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Abstract—In this paper, we develop a model based causality
inference technique for audit logging that does not require any
application instrumentation or kernel modification. It leverages
a recent dynamic analysis, dual execution (LDX), that can infer
precise causality between system calls but unfortunately requires
doubling the resource consumption such as CPU time and mem-
ory consumption. For each application, we use LDX to acquire
precise causal models for a set of primitive operations. Each
model is a sequence of system calls that have inter-dependences,
some of them caused by memory operations and hence implicit at
the system call level. These models are described by a language
that supports various complexity such as regular, context-free,
and even context-sensitive. In production run, a novel parser
is deployed to parse audit logs (without any enhancement) to
model instances and hence derive causality. Our evaluation on
a set of real-world programs shows that the technique is highly
effective. The generated models can recover causality with 0%
false-positives (FP) and false-negatives (FN) for most programs
and only 8.3% FP and 5.2% FN in the worst cases. The models
also feature excellent composibility, meaning that the models
derived from primitive operations can be composed together to
describe causality for large and complex real world missions.
Applying our technique to attack investigation shows that the
system-wide attack causal graphs are highly precise and concise,
having better quality than the state-of-the-art.

I. INTRODUCTION

Cyber-attacks are becoming increasingly targeted and so-
phisticated [2]. A special kind of these attacks, called Ad-
vanced Persistent Threat (APT), can infiltrate into target sys-
tems in stages and reside inert for a long time to remain
undetected. It is important to trace back attack steps and
understand how an attack unfolds [4]. In the mean time,
identifying the entry point of the attack and understanding
the damage to the victim can be critical to recovering the
victim system from the intrusion and also preventing future

compromises.

Causality analysis techniques [25], [16], [24], [26], [29]
are widely used in attack investigation. They analyze audit
logs generated by operating system level audit logging tools
(e.g., Linux Audit [17], Event Tracing for Windows [38], and
DTrace [13]) and correlate system events, e.g., system calls
(syscalls) to identify causal relations between system subjects
(e.g., processes) and system objects (e.g., files, network sock-
ets). Such capability is particularly important in cyber-attack
investigation where causality of malicious events reveals attack
provenance. For example, when an attacker exploits vulnerabil-
ities and executes malicious payloads, causality analysis can
identify such vulnerable interfaces including input channels
that accept malicious inputs from the user or the network.
Moreover, given a set of malicious or suspicious events, it can
identify all the events that are causally related to the given
set of events. Essentially, these events depict the source of the
attack and/or the damage induced by the attacker. However,
syscall based analysis has a major limitation: dependence ex-
plosion [32]. For a long-running process, an output event (e.g.,
creating a malicious file) is assumed to be causally related
to all the preceding input events (e.g., file read and network
receive). This conservative assumption causes significant false
causal relations.

Some recent works [32], [37], [35], [36] focus on collecting
enhanced information at run-time to avoid dependence explo-
sion and enable accurate attack investigation. For instance,
BEEP [32] and ProTracer [37] train and instrument long-
running applications to capture information of fine-grained
execution units in addition to syscalls. MPI [36] asks the
user to annotate important data structures in applications’
source code to enable semantic aware execution partitioning.
Additionally, Bates at el. [6] propose a general provenance-
aware framework called Linux Provenance Module (LPM) that
allows users to define custom provenance rules. The major
hindrance of these techniques in practice is their requirements
of changing end-user systems, such as instrumenting user
applications, installing new runtime support, kernel modules,
and even changing the kernel itself.

Taint analysis [22], [21], [20] is another approach that can
track causal relations (e.g., information flow) between system
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components (e.g., memory objects, files, and network sockets).
However, whole system tainting is too computationally expen-
sive (over 3x slow down [19], [39]) to be deployed on pro-
duction systems. Additionally most taint analysis techniques
cannot handle implicit flow, resulting in false-negatives.

In this paper, we propose MCI, a novel causality inference
technique on audit logs. Our technique does not require any
changes on the end-user system, nor any special operations
during system execution. The end-user only needs to turn
on the audit logger shipped with the operating system (e.g.,
Linux Audit, Event Tracing for Windows, and DTrace). If the
user detects a security incident, she only needs to provide the
syscall log and program binaries from the victim system (or a
disk image) to a forensic expert.

In off-line attack investigation, which is often done by the
forensic expert, MCI precisely infers causality from a given
system call log by constructing causal models and parsing the
log with the models. Fig. 1 shows a high level overview of how
MCI works. MCI consists of two phases: (1) causality anno-
tated model generation, and (2) model parsing. First, MCI gen-
erates causal models by leveraging LDX [31] which is a dual-
execution based system that can infer causality by mutating
input syscalls and then observing output changes. In this phase,
MCI takes two inputs: a program binary and typical workloads.
MCI’s model constructor automatically runs LDX and analyzes
its results to construct models. Models are expressive and
capable of representing fine-grained dependencies including
invisible at the syscall level (e.g., dependencies induced by
memory operations). The models can be pre-generated (for
widely used applications) or generated on demand after an
incident. Second, during investigation MCI identifies causal
relations between events in a given syscall log collected from a
victim system by parsing the log with the models. The derived
precise dependencies are critical for attack investigation. In
summary, we make the following contributions:
• We propose a novel technique for precise causality

inference that directly works on audit logs without
requiring any changes or setup on end-user systems.
We only require program binaries and the audit log
from the victim system after the incident.

• We perform a comparative study using a real-world
example to illustrate the merits and limitations of
existing approaches.

• We propose to leverage LDX [31] to identify fine-
grained causality from program execution. Using the
generated causality information, we construct causal
models annotated with fine-grained dependencies. We
study the model complexity needed to describe causal-
ities in audit logging.

• We develop a novel model parsing algorithm that
can handle multiple model complexity levels and
substantially mitigate the ambiguity problem inherent
in model based parsing.

• We perform thorough evaluation of MCI on a set
of real-world applications. The results show that the
generated models can recover causality with close
to 0% FP and FN for most applications and the
worst FP rate 8.3% and the worst FN rate 5.2%.
Model construction and model parsing have reason-
able overhead and scale to week-long and even month-
long workloads. Applying MCI to attack investigation

shows that our models have very nice composibility
such that small models can be composed together to
describe complex system-wide attack behaviors. Our
attack causal graphs are even more precise than those
generated by a state-of-the-art system [32].

II. BACKGROUND AND MOTIVATION

In this section, we use an insider information leak attack
case to illustrate the limitations of existing attack provenance
analysis techniques, and then to motivate our work.

A. Motivating Example

We use a data exfiltration of confidential company data by
an employee. Insider attacks are the dominant reason for data
breach incidents in 2016 [1], [18].

Assume John is a project manager who has access to
confidential data. John was bribed by a competitor company
and attempts to breach some confidential data. However,
John’s company forbids copying data to removable media
such as USB stick. Furthermore, the company inspects all
incoming/outgoing network traffic via deep packet inspection
(DPI) [30], [44], [45] to prevent exfiltration of confidential data
and to block malicious network traffic from outside. To bypass
the packet inspection, John decides to use the GPG encryption
algorithm [27] to encrypt data before sending it.

GnuPG Vim plug-in. To use GPG encryption, John installed
a Vim plug-in GnuPG [7], which enables transparent editing
of gpg encrypted files. When he opens a file encrypted by
gpg [27] which is an encryption utility supported by most
operating systems with the GNU library (e.g., Linux, FreeBSD,
and MacOS), the GnuPG plug-in automatically decrypts and
passes the decrypted data to Vim so that the user can edit
the contents of the encrypted file. The plug-in automatically
encrypts the contents when the user saves the gpg file.

Attack Scenario. John uses Vim equipped with the GnuPG
plug-in to open three confidential files, data1, data2, and
data3. He also opens out.gpg in order to store confidential
data in an encrypted format. Then he copies a few lines from
data2 using the Vim command ‘v’ to select characters and
‘y’ to copy them to the clipboard buffer (i.e., Vim’s default
register). Then he finds out the information in data3 is more
up-to-date. He thus copies lines from data3 that overwrite
the contents from data2. Later, he pastes the copied lines to
out.gpg, saves the file in an encrypted format and terminates
Vim. Note that, when he saves out.gpg, the GnuPG plug-in
actually creates a new file (inode:8) and renames it to out.gpg
so that the original out.gpg file (inode:4) is replaced by a new
file (inode:8). Observe that the inode numbers of the original
out.gpg file and the new file are different. Finally, he sends the
encrypted out.gpg to a server outside the enterprise network.

This data breach incident is later detected, and a forensic
analysis team starts to investigate the incident. Now, we
introduce existing causal analysis based forensic techniques
and discuss how they work on this attack.

B. Existing Approaches and Limitations

System Call based Analysis. Most causal analysis techniques
use syscall logging tools to record important system events at
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Fig. 1. Overview of MCI’s off-line causality inference. Audit Logs and Program Binaries are provided from the end-user, workloads and input specifications
are generated by an attack investigator (e.g., a forensic expert), and other components are automatically generated by MCI.
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Fig. 2. Motivating Example: Insider theft breaches confidential data using VIM and gpg

.runtime and then analyze recorded events to identify causal
relations between system subjects (e.g., process) and system
objects (e.g., file or network socket). Syscall logging tools are
shipped with most operating systems. For example, Linux Au-
dit [17] is a default package in Linux and MacOS distributions,
DTrace [13] is available in FreeBSD, and Event Tracing for
Windows (ETW) [38] comes with Windows.

