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Abstract—In the first part of this paper, we propose PINlog-
ger.js which is a JavaScript-based side channel attack revealing
user PINs on an Android mobile phone. In this attack, once the
user visits a website controlled by an attacker, the JavaScript
code embedded in the web page starts listening to the motion
and orientation sensor streams without needing any permission
from the user. By analysing these streams, it infers the user’s PIN
using an artificial neural network. Based on a test set of fifty 4-
digit PINs, PINlogger.js is able to correctly identify PINs in the
first attempt with a success rate of 82.96%, which increases to
96.23% and 99.48% in the second and third attempts respectively.
The high success rates of stealing user PINs on mobile devices
via JavaScript indicate a serious threat to user security.

In the second part of the paper, we study users’ perception of
the risks associated with mobile phone sensors. We design user
studies to measure the general familiarity with different sensors
and their functionality, and to investigate how concerned users are
about their PIN being discovered by an app that has access to all
these sensors. Our results show that there is significant disparity
between the actual and perceived levels of threat with regard to
the compromise of the user PIN. We discuss how this observation,
along with other factors, renders many academic and industry
solutions ineffective in preventing such side channel attacks.

I. INTRODUCTION

Smartphones equipped with many different sensors such as
GPS, light, orientation and motion are continuously providing
more features to end users in order to interact with their real-
world surroundings. Developers can have access to the mobile
sensors either by 1) writing native code using mobile OS
APIs [16], 2) recompiling HTML5 code into a native app [32],
or 3) using standard APIs provided by the W3C which are
accessible through JavaScript code within a mobile browser1.
The last method has the advantage of not needing any app-
store approval for releasing the app or doing future updates.
More importantly, the JavaScript code is platform independent,
i.e., once the code is developed it can be executed within any
modern browser on any mobile OS.

In-browser access risks. While sensor-enabled mobile
web applications provide users more functionalities, they raise

1w3.org/TR/#tr Javascript APIs

Fig. 1. PINlogger.js potential attack scenarios; a) the malicious code is loaded
in an iframe and the user is on the same tab, b) the attack tab is already open
and the user is on a different tab, c) the attack content is already open in a
minimised browser, and the user is on an installed app, d) the attack content is
already open in a (minimised) browser, and the screen is locked. The attacker
listens to the side channel motion and orientation measurements of the victim’s
mobile device through JavaScript code, and uses machine learning methods
to discover the user’s sensitive information such as activity types and PINs.

new privacy and security concerns. Both the academic com-
munity and the industry have recognised such issues regarding
certain sensors such as geolocation [18]. For a website to
access the geolocation data, it must ask for explicit user
permission. However, to the best of our knowledge, there is
little work evaluating the risks of in-browser access to other
sensors. Unlike in-app attacks, an in-browser attack, i.e., via
JavaScript code embedded in a web page, does not require any
app installation. Furthermore, JavaScript code does not require
any user permission to access sensor data such as device
motion and orientation. Furthermore, there is no notification
while JavaScript is reading the sensor data stream. Hence,
such in-browser attacks can be carried out far more covertly
than the in-app counterparts. However, an effective in-browser
attack still has to overcome the technical challenge that the
sampling rates available in browser are much lower than those
in app. For example, as we observed in [22], frequency rates
of motion and orientation sensor data available in-browser are
3 to 5 times lower than those of accelerometer and gyroscope
available in-app.

Motion and orientation sensors detail. According to
W3C specifications [1] motion and orientation sensor data are
a series of different measurements:

• device orientation which provides the physical orien-
tation of the device, expressed as three rotation angles
(α, β, γ) in the device’s local coordinate frame,

• device acceleration which provides the physical accel-
eration of the device, expressed in Cartesian coordi-
nates (x, y, z) in the device’s local coordinate frame,
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• device acceleration-including-gravity which is similar
to acceleration except that it includes gravity as well

• device rotation rate which provides the rotation rate of
the device about the local coordinate frame, expressed
as three rotation angles (α, β, γ), and

• interval which provides the constant sampling rate and
is expressed in milliseconds (ms).

The device coordinate frame is defined with respect to
the standard position of the mobile screen. When it is in the
portrait mode, x and y axes are in the plane of the screen and
are positive towards the screen’s right and up, and z is per-
pendicular to the plane of the screen and is positive outwards
from the screen. Moreover, the sensor data discussed above
are processed sensor data obtained from multiple physical
sensors such as gyroscope and accelerometer. In the rest of this
paper, unless specified otherwise, by sensor data we mean the
sensor data accessible through mobile browsers which includes
acceleration, acceleration-including-gravity, rotation rate, and
orientation.

