
Poster: Stylometry of Author-Specific and
Country-Specific Style Features in JavaScript

Dennis Röllke
Ruhr-Universität Bochum

Dennis.Roellke@ruhr-uni-bochum.de

Aviel J. Stein
Drexel University
ajs568@drexel.edu

Edwin Dauber
Drexel University
egd34@drexel.edu

Mosfiqur Rahman
Drexel University
mr986@drexel.edu

Michael J. Weisman
U.S. Army Research Laboratory
michael.j.weisman2.civ@mail.mil

Gregory G. Shearer
ICF International

gregory.g.shearer.ctr@mail.mil

Frederica Nelson
U.S. Army Research Laboratory
frederica.f.nelson.civ@mail.mil

Aylin Caliskan
Princeton University
aylinc@princeton.edu

Richard Harang
Sophos, Data Science Team

rich.harang@sophos.com

Rachel Greenstadt
Drexel University
rag59@drexel.edu

Abstract—Stylometry is the study of writing style, and is often
used for authorship attribution. Published papers have shown
the usefulness of this technique for code and compiled programs
written in languages such as C++. We show that these abstract
syntax tree focused techniques can be adapted to JavaScript, an
interpreted scripting language common on the World Wide Web.
Using Google Code Jam submissions, we show that individual
authors from a small suspect set (17 authors) can be attributed
with over 99% accuracy. We also presesnt a proof-of-concept
experiment which shows that we can differentiate the country of
origin of a code author with over 91% accuracy, using Canada
and China as our example countries.

I. INTRODUCTION

Stylometry has proven useful for identifying the writers
of code and compiled programs written in languages such
as C++. We show that similar techniques can be used on
JavaScript, using Google Code Jam submissions. JavaScript
is an interpreted language commonly used on the World Wide
Web.

II. MOTIVATION

The number of attacks and variations on networks via
malware increase every year. To pursue those that use such
code to attack the privacy and security of others, analysts
must find new methods of defense. One of the new ways that
cyber-attacks are performed are via JavaScript, which is used
in 94.9% of websites on the internet according to W3Techs
Web Technology Surveys [1]. The December 2017 McAfee

Labs Threat Report showed a steady increase of JavaScript
attacks and the second quarter of 2017 set the record for new
JavaScript attacks [6].

III. RELATED WORK

One of the means that security analysts pursue to stop and
prevent further attacks is to find and identify criminals, which
in the case of malware can be understood as the writers of
the malicious code. One approach to attribute authors is the
employment of stylometry. Modern techniques work by ana-
lyzing the source code of malicious software and comparing
to known work by a group of suspect authors. Using abstract
syntax trees (AST) from source code in C++ previous work
was able to attribute authors of data sets of sizes 1,600 authors
and 250 authors with 94% and 98% accuracy respectively [3].
This was much higher than had previously been achieved.
Similar techniques were used to identify authors of both C++
code and Python code with accuracy above 80% with long-
term short term memory (LSTM) models [2]. It has also been
applied to executable binaries of C++ code on datasets of 100
authors with 96% accuracy and datasets of 600 authors with
83% accuracy [4].

The aforementioned work examines author attribution for
C/C++ software, which is commonly used for server exploits.
In this scenario, it happens that source code may remain on
the attacked system after it is compiled. Forensic means can
discover the injected code and can then further analyze it using
various techniques, including stylometry. In the modern envi-
ronment, web-application attacks are another common type of
attack. Many of these are written in JavaScript, a programming
language that highly differs from C/C++. In contrast to C/C++,
JavaScript is an interpreted scripting language, rather than
a compiled language. Further, the JavaScript landscape is
very diverse, with a great variety of frameworks, libraries
and flavors available. Therefore, it is important to empirically

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23xxx
www.ndss-symposium.org



determine if these existing techniques are applicable to this
different variety of programming language.