Syscall based analysis has been studied in a number
of works [25], [16], [24], [26], [29]. For instance, Back-
Tracker [25] and Taser [16] propose backward and forward
analysis techniques in order to analyze syscall logs and con-
struct causal graphs for effective attack investigation. The
constructed causal graphs show system subjects and objects
that involved in attacks, and their causal relations.

Fig. 2-(a) shows a provenance graph generated from the
syscall log collected during the data breach incident discussed
in the previous section. To understand the incident in detail, a
security analyst first identifies the out.gpg file (inode:8) which
contains confidential data. Then the analyst finds the system
components that are causally related to the file from the graph
in the backward direction (time-wise). Observe that it was Vim
that wrote the file ( 1111 ). Before that, Vim read /tmp/tmpfile ( 101011 10
) which was written by “gpg” ( 99 ). The “gpg” process (pid:2)9
was forked by Vim ( 88 ). Before the fork, Vim read /tmp/tmpfile8
( 77 ) which was written by another “gpg” process (pid:1) ( 66 ).7 6
“Gpg” previously read the original out.gpg file with a different
inode number (inode:4) ( 55 ) and the “gpg” process (pid:1) was5
forked by Vim ( 44 ) as well. There are also other files that Vim4
read, including data3 ( 33 ), data2 ( 22 ), and data1 ( 11 ).3 2 1

Note that Fig. 2-(a) contains many false dependencies such
as dependencies between the Vim process and files data1,
data2, and /tmp/.X11-unix which is a socket for XWindow. The
coarse-granularity of processes leads to this false dependency
problem as it simply considers an output event is dependent
on all the preceding input events in the process.

Execution Unit based Analysis. False dependencies in syscall
based analysis are a major obstacle for attack investigation as
it often causes the dependency explosion problem [32], which
is a problem of having an excessive number of dependencies,
with most of them being bogus. It makes investigation chal-
lenging, often leading to wrong conclusions. To address the

problem, BEEP [32] and ProTracer [37] propose to divide a
long-running process to autonomous execution units. In this
way, an output event is only dependent on the preceding input
events within the same execution unit. BEEP and ProTracer
also detect inter-unit dependencies introduced via memory
objects. ProTracer is a variant of BEEP that can significantly
reduce runtime and space overhead while the effectiveness of
attack analysis remains the same because they share the same
mechanism to partition a long process.

Unfortunately, BEEP and ProTracer require complex binary
program analysis in order to instrument a target application
for execution partitioning at runtime. To detect the inter-unit
dependencies, they need to identify memory dependencies
across units by analyzing training runs, and instrument the
target program to monitor the relevant memory accesses in
production runs. Note that identifying all relevant memory
accesses that induce dependencies across execution units in
complex binary programs via training is challenging. Missing
memory accesses in training leads to false-negatives in attack
investigation. They also generate a large number of additional
syscalls to denote unit boundaries and memory accesses,
increasing the storage pressure.

In addition, while BEEP can prune out some false depen-
dencies as shown in Fig. 2-(b) (e.g., between data1 and Vim)
by leveraging fine-grained execution units, there are still false
dependencies such as those involving data2 and /tmp/.X11-
unit. This is because, in this example, BEEP considers each
file read/write event as a separate unit and detects dependencies
between units through memory objects. For example, BEEP
considers units that read data2 ( 22 ) and data3 ( 33 ) are causally2 3
related to a unit that writes out.gpg ( 1111 ) as texts from data211
and data3 are copied into a buffer for copy-and-paste in Vim.
However, the cross-unit dependency between the unit with
data2 ( 22 ) and another unit with out.gpg ( 1111 ) is bogus because2 11
the contents copied from data2 are not pasted to out.gpg. The
bogus dependency is introduced because BEEP simply detects
memory read and memory write events with a same
memory address without checking if there is true information
flow between the two. In short, while BEEP can narrow down
the scope of investigation, there are still unnecessary files and
events in the graph.
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Taint Analysis. Taint analysis techniques [22], [21], [20] track
information flow between a set of system components (e.g.,
file, memory, and network), called taint sources, to another
set of system components, called taint sinks. Given a set
of input related system components to track, taint analysis
keeps track of how data from the specified input components
are consumed and propagated by individual instructions that
operate on the data, in order to identify how they impact other
system components. However, most taint tracking approaches
including the state-of-the-art tools such as TaintGrind [22]
and libdft [21] are expensive as they monitor each instruction
to track information flow. Furthermore, they are often not
able to track implicit flows caused by control dependencies,
introducing false-negatives.

To illustrate the merits and limitation of taint analysis tech-
niques, we use a state-of-the-art open source tool, TaintGrind,
to analyze the aforementioned incident. Fig. 2-(c) shows the
result from TaintGrind. In this example, TaintGrind fails to
identify the dependency between the data3 and /tmp/tmpfile.
Note that the most important part of the attack (i.e., the leaked
confidential data) is not revealed in the attack investigation due
to the missing dependency.

  int tripledes_ecb_crypt(..., const byte* from, ...) {
    ...
    work = from ^ *subkey++;
    to ^= sbox8[  work   & 0x3f ];
    to ^= sbox6[ (work>>8)  & 0x3f ];
    to ^= sbox4[ (work>>16) & 0x3f ];
    to ^= sbox2[ (work>>24) & 0x3f ];
    ...
  }

1
2
3
4
5
6
7
8
9

Fig. 3. Information flow through a table look-up in gpg.

We investigate the case in depth, and find that gpg de-
crypts values through a table lookup operation. Unfortunately,
TaintGrind is not able to handle information flow through the
table lookup, resulting in missing dependencies. Fig. 3 shows
a code snippet extracted from gpg. Specifically, the function
argument from contains an piece of encrypted text. At line
3, the encrypted text is used to calculate the value of work,
and TaintGrind successfully propagates taint information to the
variable. However, at lines 4-7, work is used to look-up a table
sbox2-8, and TaintGrind loses track of taint information at
this point because it does not handle information flow via array
indexing. Note that most taint analysis techniques do not track
information flow through array indexing to avoid the over-
tainting problem. Specifically, the over-tainting problem often
leads to an excessive number of taint tags, resulting in false-
positives. Hence, most taint analysis tools decide not to track
such information flow. In addition to table look-up, explicit
data flows through computations (e.g., bitwise and arithmetic)
and implicit data flows caused by control dependency are often
disregarded to avoid the over-tainting problem. Moreover, the
significant overhead of taint analysis prohibits its application in
practical forensic analysis that requires always-on monitoring
to capture attacks in-the-wild.

Causality Inference. Recently, Kwon et al. propose a light-
weight causality inference technique LDX [31] using a dynamic
analysis called dual execution. For a given original execution,
LDX derives a slave execution in which it mutates values of
input source(s). It then compares the corresponding outputs
from the original execution and the slave execution to de-
termine whether the outputs are causally dependent on the
source(s). Specifically, if the two executions have different

values for an output, LDX considers that the output is causally
dependent on the mutated input source(s). To address execution
path divergence caused by input perturbation, LDX leverages its
novel on-the-fly execution alignment scheme. Unlike dynamic
taint analysis techniques (e.g., TaintGrind [22] and libdft [21]),
LDX can detect explicit and implicit information flow and has
much lower runtime overhead (about 6%).

Fig. 2-(d) shows the graph generated by LDX. Note that
it contains only the objects and events related to the attack,
without any false dependences. While LDX produces concise
and accurate graphs, it requires the dual-execution framework
available on the end-user system which doubles the consump-
tion of computational resources (e.g., CPU and memory).

C. Goals and Our Approach

Table I presents merits and limitations of existing causality
analysis approaches. In summary, syscall analysis techniques
suffer from high false-positive rates due to dependence ex-
plosion. While BEEP and ProTracer mitigate the dependence
explosion problem, they require complex static, dynamic bi-
nary analysis and instrumentation and incur non-trivial space
overhead. MPI is efficient and effective, but requires access to
source code and domain knowledge for annotation. Taint anal-
ysis techniques generally incur significant runtime and space
overhead and suffer from the over-/under-tainting problems.
LDX requires the dual-execution framework in production run
that doubles computational resource consumption.

Our Goal. The goal of this paper is to provide a causality
analysis technique with the same accuracy as LDX, but does not
require any changes of end-user systems, such as instrumenting
user applications, modifying the kernel or installing special
runtime. Specifically, the end-user only needs to turn on the
default audit logging tool that comes with their system, such
as Linux Audit, Event Tracing for Windows, and DTrace
to collect syscall logs. Upon a security incident, MCI can
generate precise causal graphs from the raw log to explain
attack causality and assess system damages. We believe such
a design would substantially improve applicability.

Our Approach. As shown in Fig. 1, the key idea of MCI
is to use causal models to parse raw logs to derive precise
causality information. Specifically, in the offline phase, we
use LDX [31] as the causality inference engine to construct
models for the applications that will be deployed on an
end-user system. A causal model is essentially a sequence
of inter-dependent syscalls and their causal relations. Such
causalities/dependencies can be induced by system objects,
called explicit dependencies, as they can be determined by
analyzing syscalls alone, or induced by memory operations
and control dependences, called implicit dependences, which
are not visible by analyzing syscall events. Note that LDX can
detect both explicit and implicit dependencies.

During deployment, given a syscall log collected from the
incident, MCI can precisely infer causality between events in
the log by parsing the log using the pre-generated models.

D. MCI on Motivating Example

We demonstrate the effectiveness of MCI on investigating
the incident. Assume the causal models of applications have
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TABLE I. COMPARISON OF CAUSALITY ANALYSIS APPROACHES.

