URL. When inserting the injection at the end of the URL,
we find that a roughly similar fraction of flows is vulnerable as
reported by Lekies et al. [22]. However, using both methods
of inserting the injection, we identify 83% more confirmed
vulnerabilities than when just inserting the exploit at the end.
This suggests that previous work, as well as our own, may
substantially undercount the number of vulnerable flows.

Our methodology differed from that of Lekies et al., in
that we visited twice as many top-level domains, but fewer
subpages for each domain (see Section III-A). We believe
this is the main cause of different findings for the number
of domains that have at least one vulnerability. Previous work
found 9.6% of domains to have at least one vulnerability, while
we found 3.8% of domains to have one. Interesting, this shows
that vulnerabilities are not systemic, i.e., a domain that has at
least one vulnerability is not likely to have that vulnerability
(or different ones) on a preponderance of pages. Since some
parts of pages hosted on the same domain are often shared
across most pages, this implies that DOM XSS vulnerabilities
are usually not in this shared content.

Where our methodology and that of Lekies et al. are
most directly comparable—when relying only on the simpler
method of confirming vulnerabilities and examining the ra-
tio of vulnerabilities to number tainted flows or to number
of pages visited—our results are generally similar, although
overall our results suggest an increase in the number of
vulnerabilities over time. In our work, we find more flows
per page—on average, 92.6 flows per page compared to
an average of 48.5 flows per page in Lekies et al.’s work.
Additionally, normalizing by the number of flows we found
more vulnerabilities: We found 0.04% of flows to be vulner-
able, while Lekies et al. reported 0.03%. Normalizing by the
number of pages visited, we also found more vulnerabilities:
1,754 vulnerabilities on 44,722 pages (3.9%); previous work
found 6,167 vulnerabilities on 504,275 web pages (1.2%). We
speculate that this difference is because JavaScript programs
are becoming more complex, and as a consequence DOM XSS
vulnerabilities are becoming more frequent.

B. Preventing DOM XSS

In Section IV-A, we showed that the unique vulnerabilities
typically did not involve many of the same scripts: the stack

traces of the exploits of different vulnerabilities were generally
composed of different scripts. We interpret this to mean that
most DOM XSS vulnerabilities are due to custom code, and
not library code that is shared by many domains.

One way to prevent DOM XSS vulnerabilities is to detect
them before the software is released. We believe that a promis-
ing direction for finding DOM XSS vulnerabilities at scale is
using techniques that analyze larger portions of the program
space. The problem of code coverage of dynamic analysis
techniques is not new or specific to DOM XSS vulnerabilities;
however, it can be a bigger hurdle for large-scale analysis of
web applications than for traditional programs. Running many
versions of a web application may require a large amount of
network bandwidth for reloading web pages, which can make
it difficult to scale. Solutions that avoid reloading the page to
explore more sections of the program should be explored, as
well as methods to force execution down alternate program
paths. In particular, work on fuzzing parameters for traditional
XSS [17] and on forcing JavaScript execution through different
code paths [20] holds promise.

Our analysis also provides additional evidence of the risks
of developing custom versions of common design patterns.
While using design patterns for templated HTML—a prac-
tice analogous to parameterized SQL queries—is generally a
good approach to preventing DOM XSS vulnerabilities, it is
important to correctly implement the details. For example,
we observed three instances of bespoke HTML template
implementations that did not apply encoding functions to
the values of the templates. In general, custom templating
implementations can be error prone, because differences in
context can be easy to overlook. For example, to be safe from
XSS, a value in a templated HTML statement that is inside
a script tag must first have encoding applied for the HTML
parser and then for the JavaScript parser.

C. Static-analysis tools

We next further interpret the results of running the static-
analysis tools on a sample of vulnerable scripts (see Sec-
tion IV-B). These results suggest that many vulnerabilities may
currently escape both static and dynamic analyses. We also
leverage our results to suggest ways to extend static-analysis
tools to catch more bugs.

In Section IV-B, we measured the false positive rate of
different static-analysis tools and the rate at which tools
correctly identified vulnerabilities from our dataset of known
vulnerabilities using dynamic taint tracking. For the false
positive rate, we empirically sampled the tools output and
manually decided whether a tool’s finding was a false positive
or a true positive. However, we were unable to empirically
measure the false negative rate overall. This is because it was
not feasible for us to know all possible vulnerabilities in non-
contrived application. Instead, we measure the rate at which
static-analysis tools can detect known bugs that are detected
with a different methodology.

Our analysis of Burp Suite, the best-performing static-
analysis tool we tested, showed low false-positive rates but also
an inability to detect most of the vulnerabilities identified by
the dynamic analysis. Together, these two measurements imply
that the static-analysis tools were detecting largely different

13

vulnerabilities that our analysis. The dataset of vulnerabilities
with which we tested static-analysis tools, however, was lim-
ited to vulnerabilities detected through our dynamic analysis.
In our test, we visited a large number of web pages but did not
attempt to exercise much of the web application’s functionality,
for example, by clicking on fields, entering data into forms,
or sending messages to pages. It is likely that such activities
would reveal more vulnerabilities. In addition, in our dataset,
we found many of the vulnerabilities to be shallow, in that they
involved a straightforward concatenation of data from a source
into the parameter to a sensitive sink function. This is similar
to prior findings [35]. Indeed, it could be that the majority of
vulnerabilities are more complex and would be better detected
by static-analysis tools. Given that we know that there are
many bugs that escape either analysis, we speculate that there
may be many more bugs that escape both analyses.