Motivation. Many popular browsers such as Safari,
Chrome, Firefox, Opera and Dolphin have already imple-
mented access to the above sensor data. As we demonstrated in
[21] and [22], all of these mobile browsers allow such access
when the code is placed in any part of the active tab including
iframes (Figure 1, a). In some cases such as Chrome and
Dolphine on iOS, an inactive tab including the sensor listeners
have access to the sensor measurements as well (Figure 1, b).
Even worse, some browsers such as Safari allow the inactive
tabs to access the sensor data, when the browser is minimised
(Figure 1, c), or even when the screen is locked (Figure 1,
d). Mobile operating systems and browsers do not seem to
be implementing consistent access control policies in regard
to mobile orientation and motion sensor data. Furthermore,
W3C specifications [1] do not discuss any risks associated
with this potential vulnerability. Because of the low sampling
rates available in browser, the community have been neglecting
the security risks associated with in-browser access to such
sensor data. However, in TouchSignatures [22], we showed
that despite the low sampling rates, it is possible to identify
user touch actions such as click, scroll, and zoom and even
the numpad’s digits. In this work we contribute to the study
of such attacks as follows:

• We introduce PINLogger.js, an attack on full 4-digit
PINs as opposed to only single digits in [22]. We show
that unregulated access to these sensors impose more
serious security risks to the users in comparison with
more well-known sensors such as camera, light and
microphone.

• We conduct user studies to investigate users’ under-
standing about these sensors and also their perception
of the security risks associated with them. We show
that users in fact have fewer security concerns about
these sensors comparing to more well-known ones.

• We study and challenge current suggested solutions,
and discuss why our studies show they cannot be
effective. We argue that a usable and secure solution
is not straightforward and requires further research.

II. PINLOGGER.JS

In this section, we describe an advanced attack on user’s
PINs by introducing PINlogger.js. In the following subsections,
we describe the attack approach, our program implementation,
data collection, feature extraction, and neural network.

A. Attack approach

We consider an attacker who wants to learn the user’s
PIN tapped on a soft keyboard of a smartphone via side
channel information. We consider (digit-only) PINs since they
are popular passwords used by users for many purposes such as
unlocking phone, SIM PIN, NFC payments, bank cards, other
banking services, gaming, and other personalised applications
such as healthcare, insurance, etc. Unlike similar works which
have to gain the access through an installed app [23], [27],
[24], [10], [29], [30], [26], [33], [3], [11], our attack does not
require any user permission. Instead, we assume that the user
has loaded the malicious web content in the form of an iframe,
or another tab while working with the mobile browser as shown
in Figure 1. At this point, the attack code has already started
listening to the sensor sequences from the user’s interaction
with the phone.

In order to uncover when the user enters his PIN, we
need to classify his touch actions such as click, scroll, and
zoom. We already have shown in TouchSignatures [22] that
with the same sensor data and by applying classification
algorithms, it is possible to effectively identify user’s touch
actions. Here, we consider a scenario after the touch action
classification. In other words, our attacker already knows
that the user is entering his PIN. Moreover, unless explicitly
noted, we consider a generic attack scenario which is not
user-dependant. This means that we do not need to train
our machine learning algorithm with the same user as the
subject of the attack. Instead, we have a one-round training
phase with data from multiple voluntary users, and use the
obtained trained algorithm to output other users’ PINs later.
This approach has the benefit of not needing to trick individual
users to collect data for training.

B. Web program implementation

We implemented a web page with embedded JavaScript
code in order to collect the data from voluntary users. Our code
registers two listeners on the window object to have access to
orientation and motion data, separately. The event handlers
defined for these purposes are named DeviceOrientationEvent
and DeviceMotionEvent, respectively. On the client side, we
developed a GUI in HTML5 which shows random 4-digit PINs
to the users and activates a nummpad for them to enter the
PINs as shown in Figure 2. All sensor sequences are sent to
the database along with their associated labels which are the
digits of the entered PINs. We implemented our server program
using Node.js (nodejs.org). Our code sends the orientation
and motion sensor data of the mobile device to our NoSQL
database using MongoLab (mongolab.com, web-based service
for MongoDB). When the event listener fires, it establishes
a socket by using Socket.IO (socket.io) between the client
and the server and constantly transmits the sensor data to
the database. Both Node.js and MongoDB (as a document-
oriented database) are known for being capable of supporting
data intensive applications in real time.
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Fig. 2. Different input methods used by the users for PIN entrance.