Syscall Analysis Fine-grained Analysis Taint Analysis Causality MCI[25], [26], [16] BEEP [32]/ProTracer [37] MPI [36] WinLog [35] [22], [21], [20] Inference: LDX [31]
Space overhead Low Mid Low Low High Low Low
Runtime overhead Low Low Low Low High Low Low
Resource overhead Low Low Low Low High Mid Low
False-positive High Mid Low Mid Low Low Low
False-negative Low Low Low Low Low-Mid Low Low
Granularity Coarse Mid Fine Mid Fine Fine Fine
End-user requirements None Training/instrumentation Code annotation None Tainting framework Dual-execution framework None

been derived offline. Note that generating models does not
require any particular expert knowledge on target programs,
but rather the typical user level workloads. Model generation
is a one-time effort such that models generated for a program
can be used for all installations of the program.

Fig. 4-(a), (b), (c), (d), and (e) show the graphical rep-
resentations of some models from Vim. A node is denoted
by a letter which represents a syscall, with a superscript (∗)
representing a sequence of syscalls. A subscript represents the
(symbolic) system object (e.g., file or socket) operated by the
syscall. For example, model (a) is for the behavior of opening
and decrypting a gpg file. Specifically, as shown in the legend
in Fig. 4, the first node of (a) rα indicates a read syscall
on α which is stdin. Note that each model has its own legend
for the subscript. The first node is a syscall that causes the
entire behavior. Intuitively, the model represents reading from
a command line that loads a gpg file. The second node, sβ ,
represents a stat syscall on a file β (output file). The GnuPG
plug-in uses a temporary file to store decrypted contents
and then informs Vim to open. Subscript β symbolizes the
temporary file which contains decrypted contents. The second
node essentially checks whether the file exists. After that it
loads a key file to prepare decryption which is represented as
a third node (r∗γ). Then, it checks (stat) the output file again
(s∗β). Finally, the fifth node (r∗δ ) represents reading a gpg file
which is an encrypted file. The sixth node (wβ) indicates that
the decrypted contents are written onto the output file (β).
Then, the GnuPG plug-in sends a notification to Vim via a
pipe which is shown in the last node (wε). Note that symbols
in subscript (e.g. α, β) can be instantiated to any concrete file
handler during parsing. The same subscript β in sβ and the
later nodes s∗β and wβ dictate that these syscalls must operate
on the same file. The third and fifth nodes are denoted by a
superscript ∗, representing a sequence of read system calls
(read∗) on different files γ and δ.

The directed edges between nodes represent the causal-
ity/dependency between syscalls, with the solid and dotted
edges representing the explicit and implicit dependencies,
respectively. For example, in (a), there are explicit dependences
from sβ to wβ and implicit dependencies from r∗γ and r∗δ . The
implicit dependencies are caused by memory operations that
copy values from a crypto key file (γ) to encrypted contents
δ that are detected and modeled by MCI.

Fig. 4-(f) illustrates a syscall log collected during the
incident by the default Linux Audit tool [17]. Given the syscall
log and the models, MCI automatically parses the log and
hence derives the corresponding dependencies. Each box in
(f) denotes a model instance with the letter annotated on the
box representing the model id. Note that we use different
background colors for boxes to represent nodes belong to
different models. We omit the dependences in the model
instances for readability. For readability, we use superscripts

to denote event timestamps.

The model instances essentially tell us that the user first
opened a gpg file (i.e., out.gpg) by model (a), opened and
copied a file (i.e., data2) without pasting by model (b), and
opened, copied, and pasted another file (i.e., data3) by model
(c). Observe that there are events that belong to multiple
models, which allow us to determine causality across models
and hence compose the whole attack path. For instance, event
s115 belongs to both models (c) and (d) (i.e., the node in the
two boxes in blue and green), suggesting that the contents
from data3 are copied to the previous gpg file. The subscript
5 corresponds to file viminfo that is used to indicates the
state of editing. Note that model (c) does not have explicit
dependencies with other models. Hence, without model (d),
causality between model (c) and other models is difficult to
reveal. After a few editing operations by model (d), the user
finally saved the contents to a new gpg file by model (e). The
event s115 belonging to models (c) and (d) indicates that the new
gpg file contains information from data3 (confidential data).
Note that the matched instance of model (b) does not have
any overlapping nodes with other model instances nor explicit
dependencies, and hence no causal relations with others. This
indicates that data2 is not involved in the incident. The final
causal graph is shown Fig. 2-(d), which is accurate and concise,
without any missing or bogus dependencies.

III. PROBLEM DEFINITION

In this section, we introduce a number of formal definitions
and the problem statement for MCI.

A. Definitions

Causal Model. Fig. 5 shows definitions for a causal model.
Specifically, SysName represents syscall names such as open
and read. Repetition indicates how many times a term or node
repeats. It could be a constant number, a variable such as n
or m, or ∗ representing any number of repetition. Variables
are needed to to denote repetition constraints across syscall
events. ResourceSymbol represents a symbol for a resource
handler that a system call operates on (e.g., file handler). A
Term is a sequence of Nodes that could be annotated with
the number of repetitions. A node N is a syscall annotated
with a set of parameters denoted by SymbolicResource . A
symbolic resource can be instantiated to different concrete
resources during parsing. Two nodes with the same symbolic
resource indicates that they have explicit dependency. An
Edge denotes dependency/causality between two nodes Nfrom

and Nto . Finally, a causal model is defined as a 3-tuple
< T , P(E)implicit , P(E)explicit > where T is a sequence
of terms, P(E)implicit is the set of implicit dependency edges
and P(E)explicit is the set of explicit dependency edges. The
definitions of two kinds of edges can be found in Sec. II.
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... w5 ... s5 ... s6 w6 ... r0 ... r1 w7 ...

(f) System call trace

(b) Mb: Open à Copy

sβ sγ uδ rγ wε

(a) Ma: Open a gpg file

sβ rγ sβ rδ wβ wε

(c) Mc: Open à Copy à Paste

(e) Me: Save a gpg file

sβ rγ sβ rδ wβ sε

sβ sγ wδ rγ wε sζ sε

s3 ... ... r0 s4 ...

(d) Md: Edit

sγ wγ sδ

s1 ... r2 w1 ... r0

*

Ma Mb Mc Me

* * * ** *

* * * *

rα rα

rαsβ

rα

r0 r0

α: stdin, β: output (temp) file, 
γ: key file, δ: gpg file, ε: pipe to Vim

α: stdin, β: opened file, γ: swap file, 
δ: temp swap file, ε: viminfo file

α: stdin, β: opened file, γ: swap file, 
δ: temp swap file, ε: viminfo file, ζ: config file

α: stdin, β: viminfo file, 
γ: swap file, δ: current file

α: stdin, β: output (encrypted) file, 
γ: key file, δ: input file, ε: pipe to Vim

sσ: stat(σ), wσ: write(σ), rσ: read(σ), 
uσ: unlink(σ), rσ: read(σ)*, sσ: stat(σ)*

Legend

* *

0: stdin, 1: temp file (containing decrypted contents), 2: org. gpg file (gpg.out), 3: data2 file, 4: data3 file, 5: viminfo file, 6: swap file for the temp (1), 7: new gpg file

...

rα

s1

Md
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

MeMdMcMa Mb

Model boundaries

Fig. 4. MCI on the Motivating Example.

SyscallName SysName ::= open | read | write | ...
Repetition R ::= 1 | 2 | 3 | ... | n | m | ∗
SymbolicResource S ::= {α, β, γ, ...}

Term T ::= N | NT | (T )R

Node N ::= SysNameP(S)

Edge E ::= < Nfrom ,Nto >
Model M ::= < T , P(E)implicit , P(E)explicit >

Fig. 5. Definition of Causal Model.

For example, the model in Fig. 4 (a) can be represented
as follows. First, T can be represented by a sequence:
readα, statβ , read

∗
γ , stat

∗
β , read

∗
δ ,writeβ ,writeε. Implicit de-

pendencies (dotted edges below nodes) are denoted as fol-
lows: {〈read∗γ , read

∗
δ〉, 〈read

∗
δ ,writeβ〉, 〈read

∗
δ ,writeε〉}. Ex-

plicit dependencies (solid edges above nodes) are the follow-
ing: {〈statβ , stat∗β〉, 〈statβ ,writeβ〉}. Observe the nodes in an
explicit edge have the same resource symbol, indicating that
they operate on the same resource. In the paper, we will use
the more concise graphical representations when possible.

Syscall Trace. As shown in Fig. 6, a system call trace T
is a sequence of trace entries TE where a trace entry is a
system call name annotated with a set of ConcreteResource
that represents concrete resource handlers, and a number N that
represent an index of TE in T . Note that it does not contain
any dependency information. The first 6 entries in Fig. 4 (f)
are represented as TE = (read1

0, stat
2
1, ..., read

3
2,write

4
1, ...).

Note that the subscripts represent concrete resource handlers
and the superscripts represents indexes.

ConcreteResource C ::= N
TraceEntry TE ::= SysNameNP(C)

SyscallTrace T ::= TE

Fig. 6. Definition of Syscall Trace.

