
Poster: Machine Learning-Based Fingerprinting of
Network Traffic Using Programmable Forwarding

Engines

Greg Cusack
University of Colorado

gregory.cusack@colorado.edu

Oliver Michel
University of Colorado

oliver.michel@colorado.edu

Eric Keller
University of Colorado

eric.keller@colorado.edu

Abstract—With the recent development of programmable
forwarding engines (PFEs), systems designers are now able to
extract information-rich, flow records at high rates of speed.
The growth of PFEs and rich flow generation systems, provide
us with the data and speed necessary for network, flow-based
fingerprinting and classification. In this project, we explore the
efficacy of classifying large amounts of network traffic using PFE-
generated, rich flow records. We write a stream processor and
use a random forest, binary classifier to utilize these flow records
in fingerprinting ransomware and Shadowsocks, a censorship
circumvention tool, without requiring deep packet inspection.
Our ransomware classification model achieves a detection rate
in excess of 0.86, while our Shadowsocks classifier achieves
a detection rate close to 0.987. Our initial results show the
efficacy of utilizing high-rate, PFE-generated, rich flow records
to fingerprint various types of web traffic.

I. INTRODUCTION

In recent years, we have seen the development of a few
high rate stream processing systems, which employ switch
hardware to generate network, information-rich flows [1], [4].
PFEs utilize switch hardware and dynamic memory caches to
achieve high packet processing speeds while simultaneously
providing rich flow records. These PFE-generated flow records,
provide per-packet information and allow us to process flows
for various applications in an accurate and scalable manner.

In this work, we test the efficacy of using PFE-generated
flow records to classify large amounts of network traffic.
In order to do so, we designed two applications that apply
machine learning to identify different types of network flows.
Our first application is a ransomware classifier. We chose to
look at ransomware due to its recent emergence as one of
the most prominent strains of cybercrime [2]. Unfortunately,
malware delivery is shifting heavily to HTTPS as 37% of all
malware now uses HTTPS as of June, 2017 [3]. This change in
delivery method renders current deep packet inspection (DPI)-
based ransomware classification techniques ineffective. As a
result, we utilize PFE-generated flow records to monitor high-
level flow features only available in TLS traffic.

For our second application, we look into classifying a re-
cently designed censorship circumvention tool, Shadowsocks.
Shadowsocks is a SOCKS5 proxy that has gained popularity
in China due to its current effectiveness in circumventing the
Great Firewall of China. Shadowsocks requires a user to set up
her own proxy server with her own custom configurations. The
customization of the proxy server on a user to user basis makes

Fig. 1. Compact and per packet flow records created in a hierarchical manner.
The 5-tuple serves as the key for matching packets in the same flow.

Shadowsocks a difficult circumvention technique to detect.
However, by extracting enough features, we are able to identify
Shadowsocks traffic with high certainty.

In order to provide the classifiers with testing and training
data, we wrote a stream processor that extracts features from
network flows. The promising results of both applications
speak to the feasibility and effectiveness of using PFE-
generated flow records to monitor and classify network traffic
at high rates of speed. We outline the design of our stream
processor in the following section.

II. IMPLEMENTATION

A. Flow Records and Processing Kernels

We wrote five kernels on top of the RaftLib framework for
processing network data and creating compact and rich flow
records. Figure 1 shows the structure of our flow record. The 5-
tuple serves as a key for each flow, which links to the number
of packets and bytes in the flow along with a reference to
specific packet features. The packet features include the packet
timestamp and the number of bytes in the packet. Each flow
packet also contains a link to the packet’s IP flags and time to
live (TTL). We utilize the data in these flow records to extract
features for our ransomware and Shadowsocks classifiers.