ScanJS generally appears to identify poor coding practices
that lead to DOM XSS vulnerabilities, rather than detecting
such vulnerabilities. Indeed, many of the suggestions that
the tool gives revolve around the use of certain functions
being dangerous (e.g., document.write or eval). While
ScanJS unfortunately did not detect many vulnerabilities on
our dataset, we believe it to be useful for, e.g., enforcing coding
standards.

Based on our experiments, we can make some recommen-
dations for improving static-analysis tools. One area where
static-analysis tools could improve is the ability to track flows
across function boundaries. We found a non-negligible number
of such vulnerabilities (20% in the domain sampling setting
in Section IV-C) and tracking such flows can be difficult
statically, especially when there are many branches. Another
aspect of static-analysis tools that could use improvement is
the ability to track flows that go through objects. For example,
a tainted string is sometimes stored as the key or value in a
JavaScript object and later used in a computation. Finally, one
constraint of static-analysis tools that is especially limiting in
JavaScript is the inability to analyze dynamically generated
code. A hybrid static-analysis tool that analyzes new code
before it is executed in the browser might be better able to
detect such vulnerabilities.

VII. CONCLUSION

We studied how to detect and prevent DOM XSS vulner-
abilities in JavaScript code. In this work, we improved on
the methodology to confirm DOM XSS vulnerabilities, finding
83% more vulnerabilities than by using previous methodology
applied to the same dataset. We used our methodology for
detecting DOM XSS vulnerabilities to empirically measure
the prevalence of DOM XSS vulnerabilities on the Internet,
finding them to be more common now than when previously
measured in 2013. With our collected dataset of DOM XSS
vulnerabilities, we also compared the ability of static-analysis
tools to detect the same bugs that dynamic analysis techniques
found, finding static-analysis tools to detect different types
of bugs, with little overlap. A summary of our findings can
be found in Figure 7. We are in the process of notifying the
website owners of the vulnerabilities we discovered.

Measurement

• Our key-value pair injection method in conjunc-
tion with prior method found 83% more vulner-
abilities than found using only prior method of
injection [22].

Sec. IV-A

• We identified what has changed and what remains
the same in DOM XSS over a 4-year span by
building on top of a prior experiment.

Sec. VI-A

XSS trends

• We found more tainted flows overall and a higher
rate of vulnerable flows than previous work, which
suggests that DOM XSS is getting worse.

Sec. VI-A

• Vulnerabilities are concentrated on a small num-
ber of iframe owners and script hosting sites.

Sec. IV-A

• 83% of vulnerabilities are due to code hosted on
advertising and analytics domains.

Sec. IV-A

What contributes to XSS

• DOM XSS vulnerabilities are likely not systemic
within domains.

Sec. VI-A

• Vulnerabilities are often in unique, custom code,
not in shared libraries.

Sec. IV-A

• Incorrectly implemented bespoke HTML templat-
ing, a defense against XSS, introduces XSS vul-
nerabilities.

Sec. IV-C

XSS prevention

• Ad blocking would block many of the vulnerabil-
ities and is an effective client-side protection tool.

Sec. IV-A

• Incorrectly implemented templating leads to vul-
nerabilities and possibly false sense of security.

Sec. VI-B

• The three popular (low-cost or free) static-analysis
tools we tested are not effective at finding the
vulnerabilities found using our dynamic tool; how-
ever, Burp often finds vulnerabilities not found by
our tool.

Sec. VI-C

Fig. 7: Summary of findings.

ACKNOWLEDGMENTS

The authors would like to thank Cara Bloom for providing
comments on a draft of this work. This work was supported
in part by gifts from John & Claire Bertucci, by CyLab at
Carnegie Mellon University via a CyLab Presidential Fel-
lowship, and by the National Science Foundation via grant
CNS1704542.

REFERENCES

[1] “Airbnb JavaScript style guide,” https://github.com/airbnb/javascript.
[2] “Blue coat k9,” http://www1.k9webprotection.com/.
[3] “Easylist filter for AdBlock,” https://easylist.to/.
[4] “esflow: Elegant, fast JavaScript static security analyzer for finding

issues like DOM XSS,” https://www.npmjs.com/package/esflow.
[5] “Google JavaScript style guide,” google.github.io/styleguide/jsguide.html.
[6] “Python parser for Adblock Plus filters.” [Online]. Available:

https://github.com/scrapinghub/adblockparser
[7] “The web robots pages,” http://www.robotstxt.org/.
[8] “DOMinator,” 2011. [Online]. Available: https://github.com/wisec/