B. Problem Statement

We aim to infer fine-grained causality from a syscall trace
by parsing it with models. This procedure can be formally
defined as a function of T and P(M):

T × P(M)→ (TE → P(N ×M))

Specifically, given a syscall trace T and a set of models
P(M), the function generates a mapping, in which a trace
entry is mapped to a set of nodes N in model M . It is a
set because a trace entry can be present in multiple models as

shown in the motivation example in Sec. II. With the mapping,
the dependencies between trace entries can be derived from
the dependencies between the matched nodes in the models.
For example, parsing the trace in Fig. 4 (f) using the mod-
els in (a)-(d) generates the following mapping. The first 4
events are mapped to model (a): (read1

0 →< readα,Ma >
), (stat21 →< statβ ,Ma >), (read3

2 →< read∗δ ,Ma >
), (write41 →< writeβ ,Ma >). Moreover, stat115 belongs
to two models, resulting in two mappings: (stat115 →<
statε,Mc >), (stat115 →< statβ ,Md >). It entails the fol-
lowing concrete dependency edges < read3

2,write
4
1 > (from

model edge < read∗δ ,writeβ > in (a) ) and < stat125 , stat
14
1 >

(from model edge < statβ , stat
∗
δ > in (d)). The first edge

indicates implicit dependency between the original gpg file
(out.gpg) and a temp file containing its decrypted contents,
and the second edge implies that the copy and paste action is
related to the temp file containing the decrypted contents of
the original gpg file (out.gpg). Such dependency edges lead to
a causal graph as that in Fig. 2-(d).

The mapping may not be total, depending on the compre-
hensiveness of the models. An important feature of MCI is
model composibility, meaning that a complex behavior can be
composed by multiple models sharing some common nodes.
For instance, a complex user behavior in Vim such as “open
file, edit, copy, edit, paste, save, reopen” can be decomposed
to multiple primitive models. As such, the number of models
needed for regular workload is limited as shown in Sec. V.

The key challenge of MCI lies in parsing the trace that
does not contain any dependencies with models that contain
dependency information, which entails solving two prominent
technical problems discussed next.

C. Technical Challenges: Complexity and Ambiguity

1) Language Complexity: According to our definition, a
trace is a string in the trace language that does not contain
dependency information, our problem is essentially to parse
the string to various model instances. In the following, we
use the classic language theory to understand the complexity
of our problem. Note that although it seems that we could
consider models as graphs and leverage the sub-graph isomor-
phism theory to understand our problem, there are places that
can hardly be formulated in the graph theory. For instance,
our trace is not a graph because it does not have implicit
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dependency information. Furthermore, our model may have
constraints among the numbers of event repetitions (e.g., the
number of close matches with the number of open while the
number of repetitions may vary). Such constraints can hardly
be represented in graphs.

The classical Chomsky hierarchy [9], [10] defines four
classes of languages characterized by the expressive power
of their defining grammars: regular, context-free, context-
sensitive, and recursively enumerable. More expressive gram-
mar can describe more complex language but requires higher
cost in parsing. We study some of representative causal model
types observed in real-world programs. For each type, we show
a sample grammar and discuss the complexity of the grammar
as well as scalability of the corresponding parser.

g∅ soβ swβ slβ srβ

gσ: gethostbyname(σ)
soσ: socket(σ), slσ: select(σ), 
swσ: sendto(σ), srσ: read(σ),
α: stdin, β: network socket,

∅: empty set

LegendExplicit

Implicit

rα

Fig. 7. Regular Model from ping [40].

Regular Model. Fig. 7 shows a model from ping [40],
representing a behavior “resolving a network address, sending
a packet, and receiving a response.”

Observe that the explicit dependencies (solid edges) are
caused by the socket (β). The implicit dependencies (dot-
ted edges) are introduced because gethostbyname() de-
cides whether to execute socket() and sendto() mean-
ing that they have control dependences. In particular, if
gethostbyname() returns an error, the program imme-
diately terminates. Also, sendto() is dependent on the
return value of gethostname() (e.g., IP address) as the
ping program composes and sends Internet Control Message
Protocol (ICMP) packets that contain the returned IP address.
Such dependencies are not visible at the syscall level. Note
that in any model, the first node, which is always an input
syscall, has dependencies leading to all other nodes. Recall that
a model is acquired from LDX that mutates an input syscall
and observes changes at output syscalls (e.g., the first node in
Fig. 7 is a syscall that reads an option from the command line
that leads to all the other syscalls in the model).

The model in Fig. 7 can be simplified by a regular grammar
(e.g., regular expression) which is the simplest one in Chomsky
hierarchy. A regular language parser has very good scalability.
From our experience, most models (53 out of 56 models in
our evaluation) fall into this type.

oβ rβ cβ wn oδ rδ cδ wn
oσ: open(σ), rσ: read(σ), 

wσ: write(σ), cσ: close(σ),
α: stdin, β: /proc/mounts,

γ: stdout, δ: /proc/*

Legend
m

n

Explicit Dep.

Implicit Dep.

rα γ γ

Fig. 8. Context-Free Model from procps [8].

Context-free Model. There are cases that the models need to
be context-free. Fig. 8 shows such a model extracted from
procps [8]. The model represents “retrieving file system
information.” It first reads a file that contains information about
the list of file systems. It then uses an outer loop to emit the
information for individual file systems. For each file system, an
inner loop is used to collect information about the file system
from multiple places (e.g., different disks).

As shown in Fig. 8, three symbols from the 2nd to the
4th (oβ , rβ , cβ) have explicit dependencies due to the file

containing the list of file systems (β). The 5th symbol wnγ is
to emit the header information for each file system, causing
the implicit dependency between the 3rd symbol rβ and the
5th . The superscript n denotes that there are n file systems.
The 6th , 7th , and 8th symbols (oδ , rδ and cδ) form a term,
corresponding to the inner loop that reads m places to collect
information for the n file systems. Note that m may not equal
to n as multiple files may be accessed in order to collect
information for a file system. After that, the 9th symbol wnγ
emits the collected information for the n file systems. Note that
the number of writes in the 5th and the 9th symbols need to be
identical (n times). The constraints on the numbers render the
model cannot be transformed to an automaton that handles a
regular language. It is essentially context-free. The parser for
a context-free language requires some push-down mechanism,
incurring higher complexity. We have encountered 2 context-
free models in our evaluation.

rα srβ
n

swγ
m cβ

n cγ
m

rσ: read(σ), srσ: recv(σ),
swσ: write(σ), cσ: close(σ),

α: socket for comm., 
β: socket for read, 
γ: socket for write

Legend

n
m

Fig. 9. Context-Sensitive Model from Raft [43].

Context-sensitive Model. In some rare cases, even context-
free models are not sufficiently expressive. Fig. 9 shows a
model from [49] which is a distributed voting application that
implements the Raft consensus protocol [43]. The program can
exchange network messages between different number of users
to get a consensus. The model describes a voting procedure.
Specifically, it receives network messages from n users (n
iterations of read()), and sends network messages to m users
(m iterations of write()). Later, it closes the sockets for
n users and then m users. The crossing-constraints between
m and n ( r2n , cn ) and ( wm , cm ) require a context-sensitive
language. However, a parser for a context-sensitive language is
prohibitively expensive in general (PSPACE complexity [15]).
We have not encountered any models more complex than
context-sensitive languages. The various language complexities
pose a prominent challenge: since syscall events belonging to
multiple models interleave and are often distant from each
other, we cannot know which model an event belongs to
until reaching the end of the model. As such, we do not
know which complexity class shall be used to parse individual
events. As we will show later, we develop a uniform parsing
algorithm for multiple complexity classes that leverages the
special characteristics of causal models.

2) Ambiguity: The strings (of syscalls) parsed by multiple
models may share common parts (e.g., common prefixes). In
the worst case, multiple models may accept the same string,
although we have not encountered such cases for models
within the same application. As a result during trace parsing,
given a syscall, there may be multiple models that it can be
attributed to and MCI does not know which model(s) are the
right ones. We call it the ambiguity problem.

For instance, consider a trace, the ground-truth causality
of the trace, and a model shown in Fig. 10-(a), (b), and (c),
respectively. Observe that the model has a socket read followed
by a file write. The two have implicit dependency but not
explicit dependency visible at the syscall level. The three boxes
in Fig. 10-(b) denote the three real model instances.
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rα wβ

..., r1, w2, w3, r4, r5, w6, w3, r7, w8, ...

(a) Trace

(c) Model
(d) Possible Matchings 

M1: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M2: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M3: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M4: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M5: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...

...

..., r1, w2, w3, r4, r5, w6, w3, r7, w8, ...

(b) Ground-truth

rσ: read(σ),
wσ: write(σ)

Legend

Explicit Dep.

Fig. 10. Ambiguity Problem.

When the model is used to parse the trace, due to the lack
of dependencies between the two syscalls in the model, there
are many possible matchings as shown in Fig. 10-(d). Note
that except M1, the other matchings are incorrect even though
they all appear possible at the syscall level. In practice, such
incorrect matchings introduce false causalities which hinder
attack investigation. Moreover, ambiguity may cause excessive
performance overhead because MCI has to maintain numerous
model instances at runtime. The root cause of the problem
is that the trace does not have sufficient information. Hence,
we develop a method that leverages explicit dependences to
mitigate the problem. Details can be found in Sec. IV-B.

IV. SYSTEM DESIGN

MCI consists of two phases: model construction and model
parsing. The former is offline and the latter is meant to be
deployed for production run.

A. Model Construction

Given an application, the forensic analyst provides a set
of regular workloads. The application is executed on the LDX
system with the workloads. The dependences detected by LDX,
including explicit and implicit dependences, are annotated on
the syscall events in the audit logs. The annotated logs are
analyzed to extract inter-dependent subsequences, which are
further symbolized (i.e., replacing concrete resource handlers
with symbolic ones). The sequences of symbolic syscalls with
dependences constitute our causal models.