C. Data collection

Following the approach of Aviv et al. [3] and Spreitzer
[30], we consider a set of 50 fixed random PINs in this paper.
We conducted our user studies using Chrome on an Android
device (Nexus 5). The experiments and results are based on
the collected data from 5 users, each entering all the 50 4-digit
PINs for 5 times. Our voluntary participants were university
students and staff and performed the experiments at university
offices. We simply explained to them that all they needed was
to enter a few PINs shown in a web page.

In relation to the environmental setting for the data col-
lection, we asked the users to remain sitting in a chair while
working with the phone. We did not require our users to hold
the phone in any particular mode (portrait or landscape) or
work with it by using any specific input method (using one
or two hands). We let them choose their most comfortable
posture for holding the phone and working with it as they do
in their usual manner. While watching the users during the
experiments, we noticed that all of our users used the phone
in the portrait mode by default. Users were either leaning their
hands on the desk or freely keeping them in the air. We also
observed the following input methods used by the users.

• Holding the phone in one hand and entering the PIN
with the thumb of the same hand (Figure 2, left).

• Holding the phone in one hand and entering the PIN
with the fingers of the other hand (Figure 2, centre).

• Holding the phone with two hands and entering the
PIN with the thumbs of both hands (Figure 2, right).

In the first two cases, users exchangeably used either their
right hands or left hands in order to hold the phone. In order
to simulate a real world data collection environment, we took
the phone to each user’s workspace and briefly explained the
experiment to them, and let them complete the experiment
without our supervision. All users found this way of data
collection very easy and could finish the experiments without
any difficulties.

D. Feature extraction

In order to build the feature vector as the input to our clas-
sifier algorithm, we consider both time domain and frequency
domain features. We improve our suggested feature vectors
in [22] by adding some more complex features such as the
correlation between the measurements. This addition improves
the results, as we will discuss in Section III. As discussed
before, 12 different sequences obtained from the collected

data include orientation (ori), acceleration (acc), acceleration-
including-gravity (accG), and rotation rate (rotR) with three
sequences (either x, y and z, or α, β and γ) for each sensor
measurement. As a pre-processing step and in order to remove
the effect of the initial position and orientation of the device,
we subtract the initial value in each sequence from subsequent
values in the sequence.

We use these pre-processed sequences for feature extraction
in time domain directly. In frequency domain, we apply the
Fast Fourier transform (FFT) on the pre-processed sequences
and use the transformed sequences for feature extraction. In
order to build our feature vector, first we obtain the maximum,
minimum, and average values of each pre-processed and FFT
sequences. These statistical measurements give us 3×12 = 36
features in the time domain, and the same number of features
in the frequency domain. We also consider the total energy of
each sequence in both time and frequency domains calculated
as the sum of the squared sequence values, i.e., E =

∑
v2i

which gives us 24 new features.

The next set of features are in time domain and are based
on the correlation between each pair of sequences in different
axes. We have 4 different sequences; ori, acc, accG, and rotR,
each represented by 3 measurements. Hence, we can calculate
6 different correlation values between the possible pairs; (ori,
acc), (ori, accG), (ori, rotR), (acc, accG), (acc, rotR), and
(accG, rotR), each presented in a vector with 3 elements. We
use the Correlation coefficient function in order to calculate
the similarity rate between the mentioned sequences. The
correlation coefficient method is commonly used to compare
the similarity of the shapes of two signals (e.g. [5]). Given
two sequences A and B and Cov(A,B) denoting covariance
between A and B, the correlation coefficient is computed as
below:

RAB =
Cov(A,B)√

Cov(A,A) · Cov(B,B)
(1)

The correlation coefficient of two vectors measures their
linear dependence by using covariance. By adding these new
18 features, our feature vector consists of a total of 114
features.

E. Neural network

We apply a supervised machine learning algorithm by using
an Artificial Neural Network (ANN) to solve this classification
problem. The input of an ANN system could be either raw
data, or pre-processed data from the samples. In our case, we
have preprocessed our samples by building a feature vector
as described before. Therefore, as input, our ANN receives
a set of 114 features for each sample. As explained before,
we collected 5 sample per each 4-digit PINs from 5 different
users, giving us 1250 feature vectors in general.