IV. METHODOLOGY

Our first task was to adjust the machine learning algorithm
capable of attributing C/C++ to attribute JavaScript. This
means adapting the features used for learning on C/C++ code
to features which can be used to learn on JavaScript. The algo-
rithm is trained by collecting features on three levels: lexical,
layout and syntax. A translation of lexical and layout features
is straight-forward. Syntactic feature extraction, which focuses
on the AST, is both critical to the success of these methods and
is highly language dependent. We used the JavaScript parser
Esprima to generate the AST for our JavaScript programs [5].
Figure 1 shows the overall workflow.

Fig. 1. This summarizes the stylometry workflow. Given an attribution task,
we build a dataset, setup experiments and extract ASTs, extract feature vectors,
do the machine learning, and then analyze the results.

To train and test our machine learning algorithm we decided
to gather data from Google Code Jam (GCJ), an ideal source of
data sets, given the free-to use policy under which contestants
submit their assignments: “Your submitted source code may be
made available for anyone to view on the Internet and down-
load and use at the end of the Contest.”1 Another advantage of
GCJ data is the availability of statistical information, such as
popularity of programming language, contestants skill-levels,
and nationalities.

V. RESULTS

We used the data files organized by author and trained the
system by collecting features of the code and associating each
with its authors. These features were extracted by analyzing
abstract syntax trees derived from the JavaScript code. We then
applied learning algorithms to these to find associations. This
technique was developed before for C/C++ but we show that
by replacing the AST extraction component and modifying the
feature extraction component it can be adapted to JavaScript.
Our dataset contained 242 files over 17 authors. We performed
a 9-fold cross-validation and achieved 99.1% accuracy.

Within our international team, we noticed that sentence
structure is one of the main challenges when communicating

1https://code.google.com/codejam/

in a foreign language. Sentence structure is syntax in native
language, and it is well understood that this is an important
feature for attribution in natural language, and is often used to
determine the origin of the author. Therefore, we hypothesize
that our features, especially the syntactic features, can also
determine the origin of the authors of code. For a proof-of-
concept experiment, we selected two countries with a large
amount of JavaScript GCJ data: Canada and China. Instead
of individual authors from those countries, we combined the
authors from Canada into one class and from China into
another, with a combined total of 84 files. We performed 4-
fold cross-validation and obtained an accuracy of 91.9%.

VI. CONCLUSION AND FUTURE WORK

While still small scale and only proof-of-concept, our results
support our hypotheses that we can attribute JavaScript code
using the same techniques developed for other languages and
that we can attribute code to the origin of the program-
mer using stylometric techniques. The underlying hypothesis
behind origin attribution is that our native language and
culture influences our thought process, how we think about
problems, and the way in which we solve them. While this is
interesting itself, our findings also have some other interesting
implications. Lately there have been concerns about entities
launching international cyber-attacks. The ability to attribute
these attacks to the country of origin can be helpful because
it gives insight into the attacker’s means and motives.

The obvious future direction, for which we are currently
building a dataset, is to extend this work to actual malicious
code. Expanding the method to other languages used in many
modern attacks is also of interest.

ACKNOWLEDGMENT

The authors would like to thank DARPA Contract No.
FA8750-17-C-0142 and the United States Army Research
Laboratory for funding this research.

REFERENCES

[1] Usage of javascript for websites, Jan 2018.
[2] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis, and

Rachel Greenstadt. Source code authorship attribution using long short-
term memory based networks. In European Symposium on Research in
Computer Security, pages 65–82. Springer, 2017.

[3] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan,
Clare Voss, Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing
programmers via code stylometry. In 24th USENIX Security Symposium
(USENIX Security), Washington, DC, 2015.

[4] Aylin Caliskan-Islam, Fabian Yamaguchi, Edwin Dauber, Richard Ha-
rang, Konrad Rieck, Rachel Greenstadt, and Arvind Narayanan. When
coding style survives compilation: De-anonymizing programmers from
executable binaries. arXiv preprint arXiv:1512.08546, 2015.