In the following, we use a program snippet in Fig. 11 to
illustrate how MCI constructs causal models. It first reads a
network message (line 1) and encrypts the received message
(line 2). Later, it stores the encrypted message to a local file
(line 3) and sends a notification to a GUI component (line 5).

  while( (len = read(socket, buf, 1024)) != -1 ) {
     ebuf = encrypt(buf);
     write( file, ebuf, 4096 );
  }
  sendmsg( wnd, “Update: ” + ebuf ... );

1
2
3
4
5

Fig. 11. Example Program.

1) Dependencies Identification by LDX: The program is
executed with a typical workload on LDX [31] to collect a
system call log T . To identify dependencies, LDX mutates
the value of input syscall read() in the slave execution.
By contrasting the values of the following syscalls (e.g., the
write() and sendmsg()) in the two executions, LDX
identifies all the dependencies between syscalls.

1
2
3
4
5
6

Fig. 12. Causally dependent system calls from LDX.
Fig. 12 shows the output generated by LDX. It includes

two read()s (lines 3 and 5), one write() (line 4) and

one sendmsg() (line 6) which are causally dependent on
the source (i.e., read() at line 2). More specifically, the
write() at line 4 and sendmsg() at line 6 are (implicitly)
dependent on the source by variables buf and ebuf, and
the read()s at lines 2 and 4 are explicitly dependent on the
source due to the socket handler 0x11.

The generated sequence of syscalls includes all the syscalls
causally dependent on the source (line 3). We hence leverage
them as a sample of the model. Note that LDX also returns
dependences between syscalls inside the sequence such as the
dependence between lines 3 and 4.

2) Symbolization: The collected sequence of syscalls can-
not be directly used as a model due to the concrete arguments.
For instance, in Fig. 12, syscalls have concrete values (e.g.,
handlers 0x11 and 0x12) which may differ across executions.
Hence, we symbolize concretes values in syscalls by replacing
with symbols (e.g., α and β). For instance, if two syscalls share
the same argument, they are assigned the same symbol.

If the application supports repeated workload, there must
be repetitions in the syscalls that need to be modeled (such as
n and m in Fig. 5). To do so, MCI duplicates the workload
a few times and feeds the new workloads to LDX again.
Subsequences that have a constant number of repetitions across
workloads are annotated with the constant. Those that have
varying numbers of repetitions across workloads are annotated
with ‘*’. If there are correlations between the repetition
numbers of multiple subsequences (inside the same model),
variables n/m are used to model the number of repetition,
such as the previous example Fig. 8 in Sec. III-C1.

SUCCESS = read( fd1 /* file handle*/, *, * );
SUCCESS = write( fd2  /* file handle*/, *, * );
FAILURE = read( fd1  /* file handle*/, *, * );
SUCCESS = sendmsg( *, *, * );

1
2
3
4

Fig. 13. Symbolized syscalls.

Fig. 13 shows a symbolized log. For example, 0x11 in
read() in Fig. 12 is replaced by a new symbol fd1 and 0x12
in write() in Fig. 12 is generalized to another symbol fd2.
0x11 in the second read() is replaced by the previously
assigned symbol fd1 as it already appeared before. Moreover,
as shown in Fig. 13, all concrete return values are symbolized
as either SUCCESS or FAILURE. They are part of the models
in our system although our formal definitions did not describe
them for brevity. The constructed model is shown in Fig. 14.
The formal model construction algorithm is elided due to the
space limitations.

rα wβ rα sγ

Implicit Dep.

Explicit Dep. * rσ: read(σ), wσ: write(σ), 
sσ: sendmsg(σ),
α: socket(fd1), 

β: file (fd2), γ: window

Legend

Fig. 14. Constructed model from the example.

B. Trace Parsing with Models

In this section, we describe how MCI parses an audit log
with models. As we described in Sec. III-C1, if we simply
consider an audit log as a string of the trace language, we need
to consider three language classes in the Chomsky hierarchy,
namely, regular, context-free, and context-sensitive languages.
Recursively enumerable languages are never encountered in
our experience. A more expressive language requires more
expensive parser. For instance, context-free language can de-
scribe almost all causal models we have encountered but
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context free parsers have a time complexity of n3 where n
is the length of a string (the number of events in audit log in
our case), thus they are too expensive to handle real-world
logs that can grow in the pace of gigabytes per day [33]
(corresponding to millions of events). Context-sensitive parsers
have even higher computational complexity. Furthermore, our
parser needs to be able to substantially mitigate the ambiguity
problem in which MCI does not know which models an event
should be attributed to.

Segmented Parsing. Our proposal is not to consider a trace
as a simple string, but rather a sequence of symbols with
explicit inter-dependences. Note that explicit dependences
can be directly derived from the trace. The basic idea is
hence to leverage explicit dependences to partition the se-
quence of terms/nodes in a model into segments, delimited
by terms/nodes that are involved in some explicit dependences.
Therefore, all the terms/nodes inside each segment are a string
in some regular language. The essence is to leverage explicit
dependences to reduce language complexity. During parsing,
we first recognize (from the trace) the explicit dependences
that match those of the model. These dependences partition
the trace into sub-traces. Then automata are used to recognize
model segment instances from the sub-traces. Since string
parsing is only carried out within small sub-traces instead
of the lengthy whole trace, ambiguity can be substantially
suppressed. We call the technique segmented parsing.

rα sβ rγ sδ wε wα rζ oδ

rσ: read(σ), sσ: stat(σ), wσ: write(σ), oσ: open(σ), α, β, γ, δ, ε, ζ: different files
Legend

Fig. 15. Example for Segmented Parsing

Next, we use an example to illustrate the basic idea and
then explain the algorithm. Fig. 15 shows a sample model. Ob-
serve that there are explicit dependences between the 1st and
the 6th nodes ( rα and wα ), and between the 4th and the 8th

nodes ( sδ and oδ ). The sequence of terms/nodes involved in
explicit dependences form the model skeleton. In our example,
it is rα - sδ - wα - oδ . The skeleton partitions the model into
sub-models. A sub-model is a sub-sequence of nodes/terms
of the model that are delimited by explicit dependences but
themselves do not have any explicit dependences. In Fig. 15,
three sub-models are obtained as follows: sβ - rγ delimited by
rα and sδ , wε delimited by sδ and wα , and rζ delimited

by wα and oδ .

During parsing, we first find instances of the model skele-
ton. For each skeleton instance, we try to identify instances of
sub-models within the trace ranges determined by the skeleton
instance. Any mismatch in any sub-model indicates this is not
a correct model instance and the corresponding data structures
are discarded. In our example, we first locate the possible
positions of rα , sδ , wα , oδ in the trace, and then look for
the instances of sβ - rγ in between the positions of rα and
sδ , and so on. Partitioning a model to a skeleton and a set of
sub-models is straightforward. Details are hence elided. Given
a trace, to facilitate segmented parsing, we extract a number of
trace indexes, each containing all the nodes related to the same
system object (e.g., a file) and the position of the nodes in the

raw trace. These indexes allow our parser to quickly locate
skeleton instances in the trace. Fig. 16 shows an example of
index extraction from a trace. Observe that all the nodes in an
index have explicit dependences.

oα rβ wα rβ rα wβ cα

(a) Trace Annotated with Explicit Dependencies

oα wα rα cα rβ rβ wβ

(b) Indexes for each resource

Index 1 Index 2

oσ: open(σ), rσ: read(σ), wσ: write(σ), cσ: close(σ), 
α: File 1, β: File 2

Legend

Fig. 16. Trace Preprocessing

Algorithm 1 Locating Skeletons
Input: trace T , indexes I , model skeleton S
Output: a set of skeleton instances P, each consisting of a mapping that maps a
symbolic resource to a concrete one, and a sequence of positions

1 procedure LOCATESKELETON(T , I , S)
2 for all node Nα ∈ S do
3 if P ≡ {} then
4 P ← {〈{α→ h}, i〉 | for all T [i] = Nh}
5 else
6 for all 〈map, seq〉 ∈ P do
7 Let the last position in seq be i
8 if map[α] 6= nil then
9 pos ← findbeyond(N ,i,I[map[α]])
10 if pos 6= −1 then
11 seq ← seq · pos
12 else
13 P .remove(〈map, seq〉)
14 end if
15 else // scan all indexes to find Nh syscalls that are beyond i
16 ... // and instantiate α to h.
17 end if
18 end for
19 end if
20 end for
21 return P
22 end procedure

Algorithms. The parsing procedure consists of three major
steps. The first one is to preprocess trace to extract indexes,
which has been intuitively explained before. The second step
is to locate skeleton instances in the trace and the third is to
parse sub-models. In the following, we explain the algorithmic
details of steps two and three.

The algorithm of locating skeleton instances is shown
in Alg. 1. It takes the trace T , the indexes I that can be
accessed by the concrete resource id (e.g., file handler), and
a model skeleton S, and identifies all the possible instances
of the skeleton. The result is stored in P . Each instance is a
pair 〈map, seq〉 with map projecting each symbolic resource
(e.g., α and β) in the skeleton to some concrete handler and
seq storing the trace positions of the individual nodes in the
skeleton. To simplify our discussion, we assume the skeleton
does not have repetitive nodes or terms. The algorithm can be
easily extended to handle such cases.

