
Poster: Towards Reverse Engineering FPGA
Bitstreams for Hardware Trojan Detection

Yezee Seo1, Junghwan Yoon1, Jaedong Jang1, Mingi Cho1, Hoon-Kyu Kim2, and Taekyoung Kwon1

1Information Security Lab, Yonsei University, Seoul, 03722, Korea
2Agency for Defense Development, Seoul, Korea

1{seoyz0716, yjh1226, woehd91, imgc, taekyoung}@yonsei.ac.kr
2hunk@add.re.kr

Abstract—FPGAs are field-programmable and reconfigurable
integrated circuits, aiming at both hardware and software advan-
tages. They recently tend to combine with microprocessors in the
form of all programmable SoCs. A security problem in FPGAs
is that the configuration data called a bitstream, which must be
loaded to circuits, is susceptible to both malicious fabrication
and modification attacks due to flexibility. That is, a hardware
Trojan can be loaded to the circuits. In this study, we consider a
reverse engineering of bitstreams promising for hardware Trojan
detection in a static manner because modern techniques relying
on dynamic signal analysis are not cost-effective nor precise. A
challenge is that the reverse engineering of bitstreams is not
relatively easy and that the detailed format of the bitstream is
proprietary to the FPGA vendors. As a preliminary study, we
design the general architecture of bitstream reverse engineering
for hardware Trojan detection in this respect, and present a
detailed method for reverse engineering the core resources of
FPGAs. We also discuss our on-going work and future directions.

I. INTRODUCTION

A field-programmable gate array (FPGA) is an integrated
circuit device that can be programmed and also be re-
programmed after manufacture to run many specific appli-
cations. It can also implement software processor cores and
combine with hardware processor cores. These reconfigurable
and general features of FPGAs allow designing an application
system more flexible, expecting both hardware performance
and software diversity in FPGAs. For the reasons, FPGAs
are already used in various application fields, such as crypto-
graphic core, multimedia processing, automotive, and military
systems, and the fields employing FPGAs are still growing.
The system loaded onto the FPGA is first programmed in
hardware description language (HDL), such as Verilog and
VHDL, and then the synthesized design is loaded onto the
FPGA device in the form of a bitstream. During the synthesis
process, various external IP cores might be employed mostly
in the way of protecting those IPs of the third party.

As the use of FPGAs magnificently increases, there are
many growing concerns about security of FPGAs because of
potential threats, such as hardware Trojan (HT), cloning, tam-
pering and denial of service attacks [8]. HT is a real malicious
threat because it can hide in hardware avoiding trivial dynamic
detection methods until launched, and if conditioned, perform
many kinds of malicious actions, such as information leakage
and unintentional malfunctions [4].

In FPGA-based systems, the HT could be inserted into
the FPGA design through many routes, e.g., outsourcing to

external vendor, using untrusted third-party IPs, and reconfig-
uring in the FPGA supply chain. To cope with these problems,
various methods for HT detection have been studied and also
applied. Interestingly, most of those approaches rely on logic
testing and side-channel analysis. Saying, they are dynamic
analysis methods to detect HT by observing the signals ob-
tained by specific device when HT is activated. Thus, there
remain limitations: logic testing is difficult to trigger HT, and
side-channel analysis is not easy to detect HT if the sensible
effect of HT is insignificant [2]. To overcome such limitations,
a detection method based on static analysis was also studied
but with a gate-level netlist given [6]. Such static analysis
methods have difficulty in detecting HT inserted directly into
the bitstreams through modification or manipulation of the
existing bitstreams. Therefore, to detect HT, it is necessary
to “reverse engineer” the bitstream to the gate-level netlist.
However, it is a challenging task to perform bitstream reverse
engineering (RE) because vendors are reluctant to disclose the
bitstream format and the design size and complexity of FPGAs
have significantly increased.

The previous studies of FPGA bitstream RE aim at bit-
stream format analysis and efficient reconfiguration. debit [5]
first introduced a correlation algorithm for bitstream RE by
analyzing the bitstream format of Virtex 2. BIL [1] extended
the previous work by employing as pre-knowledge the XDLRC
file which contains information about all resources in order
to evaluate the result of RE. Although BIL recovered partial
resources of specific tiles only, it showed a promising direction
for bitstream RE. bit2ncd [3] aimed at more complete RE
for efficient reconfiguration purposes although it was unclear
whether the logic implemented in each lookup table (LUT)
was correctly recovered. Unlike the previous RE studies, in
this paper, we are focused on hardware Trojan detection.

II. SYSTEM DESIGN

Given a bitstream file, we need to recover a netlist that re-
veals the actual FPGA circuit configuration. The configuration
resources are clearly divided into two parts: Programmable
Interconnect Point (PIP) that represents the connection in-
formation of FPGAs, and Programmable Logic Point (PLP)
that shows logic implementation such as clocks, multipliers,
registers, and LUTs. Thus, we need to recover them for HT
detection. Among various form of netlist, we consider a textual
format, such as XDL, to identify configurable functions and
finally use them for static analysis and HT detection. We adopt
a machine learning technique for HT detection in XDL level,



Fig. 1: System Architecture

such as deep neural networks to learn HT configurations and to
perform classification. Fig. 1 illustrates the system architecture
and the overall concept.