Figure 2 shows the kernels we wrote for flow generation
and feature extraction. Normally, the per packet, flow records
seen in Figure 1 would be generated in PFE hardware, but
since we are reading from a PCAP, we wrote three kernels to
simulate the rich, flow record generation process. The initial
PCAP file reading kernel reads in a PCAP and outputs a raw
packet. The raw packet parser extracts the 5-tuple from the
packet and sends the 5-tuple along with the packet features as
a key-value pair to the flow table kernel. We wrote a custom



Fig. 2. All boxes except the Python-classifier are kernels we wrote for stream
processing. We built the kernels to convert a PCAP to a set of flow records
for feature extraction. Each kernel executes one step in the flow processing
system.

flow table to do most of the packet processing and memory
management. If an incoming 5-tuple already exists in the flow
table, the incoming packet features are appended to the list
of packets corresponding to the packet’s 5-tuple key. On the
other hand, a new entry is created in the flow table when a
previously unseen 5-tuple is read.

In a client’s communication with a server, two flows are
present. One flow corresponds to the client-to-server com-
munication, and the other flow correlates with the server-to-
client communication. In order to look at traffic burst patterns
and other features requiring knowledge of corresponding flows
in opposite directions, we wrote a bidirectional flow table
kernel. The bidirectional flow table manages a list of flows
and matches flow records with each other when an incoming
flow record’s source IP and source port match another flow
record’s destination IP and destination port and vice versa. If
a flow match is not found, the incoming flow is added to the
bidirectional flow table and waits for a match. If a match is
found, the two flows are exported out of the bidirectional flow
table to the feature extraction kernel. The feature extraction
kernel takes in both flow records and performs calculations
using the features as seen in Figure 1.

III. RESULTS

A. Classification Model

We tune our stream processor to extract features from
our collected network traffic. The features are fed into each
classifier, which first ensures the data contains the same
number of target flows as clean flows in order to prevent
classification bias. A 70-30 train/test split is used to train and
test our model respectively. A 10-fold cross validation (CV) is
performed on our data splitting to ensure our splitting model
is unbiased. We select 28 features including packet interarrival
times, inflow to outflow packet ratios, and burst lengths for
classifying ransomware. In identifying Shadowsocks traffic, we
extract 33 flow features, including packet interarrival times and
payload entropy.

The confusion matrix in Figure 3a show the results of our
ransomware classifier using 28 different features. Even with a
smaller set of traffic data, ∼200MB, we are able to achieve
a respectable recall of 0.87, a precision of 0.86, an F1 score
of 0.87, and an AUC of the ROC of 0.92. The Shadowsocks
classifier achieved stronger results as seen in the confusion
matrix in Figure 3b. We achieve a precision of 0.996, a recall of
0.977, an F1 score of 0.987, and an AUC of the ROC of 0.999.
The results from both classifiers show that both ransomware
and Shadowsocks are vulnerable to machine learning-based
attacks.

(a) Ransomware Confusion Matrix (b) Shadowsocks Confusion Matrix

Fig. 3. Ransomware and Shadowsocks classifier confusion matrices – We
achieve a precision and recall score of 0.86 and 0.87

IV. CONCLUSION & DISCUSSION

Classification accuracies of 0.86 and 0.98 for the ran-
somware and Shadowsocks classifiers, respectively, show the
efficacy of utilizing high-rate, PFE-generated, rich flow records
to fingerprint different types of web traffic. However, the
preliminary results also illustrate the vulnerabilities in ran-
somware delivery and Shadowsocks. In order to further our
work, we first plan to write our classifiers in C++ to improve
classification speed with the goal of fingerprinting network
traffic at line rate. We will also continue to explore various
classification techniques to improve our detection accuracy. It
should be noted that some ransomware is delivered via UDP;
therefore, adding UDP traffic support to our stream processor
is vital.

V. CITATIONS

This poster abstract is partly based off of a recently
published workshop paper:

G. Cusack, O. Michel, and E. Keller. Machine
Learning-based Detection of Ransomware using SDN.
ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization. 2018.
https://www.cs.clemson.edu/nss/sdnfvsec2018/program.html

VI. ACKNOWLEDGEMENTS

This work was supported in part by the NSF grants
1652698 (CAREER) and 1406192 (SaTC), and by the NSF
and VMWare grant 1700527 (SDI-CSCS).