The main procedure iterates over each node Nα in the
skeleton (line 2) with N the syscall and α the symbolic
resource. For the first node (indicated by an empty result set
P ), the algorithm considers each syscall of the same type
N , in the form of Nh at location i in the trace, may start
an instance of the skeleton, and hence instantiates α to the
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concrete handler h and records its position i (lines 3 and
4). If Nα is not the first node, the algorithm iterates over
all the skeleton candidates in P in the inner loop (lines 6-
18) to check if it can find a matching of the node for these
candidates. If not, the skeleton candidate is invalid and hence
discarded. Specifically, for each skeleton candidate denoted as
〈map, seq〉, line 7 identifies the trace position of latest node i.
This is needed as the algorithm looks for the match of Nα
in trace entries beyond position i. The condition at line 8
separates the processing to two cases with the true branch
denoting the case that α has been instantiated before, that is,
a node of the same symbolic resource was matched before
(e.g., wα in Fig. 15), the else branch otherwise (e.g., sδ in
Fig. 15). In the first case (lines 9-11), the algorithm looks
up the index of the concrete handler associated with α, i.e.,
I[map[α]], to find a concrete syscall N beyond position i (line
9). If such a syscall is found, we consider the algorithm has
found a match and the new position pos is appended to seq
(line 11). Otherwise, the skeleton candidate is not valid and
removed (line 13). Here, we have another simplification for
ease of explanation. Line 9 may return multiple positions in
practice while in the algorithm we assume it only returns one.
The extension is straightforward.

In the else branch, the node has a new symbolic resource,
the algorithm has to go through all indexes to find all instances
of N and instantiate the symbolic resource accordingly. This
may lead to the expansion of the candidate set P . Details are
elided. To reduce search space, we use time window and other
syscall arguments to limit scopes.

Algorithm 2 Model Parsing
Input: trace T , skeleton instances P , sub-models S
Output: the concrete syscall entries that correspond to the sub-models in the
temporal order

1 procedure PARSESUBMODELS(T , P , S)
2 for all 〈map, seq〉 ∈ P do
3 for i from 0 to |S| − 1 do
4 instance[i] ← parse(T [seq[i], seq[i+ 1]], S[i])
5 end for
6 if all instance[0− (|S| − 1)] are not nil then
7 if none of the concrete syscalls in instance[0(−|S| − 1)] share the same

resource id then
8 output instance[0− (|S| − 1)]
9 end if
10 end if
11 end for
12 end procedure

Given a set of skeleton instances for a model M , Alg. 2
parses the sub-models of M . In particular, the outer loop (lines
2-11) iterates over all the skeleton candidates identified in the
previous step. If matches can be found for all sub-models
regarding a skeleton instance, the matches are emitted. Other-
wise, it is not a legitimate instance and discarded. Specifically,
the inner loop in lines 3 and 4 iterates over individual sub-
models in order. In the ith iteration, it uses automata to parse
sub-model S[i] in the trace range identified by the ith segment
identified by the skeleton candidate, which is from seq[i] to
seq[i + 1] (line 4). Automata based parsing is standard and
elided. After such parsing, line 6 checks if we have found
matches for all sub-models. If so, line 7 further checks that
none of the concrete syscall entries that are matched with
some node in a sub-model do not share the same resource (and
hence have explicit dependences). This is because the model
specifies that there are not explicit dependences between the

corresponding nodes. Line 8 outputs the parsing results.

Handling Threaded Programs. Threading does not pose
additional challenges to MCI in most cases because syscalls
from different threads have different process ids so that models
can be constructed independently for separate threads. Ex-
plicit dependences across threads can be easily captured by
analyzing audit logs. Some programs such as Apache and
Firefox use in-memory data structures (e.g., work queues)
to communicate across threads, causing implicit dependences.
However, it is highly complex to model and parse behaviors
across threads due to non-deterministic thread interleavings.
We observe that these data structures are usually protected
by synchronizations, which are visible at the syscall level,
and the synchronizations should follow the nature of the
data structures, such as first-in-first-out for queues. Hence,
MCI constructs models for individual threads including the
dispatching thread and worker threads. The models include the
synchronization behaviors. It then leverages the FIFO pattern
to match nodes across threads. It works nicely for most of
the programs we consider except transmission, whose
synchronization is not visible at the system level (Sec. V).

V. EVALUATION

In this section, we evaluate MCI with a set of real-world
programs in order to answer the following research questions.

RQ 1. How many models are required to infer causality for
these programs in production runs (Sec. V-A1), and how much
efforts are required to construct models? (Sec. V-A2)

RQ 2. How effective is MCI for system wide causality in-
ference including multiple long-running programs and various
activities? (Sec. V-B)

RQ 3. How effective is MCI for realistic attack investigation?
(Sec. V-C)

RQ 4. Is MCI scalable on large workloads for long-running
programs? (Sec. V-C3)

Experiment Setup. We evaluate our approach on 17 real-
world programs. Table II shows the programs and models we
constructed. Note that 15 out of the 17 programs (except zip
and Vim) are network related which is a popular channel for
cyber-attacks. For each program, we construct models offline.
We use typical workloads briefly described in the second
column of Table II. Specifically, if there are available test
inputs for a program, we use them as the typical workloads.
Otherwise, we construct inputs by inspecting program manuals
and identifying options and commands that can trigger differ-
ent functionalities, such as for proftpd, CUPS, and zip.

A. Model Construction

Table II shows the constructed models for each program.
Columns 1 and 2 show programs and model description.
Column Size shows the number of nodes in each model.
The numbers in/out parentheses are for the same behaviors
with/without HTTPS. The next two columns show the number
of explicit and implicit dependencies in each model. The last
column (Lang.) shows the language class of each model (Reg-
ular (Reg.), Context-free (C.F.), or Context-Sensitive (C.S.)).
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TABLE II. DETAILS ON MODEL CONSTRUCTION

Program Model Description Size1 Dexp
2 Dimp

3 Lang.4

Firefox

Tab Open/Switch/Close 7/9/5 2/2/1 3/4/3 Reg.
Load a URI 12 2 4 Reg.
Download (Save) 15 3 5 Reg.
Click a link 9 2 3 Reg.

Apache HTTP(S) resp. 17 (21)5 3 (4)5 8 (11)5 Reg.
CGI resp. 26 (33)5 4 (5)5 11 (14)5 Reg.

Lighttpd HTTP(S) resp. 8 (11)5 2 (3)5 4 (6)5 Reg.
CGI resp. 16 (19)5 3 (4)5 7 (9)5 Reg.

nginx HTTP(S) resp. 14 (17)5 3 (4)5 6 (9)5 Reg.
CGI resp. 21 (24)5 4 (5)5 8 (11)5 Reg.

CUPS

Add printers 6 1 3 Reg.
Remove printers 5 1 3 Reg.
Modify printers 6 1 3 Reg.
Print a doc. 7 2 4 Reg.

vim

Open 8 1 5 Reg.
Edit 10 1 4 Reg.
Save 13 2 4 Reg.
Save As 15 3 6 Reg.
Copy and Paste 14 3 6 Reg.
Copy 11 1 5 Reg.
Plug-in (gpg) 21 2 6 Reg.

elinks
Browse 11 3 6 Reg.
Save 6 2 5 Reg.
Upload 7 2 5 Reg.

alpine

Send emails 10 2 6 Reg.
Send files 13 3 7 Reg.
Download emails 9 2 6 Reg.
Download files 11 2 5 Reg.
Open a link 8 2 4 Reg.

zip Compress file(s) 16 8 5 C.F.
Use encryption 6 4 3 Reg.

transmission Download 17 4 8 Reg.
Add a torrent file 6 3 3 Reg.
Add a magnet 12 3 7 Reg.
Login 5/4/6 1/1/2 4/3/4 Reg.
Create directory 4/4/4 2/2/2 3/3/3 Reg.

proftpd/ Delete directory 3/4/4 1/2/2 3/3/3 Reg.
lftp/yafc List directory 3/3/3 1/1/1 3/3/3 Reg.

Upload 7/8/18 2/2/3 5/5/9 Reg.
Download 6/7/16 2/2/4 5/6/9 Reg.

wget Download (HTTP(S)) 7 (15)5 2 (4)5 5 (8)5 Reg.

ping Option -f 6 2 5 Reg.
Option -r 5 2 5 Reg.

procps Get file system info. 6 3 4 C.F.

raft [49] Voting 5 2 6 C.S.
Leader Election 7 2 7 Reg.

Average - 10.2 2.4 5.4 -
1: # of nodes in a model. 2: # of explicit dependencies (edges) in a model.
3: # of implicit dependencies (edges) in a model. 4: Language Class of a model.
5: for HTTPS.

We have the following observations from the results. First,
the size of model is relatively small (on average 10.2 nodes)
and there are on average 2.4 explicit dependencies (more than
4 nodes) for each model. The strong presence of explicit
dependencies allows MCI to perform segmented parsing effec-
tively. Second, we observe three language complexity classes
and most models fall into the regular class. It supports our
design choice of integrating regular parsers (i.e., automata)
with explicit dependency tracking.

1) # of Models Required: The constructed models listed in
Table II are sufficient to infer causality for logs from realistic
scenarios described in Sec. V-C including the motivation
example in Sec. II. The number of models for each program
ranges from 3 to 12 which is fairly small and not difficult
to obtain in practice. We observe that the primary reason
why MCI is effective with a small number of models is
model composibility, namely, primitive models can be used to
compose complex behaviors. For instance, models for “Edit”
and “Save” can compose a new model “Edit and Save”.