A. PIP Reverse Engineering

We adopt BIL, which is the most promising RE work on
PIP, in our study. BIL implemented an algorithm for finding
bit offsets to recover PIPs in INT tiles. To be useful for HT
detection, there are three challenges in this method. First,
BIL uses only a single pair of bit and XDL files for DB
construction. Thus, it can partially cover PIPs used in the
source XDL file. Second, BIL deals with a single PIP, and so
it cannot cover PIPs that are paired. Third, there remain PIPs
represented as ’Zeroed’ which means BIL could not deal with.
Thus, we begin with improving BIL for PIP RE. We make it
possible to employ multiple pairs of bit and XDL files in DB
construction, to find more PIPs on RE. For zeroed PIPs, we
create a mapping table with the information that the start wire
or the end wire of zeroed PIPs are connected to different PIPs
in the tile. We also use multiple pairs of bit and XDL files to
validate the mapping table. In this stage, DB is constructed by
removing the errors caused by PIPs in the mapping table.

B. PLP Reverse Engineering

Logic circuits designed by a developer are implemented in
LUT which is one of the PLP resources. Thus, to understand
the logic implemented in FPGAs, it is important to reverse
engineer the logic information assigned in the LUT. In order
to reverse engineer the LUT, we need to find the corresponding
offsets. We adopt the generic method introduced in [7] to find
all offsets corresponding to the LUT data. Unlike [7], we
only compare the configuration data field of each bitstream.
When a bitstream is loaded into a FPGA, configuration data
of bitstream is divide into frames which have their own ad-
dresses, and each frame configures specific configurable points.
Therefore, by extracting and comparing the configuration data,
it is possible to know which frames configure the LUT. So we
extract the configuration data from each bitstream and compare
them all. We use the data of LUT storing a value set to 1 in
only one bit of 64-bit to recover the originally stored value
from extracted data. By ORing the data which the bit of the
same index with extracted data is set, we can recover the
originally stored value. After extracting data and recovering the
stored value in the LUT, we convert it into a boolean equation
by reconstructing the truth table.

III. IMPLEMENTATION AND EVALUATION

We implement the basic system and evaluate it on the
xc5vfx30t-ff665 model of the Virtex-5 family. For PIPs,
we evaluate the RE result using 18 samples. The database
construction rate of the INT tile has increased from 87% to
93.6%. In addition, we newly found 80 cases that two PIPs
always paired in use and 7 cases that three PIPs always used
together. We recovered, albeit partially, the zeroed PIPs using

our mapping table. As a result, the average recovery rate of
INT tiles has increased from 82% to 89.4%. We may increase
those rates by employing more pairs for database construction.

For LUTs, we basically utilized the bitextract module and
wrote a python code to compare the configuration data. From
the comparison result, we found that the LUT data in slice
with an odd x coordinate is located in frames #26 to #29, and
the LUT data in slice with an even x coordinate is located
in frames #32 to #35 among the 36 frames of a CLB block.
Based on this result, we obtained all data offsets of 20,480
LUTs in the device used in our experiment. To verify the
extracted LUT data, we stored a random value in each LUT
using verilog and extracted the data corresponding to the LUT.
As a result of using OR operation, we were able to confirm
that the originally stored value was correctly recovered. Finally
we reconstructed the truth table with recovered values, and
converted it into boolean equations. Each converted equation
has the same functionality with original equation.

IV. SUMMARY AND FUTURE DIRECTION

As a preliminary study of HT detection in the bitstream
level of FPGAs, we addressed how to reverse engineer bit-
streams for HT detection, and particularly we mainly showed
how to recover the PIP and LUT information from bitstreams.
Through the improvement, we increased the recovery rate of
PIP and succeeded in extracting the boolean equation from
the LUT data. The further step of our study is detecting the
HT through the recovered XDL file. For HT detection from
recovered netlists, we need to construct a database which
consists of the static features extracted from the collected HT
dataset in the same netlist level. We plan to apply a static
analysis and a machine learning based detection technique that
is popular in a software community for malware detection.

ACKNOWLEDGMENT

This work was supported by Defense Acquisition Program
Administration and Agency for Defense Development under
the contract (UD160066BD).

REFERENCES
[1] F. Benz, A. Seffrin, and S. A. Huss, “BIL: A Tool-chain for Bitstream

Reverse-engineering,” in Proc. The International Conference on Field-

Programmable Logic and Applications (FPL). IEEE, 2012, pp. 735–738.
[2] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware

Trojan Attacks: Threat Analysis and Countermeasures,” Proceedings of

the IEEE, vol. 102, no. 8, pp. 1229–1247, 2014.
[3] Z. Ding, Q. Wu, Y. Zhang, and L. Zhu, “Deriving an NCD file

from an FPGA Bitstream: Methodology, Architecture and Evaluation,”
Microprocessors and Microsystems, vol. 37, no. 3, pp. 299–312, 2013.