DOMinator

14

[9] “Cenzic application vulnerability trends report 2014,” 2014.
[Online]. Available: https://www.info-point-security.com/sites/default/
files/cenzic-vulnerability-report-2014.pdf

[10] “JSLint,” http://jslint.com/, 2015.
[11] “Alexa top sites globally,” http://www.alexa.com/topsites/countries/US,

2017.
[12] “ScanJS,” https://github.com/mozfreddyb/eslint-config-scanjs, 2017.
[13] K. Bijjou, “Web application firewall bypassing how to defeat the blue

team,” OWASP open web application security project, 2015.
[14] P. Bisht and V. Venkatakrishnan, “XSS-GUARD: precise dynamic

prevention of cross-site scripting attacks,” in Proc. DIMVA, 2008, pp.
23–43.

[15] S. Calzavara, A. Rabitti, and M. Bugliesi, “Content security problems?:
Evaluating the effectiveness of content security policy in the wild,” in
Proc. CCS, 2016, pp. 1365–1375.

[16] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in Proc. DIMVA,
2010, pp. 111–131.

[17] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “KameleonFuzz:
evolutionary fuzzing for black-box XSS detection,” in Proc. CODASPY,
2014, pp. 37–48.

[18] V. Ivanov, “Web application firewalls: Attacking detection logic mech-
anisms,” Blackhat USA, 2016.

[19] A. Jones, “On widespread XSS in ad networks.” [Online].
Available: https://blogs.msmvps.com/alunj/2016/04/09/on-widespread-
xss-in-ad-networks/

[20] K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang, and D. Xu,
“J-Force: Forced execution on JavaScript,” in Proc. WWW, 2017, pp.
897–906.

[21] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” in Proc. NDSS, 2017.

[22] S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-scale
detection of DOM-based XSS,” in Proc. CCS, 2013, pp. 1193–1204.

[23] B. Livshits, “Dynamic taint tracking in managed runtimes,” Technical
Report MSR-TR-2012-114, Microsoft, 2012.

[24] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include:
large-scale evaluation of remote javascript inclusions,” in Proc. CCS.
ACM, 2012, pp. 736–747.

[25] OWASP, “Cross-site scripting.” [Online]. Available: https://www.owasp.
org/index.php/Cross-site Scripting (XSS)

[26] ——, “DOM based XSS.” [Online]. Available: https://www.owasp.org/
index.php/DOM Based XSS

[27] ——, “Static code analysis.” [Online]. Available: https://www.owasp.
org/index.php/Static Code Analysis

[28] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and
P. Saxena, “Auto-patching DOM-based XSS at scale,” in Proc. ES-
EC/FSE, 2015, pp. 272–283.

[29] ——, “DexterJS: robust testing platform for DOM-based XSS vulner-
abilities,” in Proc. ESEC/FSE, 2015, pp. 946–949.

[30] N. Patnaik and S. Sahoo, “JavaScript static security analysis made easy
with JSPrime,” Blackhat USA, 2013.

[31] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the
dynamic behavior of JavaScript programs,” in Proc. PLDI, 2010, pp.
1–12.

[32] P. W. Security, “Burp Suite,” https://portswigger.net/burp.
[33] S. Son and V. Shmatikov, “The postman always rings twice: Attacking

and defending postmessage in HTML5 websites,” in Proc. NDSS, 2013.
[34] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, “Precise

client-side protection against DOM-based cross-site scripting,” in Proc.
USENIX Security, 2014, pp. 655–670.

[35] B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and M. Johns, “From
facepalm to brain bender: exploring client-side cross-site scripting,” in
Proc. CCS, 2015, pp. 1419–1430.

[36] L. Suto, “Analyzing the accuracy and time costs of
web application security scanners,” 2010. [Online]. Avail-

able: https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-
Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf

[37] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,
“Cross site scripting prevention with dynamic data tainting and static
analysis,” in Proc. NDSS, 2007.

[38] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “CSP is dead,
long live CSP! on the insecurity of whitelists and the future of content
security policy,” in Proc. CCS, 2016, pp. 1376–1387.

[39] X. Zheng, J. Jiang, J. Liang, and H.-X. Duan, “Cookies lack integrity:
Real-world implications,” in Proc. USENIX Security, 2015, pp. 707–
721.

VIII. APPENDIX: LIST OF SINK FUNCTIONS

• document.write, and document.writeln
• Assignment to the src attribute of a script, em-

bed, iframe, or img. Includes JavaScript assign-
ment (element.src = “...”), and assignment using
setAttribute.

• Assignment to the href attribute of a anchor element.
Includes JavaScript assignment and setAttribute.

• eval
• Assignment to the inner text of a script node.
• Implicit string-to-function conversion inside
setTimeout and setInterval

• Assignment to innerHTML, and outerHTML, and
insertAdjacentHTML properties

• Assignment to document.cookie
• Assignment to document.location
• Assignment to the style attribute. Includes JavaScript

assignment and setAttribute.
• Assignment to all event handler attributes. Includes

JavaScript assignment and setAttribute.

15