2) Efforts on Model Construction: To construct models,
a program is executed repeatedly on LDX. The number of
runs required to construct a model depends on the number
of events in the model. Specifically, we first run a program
with a workload on LDX to identify all the events causally

dependent on the workload. Note that the detected events
constitute the bulk of the model. Assume there are n such
events (nodes). For each node in the model, MCI mutates the
value of the corresponding syscall to determine dependencies
on the node inside the model. To figure out the repetition
factors of the node (Sec. IV), MCI runs k times for the node,
each execution repeats the workload for different times. In
total, we run a program (k ∗n)+1 times to construct a model.
In our experiments, k = 10. On average, the machine time to
construct a model, including LDX execution time and model
extraction time, takes 4 minutes (253 seconds).

B. System-wide Causality Inference

In this experiment, we apply MCI to infer causality on a
system wide syscall trace collected for the system execution of
a week, to demonstrate the effectiveness of causality inference
for realistic programs with production runs. The trace includes
syscall logs from multiple programs including those in Table II.
Specifically, we enable Linux Audit and use the programs in
Table II with typical workloads for a week. Given the collected
trace, we identify all the inputs that appear in the trace
(e.g., file reads, command line arguments, user interactions).
Then, we build a forward causal graph from each input, i.e.,
identifying all other syscalls depending on the input, using
MCI and compare it with the ground truth by LDX. During
the experiment, we record all inputs used for the programs.
Then, we re-execute the program with the recorded inputs
to reproduce the same execution. To do so, we develop a
lightweight record and replay system similar to ODR [5].
LDX is run on top of the replay system to derive the ground
truth. Note that due to the limitation of the replay system,
the replayed execution may differ from the original execution.
Such differences are counted as false-positives/negatives for
conservativeness.

TABLE III. RESULTS FOR SYSTEM-WIDE CAUSALITY INFERENCE.

Program # of # of # of matched FP FNevents causality models
Firefox 2,313 M 11 M 549 K 8.3% 3.2%
Apache 296 M 6.6 M 435 K 0% 0%
Lighttpd 125 M 3.3 M 275 K 0% 0%
nginx 187 M 3.8 M 246 K 0% 0%
proftpd 49 M 2.1 M 179 K 0% 0%
CUPS 25 M 918 K 88 K 0% 0.8%
vim 43 M 4 M 219 K 0% 0%
elinks 38 M 3.6 M 145 K 0% 0%
alpine 116 M 4.7 M 231 K 0% 0.3%
zip 5 M 634 K 36 K 0% 0%
transmission 250 M 6.9 M 479 K 3.8% 5.2%
lftp 11 M 438 K 54 K 0% 0%
yafc 9 M 616 K 43 K 0% 0%
wget 627 K 71 K 5.4 K 0% 0%
ping 2.4 k 1.3 K 241 0% 0%
procps 4 M 1 M 176 K 0% 0%

The collected log consists of syscalls from multiple pro-
grams and the size of the log is around 732 GB (without
compression) containing 3707 million events. We first separate
the log into smaller logs per process.

Table III shows results of the experiment. The second
column shows # of events (syscalls) in the log for each
program. The third and forth columns represent # of de-
pendencies detected and # of models matched by MCI. For
the # of dependencies, we count all those inferred by MCI
via matched models and those explicit dependencies across
matched models. The last column shows false-positive and
false-negative rates.
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For most programs, MCI precisely identifies causality
with not measurable false-positives and false-negatives. There
are a few exceptions: Firefox, CUPS, alpine, and
transmissions. We manually inspect a subset of these
false-positives/negatives and have the following observations.
Our Firefox models are intended to describe browser behaviors
such as following a hyperlink and opening a tab. However, logs
contain a lot of syscalls generated by the page content. Some
of them are not much distinguishable from browser-intrinsic
behaviors, leading to mismatches. For CUPS, we identify new
behaviors during the experiment which are variations of the
existing models. Transmission is a threaded program with
memory based synchronizations that are invisible to MCI.
Hence, MCI misses some thread interdependences via memory.

Comparison with BEEP. To evaluate the effectiveness of
MCI when compared with BEEP, we randomly select 100
system objects (e.g., files or network connections) accessed in
the week-long experiment. For each selected system object, we
construct a causal graph by BEEP and by MCI, and compare
the two. Table IV shows the results. First of all, we observe that
MCI has fewer false-positives and false-negatives. Again, we
use LDX as the ground truth. Especially, MCI reduces the false-
positive rate significantly. We investigate some of the cases that
BEEP introduces false-positives, and find that many system
objects accessed in a unit are included in the causal graphs
while they are not causally related. Also, BEEP causes slightly
more false-negatives due to missing inter-unit dependencies.
We analyze the cases and find that the missing inter-unit
dependencies were due to incomplete instrumentation caused
by the difficulty of binary analysis in BEEP. We also manually
investigate false-positive and false-negative cases from MCI. It
turns out they are mostly caused by concurrent executions in
transmission.

TABLE IV. COMPARISON WITH BEEP.
System subjects System objects Edges FP / FN

BEEP 9.23 33.71 74.21 12.8% / 0.3%
MCI 9.18 25.38 62.87 0.1% / 0.1%

Runtime/memory Overhead. We also measure runtime over-
head and memory overhead of MCI. Specifically, we report
how long MCI takes to parse the audit log collected from the
one week experiment which contains 3707 millions events.
As we discussed in Sec. IV-B, we preprocess an audit log to
extract indexes so that the parser can quickly locate skeleton
instances. We measure the runtime performance and memory
consumption of the trace preprocessor. It takes 4 hours 47
minutes to preprocess (index) the entire log. The preprocessor
occupies around 2.8 GB of memory on average. The parser
first locates segments of the traces and launches automata
within the identified segments. We find that the parser spend
more time on parsing within the segments. In particular, the
parser takes more time when it parses a wrong segment and
eventually fails. Note that we parallelize the parsing within
a segment to exploit multi-core processors. To parse the log,
it takes around 4 days (95 hours 43 minutes), and the parser
consumes around 6.2 GB of memory on average. We consider
such one-time efforts reasonable given the huge log size. We
leave performance optimization to our future work.

C. Case Studies

In this section, we present a few case studies to demonstrate
the effectiveness of our approach in attack investigation.

1) Phishing email and camouflaged FTP server case: In
this case, we use a scenario adapted from attack cases that were
created by security professionals in a DARPA program [11], to
demonstrate how MCI can effectively infer causality in a real-
world security incident that happens across multiple programs
including PINE and Firefox.

Attack Scenario. The user regularly uses PINE to send and
receive emails. At some point, the user receives a phishing
email, and she opens it, finds a hyperlink that looks interesting,
and hence clicks the hyperlink. PINE automatically spawns
the Firefox browser and the browser navigates to the given
hyperlink. The hyperlink leads her to a web-page that contains
an FTP server program. As she thinks the program is useful,
she downloads the program. Before she closes the Firefox
browser, she navigates a few more websites and downloads
other files as well. Specifically, she opened 2 more tabs and
downloaded 3 more programs.

After she closed the browser, she checked a few more emails
and then opened a terminal to execute the downloaded FTP
server program. The FTP server is a camouflaged trojan [3].
It normally behaves as a benign FTP server, serving remote
FTP requests properly. However, it contains a backdoor which
allows a remote attacker to connect and execute malicious
commands on the victim computer. After she ran the trojan
FTP server program, it served tens of benign FTP user requests
with hundreds of FTP commands. A few hours later, the
attacker connects to the machine through the backdoor, and
modifies an important file (e.g., financial report). Later, the
company identifies that the contents of the important file is
changed and then hires a forensic expert to investigate the
case to identify the origin of the incident.

Investigation. Given the causal models listed in Table II
and a system-wide trace collected from the user’s system,
the forensic expert uses MCI to infer causal relations from
the changed file. By matching models over the trace, MCI
successfully identifies causality from the initial phishing email
to the attacker’s connection in the camouflaged trojan. The
investigator further identifies that the important file is touched
by the FTP server process. However, the file operation does not
belong to any model instance. Interestingly, this indicates that
the file is not part of regular behaviors, indicating that the FTP
server may be trojaned. The investigator then tries to identify
how the FTP server is downloaded and executed in the system.
MCI reveals that a Firefox process downloaded the FTP
server binary via y.y.y.y:80 through “LoadURI” and “Down-
load a file” models. MCI further identifies that the Firefox
process was launched by a PINE process when the user
clicked a link from an email stored at /var/mail/.../94368.5222
downloaded from x.x.x.x.

We also investigate the same incident with BEEP, and find
out that a causal graph generated by BEEP has a number of
false-positives. Specifically, as shown in Fig. 17, the causal
graph includes n.n.n.n:53 which is resolving the domain name,
several other IP addresses from the Firefox process, which
are from different tabs. Moreover, the causal graph contains
other files downloaded from other tabs (../file1 and ../file2), two
more sockets for internal messaging system (unix socket) and
XWindow system (/tmp/.X11-unix), as well as some database
files for storing browsing history (/.../places.sqlite).
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In contrast, as MCI leverages accurate models generated
by LDX, the graph generated by MCI is more accurate and
precise without bogus dependencies. We also note that BEEP
requires training and binary instrumentation on the end-user
site while MCI has no requirements on the end-user site.

2) Information Theft via InfoZip (Zipsplit): In this case, we
use another insider attack to demonstrate the effectiveness of
MCI. Specifically, an attacker in this case intentionally uses
Zipsplit to obstruct the investigation of the case as it reads
and writes multiple input and output files where dependences
between them are difficult to capture by existing approaches.
We show how MCI can accurately identify the information
flow through the program.