[5] Ariya Hidayat. Esprima.
[6] Niamh Minihane, Francisca Moreno, Eric Peterson, Raj Samani, Craig

Schmugar, Dan Sommer, and Bing Sun. Mcafee labs threat report
december 2017, Dec 2017.

2



Stylometry of Author-Specific and Country-
Specific Style Features in JavaScript

The number and variations of attacks on networks via malware increase every year.

Using abstract syntax trees (AST) from source code in C++ pervious work was able to 
attribute authors of data sets of size 1,600 and 250 with 94% and 98% accuracy 
respectively. This was much higher than had previously been achieved.

Web-application attacks are common. Thus, we evaluated the applicability of the 
former shown methodology to JavaScript, a programming language that highly 
differs from C/C++. 

In the current climate, there is great concern about international cyber-attacks. 
Therefore, in addition to attributing authors we also decided to attempt attribution 
to country of origin.

Author: Our dataset contained 242 files written by 17 authors. We ran several tests 
with training and testing separated by a 9-fold cross-validation and achieved 99.1% 
accuracy.

Country: We looked at files written by programmers from Canada and China, which 
had a combined total of 84 files. Our 4-fold cross-validation showed an accurate 
distinguishability of 91.9%.

Motivation

Results

Conclusion
References This supports the case that our culture and language effect how we think and 

therefore how we code.

We plan to use similar techniques to see if we can detect malware family grouping 
based on source code, as well as if we can still succeed at authorship attribution on 
actual malware.

1. Caliskan-Islam, Aylin, et al. "De-anonymizing programmers via code stylometry." 24th USENIX 
Security Symposium (USENIX Security), Washington, DC. 2015.

2. Alsulami, Bander, et al. "Source Code Authorship Attribution Using Long Short-Term Memory 
Based Networks." European Symposium on Research in Computer Security. Springer, Cham, 
2017.

3. Caliskan-Islam, Aylin, et al. "When coding style survives compilation: De-anonymizing 
programmers from executable binaries." arXiv preprint arXiv:1512.08546 (2015).

4. Fritzson, Peter & Privitzer, Pavol & Sjölund, Martin & Pop, Adrian. (2009). Towards a Text 
Generation Template Language for Modelica, 10.3384/ecp09430124. (Fig 3)

5. McAfee Labs Threat Report, December 2017
6. Ariya Hidayat. Esprima

Acknowledgements
The authors would like to thank DARPA Contract No. FA8750-17-C-0142 and the 
United States Army Research Laboratory for funding this research. 

Methodology
To train our Machine Learning algorithm, we decided to gather data from Google 
Code Jam (GCJ), an ideal source of data sets, given its free-to use policy. 

Our first task was to adjust the machine learning algorithm capable of C/C++ 
attribution to cover JavaScript. This means adapting AST and feature extraction from 
C/C++ to JavaScript.

The technique requires collection of features on three levels: lexical, layout and 
syntactic. While translating lexical and layout features is straightforward, JavaScript 
requires different AST parsers than C/C++, and thus additional feature translation. As 
these features are the most important to the success of the technique, this is the 
most important step of porting the algorithm from one language to another.

Syntax analysis is based on constructing an Abstract Syntax Tree (AST), a lossless and 
unique representation of source code as a tree. Former employed AST parsers for 
C/C++ are not capable of parsing JavaScript code and thus had to be replaced. 

After implementing this step based on Esprima, we successfully showed JavaScript 
authorship attribution based on random forest machine learning algorithms.

1. Drexel University 2. Ruhr-Universitat Bochum 3. U.S. Army Research Laboratory 4. ICF International 5. Princeton University 6. Sophos Data Science Team

Dennis Röllke2, Aviel J. Stein1, Edwin Dauber1, Mosfiqur
Rahman1, Michael J. Weisman3, Gregory G. Shearer4, Frederica 
Nelson3, Aylin Caliskan5, Richard Harang6, Rachel Greenstadt1