[4] V. Jyothi and J. J. Rajendran, “Hardware Trojan Attacks in FPGA and
Protection Approaches,” in The Hardware Trojan War. Springer, 2018,
pp. 345–368.

[5] J.-B. Note and É. Rannaud, “From the Bitstream to the Netlist.” in
Proc. ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays (FPGA), vol. 8, 2008, pp. 264–264.
[6] H. Shen and Y. Zhao, “HTChecker: Detecting Hardware Trojans Based

on Static Characteristics,” in Proc. IEEE International Symposium on

Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.
[7] P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar, “FPGA Trojans

Through Detecting and Weakening of Cryptographic Primitives,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 34, no. 8, pp. 1236–1249, 2015.
[8] S. M. Trimberger and J. J. Moore, “FPGA security: Motivations, features,

and applications,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1248–
1265, 2014.

2



Poster: Towards Reverse Engineering FPGA Bitstreams

for Hardware Trojan Detection
Yezee Seo

1
, Junghwan Yoon

1
, Jaedong Jang

1
, Mingi Cho

1
, Hoon-Kyu Kim

2
, and Taekyoung Kwon

1

1 Information Security Lab, Yonsei University, Seoul, 03722, Korea

2 Agency for Defense Development, Seoul, Korea

• Due to the flexibility of programming and the possibility of

reconfiguration, FPGAs are widely used in many fields.

• The hardware trojan (HT) could be inserted into the FPGA

design through many routes, e.g., outsourcing to external

vendor, using untrusted third-party IPs, and reconfiguring

in the FPGA supply chain.

• Most approaches rely on logic testing and side-channel
analysis. There remain limitations: logic testing is di�-

cult to trigger HT, and side-channel analysis is not easy to

detect HT if the sensible e↵ect of HT is insignificant.

• The previous static analysis methods have di�culty in de-

tecting HT inserted directly into the bitstream through mo-

dification or manipulation of the existing bitstream.

Therefore, to detect HT, it is necessary to “reverse engineer”

the bitstream to the gate-level netlist.

• Related work

– Note et al (FPGA 2008) performs bitstream reverse engine-

ering (RE) by analyzing the bitstream format.

– F. Benz et al (FPL 2012) performs bitstream RE to con-

firm whether complete bitstream RE is feasible.

– Ding et al (MICPRO 2013) performs bitstream RE for e�-

cient reconfiguration purposes.

The previous studies of FPGA bitstream RE aim at bitstream

format analysis and e�cient reconfiguration.

Motivation

– We aim to reverse engineer the programmable inter-
connect point (PIP) and programmable logic point
(PLP) information from the bitstream to gate-level netlist

for HT detection.

Our Objective

Acknowledgement: This work was supported by Defense Acquisition Pro-
gram Administration and Agency for Defense Development under the
contract (UD160066BD).

System Design

• Target FPGA device : Xilinx Virtex-5 xc5vfx30t-↵665

– PIP : The DB construction rate of the INT tiles has reached

to 93.6% using 314 pairs of bit and XDL files.

– We recovered, albeit partially, the zeroed PIPs using our map-

ping table. As a result, the average recovery rate of INT tiles

has increased to 89.4%. (less than 30 sec for INT tile PIPs,

1,651kB).

– PLP - Lookup Table (LUT) : We utilized the BIL and

python to compare the configuration data. As a result, we

could obtain all the o↵sets of LUTs in the device.

– We converted the extracted LUT data into a boolean equa-

tion and compared it with the original one. Note that the

functionalities of the two equations are the same.

Implementation & Evaluation

• Type-1 Trojans

– Def: HT bitstream parts are inserted into the existing bits-

tream at empty positions (where no resources are utilized).

– Independent of the original circuit (no interconnection)

– RE result: The boolean equations of HT are preserved.

• Type-2 Trojans

– Def: HT bitstream parts are inserted into the existing bits-

tream and so interconnected to the original circuitry.

– RE result: The boolean equations of HT are preserved only

when the HT was inserted into the output of the existing

circuitry. However, they are not preserved in other cases.

HT Types Modifying the Bitstream

• Summary

– We designed the basic system architecture for static

HT detection at the bitstream level of FPGAs.

– We addressed the significance of bitstream reverse

engineering for HT detection as static analysis.

– We showed the preliminary experimental study of

reversing PIPs and LUTs from bitstreams.

• Future Direction

– The further step of our study is detecting the HT through the recovered

XDL file. For HT detection from recovered netlists, we need to construct a

database which consists of the static features extracted from the collected

HT dataset in the same netlist level.

– We plan to apply a static analysis and a machine learning based detection

technique that is popular in a software community for malware detection.

Summary & Future Direction

* Corresponding author’s email: taekyoung@yonsei.ac.kr

1