Attack Scenario. In this case, an insider tries to leak a secret
document to a competitor company. However, the attacker’s
company forces all computer systems to enable audit logging
system to monitor any attempts to exfiltrate important infor-
mation. To avoid being exposed, he decides to use Zipsplit
before sending out the secret. Specifically, he understands that
the Zipsplit program can compress n files into m com-
pressed files, and traditional audit logs are able to accurately
identify causal relations if an input file is compressed to a
single output file. Hence, the attacker used Zipsplit to
compress a secret document, secret.pdf, as well as two non-
secret files, 1.pdf and 2.pdf, and generates four output files,
c1.zip−c4.zip. In this example, the secret file is compressed
and distributed into c1.zip and c2.zip, whereas c3.zip and c4.zip
only contain non-secrets. Then he attached all output files to
an email, but before he sent it to the competitor company, he
removed c3.zip and c4.zip from the email and only sent the
other two that contain the secret. After that, he deleted all
emails histories and compressed files.

A few days later, the company found suspicious behaviors
from the attacker’s computer. They identified that the secret
document was accessed by Zipsplit, and some files that
may contain the secret were sent out. However, the attacker
claimed that the secret document was mistakenly included in
Zipsplit and he only sent the zip files that contain non-
secrets. At this point, the company started to investigate the
attacker’s machine to identify the source of outgoing files. Note
that the investigator is not able to inspect the compressed files
or email history as the attacker already deleted them.

Investigation. A forensic expert utilizes MCI to construct
causal models for Zipsplit and PINE. A related model
for Zipsplit is presented in Fig. 18, corresponding to the
“read n files and compress to an output file” behavior. Note
that it is context-free as there are two groups of nodes (from
the 4th to the 6th and from the 12th to the 16th ) that have the
same number of repetition. The first group is for reading the
meta information of the n input files and the second group is
for reading the contents of the files and write to an output file.

MCI matches the models over the audit log collected from
the attacker’s machine, and it accurately reveals the causal-
ity between the secret document and the outgoing message.
Fig. 19-(b) presents a causal graph generated by MCI. It shows
that the c1.zip and c2.zip are derived from secret.pdf, and they
are sent out via PINE. In contrast, Fig. 19-(a) shows a causal
graph generated by BEEP but it contains many false-positives
as BEEP was not able to identify such removed attachments

nor causal relations between inputs and outputs of Zipsplit.
We manually inspect the program to identify the root cause of
false-positives. It turns out that Zipsplit first compresses
input files into a temporary file, then splits it into multiple
output files. Hence, BEEP considers the temporary file is
dependent on all input files, and the output files are dependent
on the temporary file. In other words, BEEP considers all
output files are dependent on all input files. Instead, MCI infers
precise causality between each input and output file via implicit
dependencies annotated in the model.

3) Long running real world applications: In the last exper-
iment, we evaluate MCI on large scale real world workloads. In
particular, we use 2 months of NASA HTTP server access logs
obtained from [41] as well as 3 months of our institution’s
HTTP server access logs (from Nov. 2015 to Jan. 2016).

To obtain audit logs from the HTTP access logs, we
first emulate the web server environment by crawling all the
contents of the original servers. Then, we create a script
which connects and accesses the web server according to the
access log so that the audit logging system on our server can
regenerate logs for our analysis.

TABLE V. EVALUATION ON LONG RUNNING EXECUTIONS.

Access Log # of req. (unique) Elapsed Time FP / FN
NASA-HTTP [41] 3.4M (36K) 19 hrs 41mins 3.9% / 0.2%
Our institution 5.6M (4.2M) 40 hrs 13mins 1.1% / 0.1%

Table V shows the result. First, our parser takes 19 hours
and 40 hours to parse the logs from [41] and our institution,
respectively. Considering the size of the logs, we argue that
our parser is reasonably scalable. For the accuracy test, we
have 3.9% and 1.2% false-positives for the two respective logs.
We analyze such cases and find that the NASA-HTTP log
includes much more CGI requests than our institution’s log.
We find that most of the false-positive cases are from those
CGI requests (e.g., PHP) that introduce noises. That is, some
of the CGI behaviors are similar to the server behaviors and
hence confuse our parser. We also have 0.2% and 0.1% false-
negative rates. We manually analyze such cases and find out
that they are mainly caused by CGI requests and suspicious
requests embedding binary payloads, which crash the web-
server during the experiment. Overall, the result shows that
MCI is scalable to identify causality over large scale logs.

VI. RELATED WORK

Causality Tracking. There exists a line of work in tracking
causal dependences for system-level attack analysis [25], [16],
[24], [26], [29], [23]. BackTracker [25] and Taser [16] propose
backward and forward analysis techniques to identify the entry
point of an attack and to understand the damage happened
to the target system. Recently, a series of works [32], [37],
[36] have proposed to provide accurate and fine-grained at-
tack analysis. Dynamic taint analysis techniques [42], [21],
[20] track information flow between taint sources and taint
sinks. SME [12] detects information flows between different
security levels by running a program multiple times. LDX [31]
proposes a dual execution based causality inference technique.
When a user executes a process, LDX automatically starts a
slave execution by mutating input sources. It identifies causal
dependences between input source and outputs by comparing
the outputs from the original and slave executions.
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Fig. 17. Causal graphs generated from BEEP and MCI for the camouflaged FTP server case.
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These approaches have limitations, for instance, syscall-
based techniques suffer from imprecisions that cause false-
positives and false-negatives, unit-based techniques require
training or instrumentation on the end-user site, and dynamic
taint analysis techniques cause too much runtime overhead.
We discussed details of strengths and limitations of those
techniques in Section II and compare them with MCI.

Program Behavior Modeling. Constructing program models
that represent program’s internal structures (e.g., control flow)
or behaviors (e.g., system call invocations) have been exten-
sively studied, especially in anomaly detection techniques [46],
[28], [14], [48], [50], [47]. Specifically, they train benign
program executions to get models which are abstraction of
the program behavior. Then, they use various ways such as
DFA [28], FSA [46], [14], push-down automaton (PDA) [48],
hidden Markov models [50], and machine learning [47], [34].
However, their models are mostly control flow models that
do not have dependency information. Having dependences
(acquired from LDX) in our models on one hand allows us
to use models in attack provenance investigation, on the other
hand poses a number of new technical challenges. Due to
the difficulty of static binary dependency analysis, generating
precise models using static analysis is highly challenging.

VII. DISCUSSION
Kernel-level Attack. We trust audit logs collected at the victim
system. Most audit logging systems including Linux Audit and
Windows ETW collect and store audit logs at the kernel level,
and a kernel-level attack could disable the logging system or
tamper with the log. One possible solution is to integrate with
LPM-Hifi [6] that provides stronger security guarantees.

Limitations by LDX [31]. In our off-line analysis, we leverage
LDX to construct causal models, hence, the limitations in
LDX are also inherited by MCI. LDX doubles the resource
consumption such as memory, processor and disk storage in
order to run a slave execution along with original execution.
However, we argue that the limitations only apply to the off-
line analysis and do not apply the end-user.

Model Coverage. MCI relies on causal models generated by
training with typical workloads. If an audit log includes behav-
iors that cannot be composed by the models in the provided
workloads, MCI may not be able to infer causality precisely
and could cause false-positives/negatives. Also, the FPs and
FNs caused by missing models may cascade throughout the
remaining MCI’s parsing process. However, the cascading
effect is mostly limited within a unit (e.g., each request in a
server program) because MCI nonetheless starts a new model
instance when it encounters an input syscall that matches with
the model. Moreover, we can detect matching failures due to
the incomplete models while MCI is parsing the audit log. For
instance, missing models often lead to causal graphs lacking
important I/O related system-objects (e.g., files/sockets), hence
they are a strong indicator. Then we can enhance the model
to resolve the situation by training with more workloads.
Furthermore, we can fall back to a conservative strategy to
assume unmatched events have inter-dependencies. Although
we mitigate the ambiguity problem (Sec. III-C2), as some
models may not have enough dependencies to segment traces,
ambiguity is still a challenge. We plan to investigate using
irrelevant events as delimiters to further partition the trace and
suppress ambiguity.

Signal and Exception Handler. Signals and exceptions can
be delivered to a predefined handler at anytime, interrupting
a normal execution flow. Unfortunately, it is possible that
system calls in the handler may affect our parser. However,
we observe that in practice our models are robust enough to
handle the additional system calls caused by such handlers.
This is because system calls invoked in a signal or exception
handler are generally distinctive from the system calls in our
causal models, hence our parser is able to filter them out.
Moreover, in many programs such as Lighttpd, handlers
functions often do not invoke any system call. In the future, we
plan to extend MCI to construct proper models for signal and
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exception handlers. As such, we can identify handler models
from the audit log and extract them before we apply MCI’s
model parsing process.

VIII. CONCLUSION

We present MCI, a novel causality inference algorithm
that directly works on audit logs provided from commod-
ity systems. MCI does not require any special efforts (e.g.,
training, instrumentation, code annotation) or framework (e.g.,
enhanced logging, taint tracking) on the end-user. Our off-line
analysis precisely infers causality from a given system call
log by constructing causal models and identifying the models
in a given audit log. We implemented a prototype of MCI
and our evaluation results show that MCI is scalable to cope
with large scale log from long-running applications. We also
demonstrate that MCI can precisely identify causal relations
in realistic attack scenarios.
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