REFERENCES

[1] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 99–110.
[Online]. Available: http://doi.acm.org/10.1145/2486001.2486011

[2] Europol, “Internet organised crime assessment 2016 iocta,” 2017. [On-
line]. Available: https://www.europol.europa.eu/activities-services/main-
reports/internet-organised-crime-threat-assessment-iocta-2017

[3] A. Magnúsardóttir, “Malware is moving heavily to https,” 2017.
[Online]. Available: https://www.cyren.com/blog/articles/over-one-third-
of-malware-uses-https

[4] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. ACM, 2017,
pp. 85–98.

2



Machine Learning-Based Fingerprinting of Network Traffic Using 
Programmable Forwarding Engines
Greg Cusack, Oliver Michel, Eric Keller

Programmable Forwarding Engines (PFEs)
	 -	Allow commodity network equipment to support the scalable 	
	 	 generation of rich flow records 
	 -	Stream processing systems utilize PFE switch hardware to 					
	 	 process network data at high-rates of speed and extract vital, 
	 	 per-packet flow information 
	 -	Provide system designers with the data and speed	necessary 	
	 	 for network, flow-based traffic analysis and	fingerprinting

Compact, per-packet flow records

PFE flow record overview 
	 -	The data extracted from a flow can be tailored to fit a user's 			
	 	 specific application

Shadowsocks Classification Results

Acknowledgements
This work was supported in part by the NSF grants 
1652698 (CAREER) and 1406192 (SaTC), and by the NSF 
and VMWare grant 1700527 (SDI-CSCS).

Goal 
	 -	Minimize false positives 
Random Forest Classifier 
	 -	10 decision trees with depth 10 
Performance 
	 -	Precision:	 0.996 
	 -	Recall:		 	 0.977

Discussion

	 -	F1 Score: 		 	 0.987 
	 -	AUC of ROC: 	0.999

Goal
Explore the efficacy of classifying large amounts of network traffic 
using PFE-generated, rich flow records in two separate applications 
	 -	Ransomware identification and classification 
	 -	Censorship circumvention traffic fingerprinting

Flow Records and Processing 
Stream processor 
	 -	5 kernel stream processor 
	 -	Simulates PFE-generated compact, rich flow records 
	 -	Extracts vital features from flow records 
	 -	Feeds into Python classifier

Ransomware Overview Shadowsocks (SS) Overview
	 -	Censorship circumvention tool 
	 -	User sets up own proxy server outside GFW domain

	 -	Victim makes initial 			
	 	 key request to C&C 		
	 	 server 
	 - C&C server returns 				
	 	 encryption key 
	 -	Tor hidden service 					
	 	 communicates 	 	 					
	 	 method of payment [Cabaj, Mazurczyk. CoRR '16]

Ransomware Classification Results
Goal 
	 -	Minimize false negatives 
	 -	Balance FNR and FPR 
Random Forest Classifier 
	 -	40 decision trees with depth 15 
Performance 
	 -	Precision:	 0.89 
	 -	Recall:		 	 0.83

	 -	F1 Score: 		 	 0.87 
	 -	AUC of ROC: 	0.93

Takeaway 
	 -	Preliminary results show efficacy of utilizing high-rate PFE-								
	 	 generated, rich flow records to fingerprint different types of 							
	 	 web traffic 
Future Work 
	 -	Write classifiers in C++ for line rate classification 
	 -	Continue to explore other classification techniques

Key Flow Features 
	 -	Packet interarrival 						
	 	 times 
	 -	 Inflow to outflow 	 					
	 	 packet ratios 
	 -	Burst lengths 
	 -	Flow duration

Key Flow Features 
	 -	Packet interarrival 						
	 	 times 
	 -	Traffic latency 
	 -	Payload entropy