The feature vectors are mapped to specific labels from a
finite set: i.e., 50 fixed random 4-digit PINs. We train and val-
idate our algorithm with two different subsets of our collected
data, and test the neural network against a separate subset of
the data. We train the network with 70% of our data, validate
it with 15% of the records and test it with the remaining
15% of our data set. We use a pattern recognition/classifying
network in Matlab with one hidden layer and 1000 nodes.
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Attempts Identification rate
One 82.96%
Two 96.23%
Three 99.48%

TABLE I. PINLOGGER.JS’S PIN IDENTIFICATION RATES IN DIFFERENT
ATTEMPTS.

Pattern recognition/classifying networks normally use a scaled
conjugate gradient (SCG) back-propagation algorithm for up-
dating weight and bias values in training. Scaled conjugate
gradient is a fast supervised learning algorithm [25].

III. EVALUATION

In this section we present the results of our attack and
compare them with other works.

A. PINlogger.js success rate

Table I shows the accuracy of our ANN trained with the
data from all users. Since these results are based on the
collected data from all users, we refer to it as the user-
independent mode. As the table shows, in the first attempt
PINlogger.js is able to infer the user’s 4-digit PIN correctly
with accuracy of 82.96%. The results get better on further
attempts. As the table shows, our system is able to reveal the
user’s PIN with nearly 100% accuracy in three attempts. By
comparison, a random attack can guess a PIN from a set of
50 PINs with the probability of 2% in the first attempt, and
6% in three attempts.

B. User-dependent mode

In order to study the impact of individual training, we
trained, validated and tested the network with the data collected
from one user. We refer to this mode of analysis as the
user-dependent mode. We asked our user to enter 50 random
PINs, each five times, and repeat the experiment for 5 times
(rounds). The reason we have repeated the experiments is that
the classifier needs to receive enough samples to be able to
train the system. Interestingly, our user used all three different
input methods shown in Figure 2 during the PIN entrance. As
expected, our classifier performs better when it is personalized:
the accuracy increases to 91.42% in the first attempt, and
98.64% and 100% in two and three attempts, respectively.

In the user-dependent mode, convincing the users to pro-
vide the attacker with sufficient data for training customised
classifiers is not easy, but still possible. Approaches similar to
gaming apps such as Math Trainer2 could be applied. Math-
based CAPTCHAs are possible web-based alternatives. Any
other web-based game application which segments the GUI
similar to a numerical keypad will do as well. Nonetheless,
this is out of the scope of this paper since we mainly follow
a user-independent approach.

C. Guessing the PIN from the entire PIN space

One might argue that the attack should be evaluated against
the whole 4-digit PIN space. However, we believe that the
attack could still be practical when selecting from a limited
set of PINs since users do not select their PINs randomly [8].

2play.google.com/store/apps/details?id=com.solirify.mathgame

Attempts User independent User dependent
One 71.57% 80.21%
Two 82.83% 90.24%
Three 92.01% 95.05%

TABLE II. AVERAGE DIGIT IDENTIFICATION RATES IN DIFFERENT
ATTEMPTS.

It has been reported that around 27% of all possible 4-digit
PINs belong to a set of 20 PINs3, including straightforward
ones like ‘1111’, ‘1234’, or ‘2000’. Nevertheless, we present
the results of our analysis of the attack against the entire search
space for both the user-independent and user-dependent modes.

For user-independent mode, we trained another ANN in
order to infer a single digit on the numpad. In this experiment,
we considered 10 classes of the entered digits (0–9) from the
data we collected on 4-digit PINs used in Section III-A. For
user-dependent mode, we trained personalised classifiers for
each user. Unlike the test condition of Section III-B, we did
not have to increase the number of rounds of PIN entry here
since we had enough samples for each digit per user. Hence in
the user-dependent mode in this section, we used the average
of the results of our 5 users. The average identification rates
of different digits are presented in Table II.

The results in our user-independent mode show that it is
possible to correctly infer digits in over 71% of the cases
in the first attempt, going up to 92% in three attempts. This
means that for a 4-digit PIN and based on the obtained sensor
data, the attacker can guess the PIN to be within a set of
34 = 81 possible PINs with a probability of success equal to
0.924 = 71.67%. A random attack, however, can only predict
the 4-digit PIN with the probability of 0.81% in 81 attempts.
By comparison, PINlogger.js achieves a dramatically higher
success rate than a random attacker. Using a similar argument,
in the user-dependent mode the success probability of guessing
the PIN in 81 attempts is 81.62%. In the same setting, Cai and
Chen report a success rate of 65% using accelerometer and gy-
roscope data [2] and Simon and Anderson’s PIN Skimmer only
achieves a 12% success rate in 81 attempts using camera and
microphone [29]. Our results in digit recognition in this paper
are also better than what is achieved in TouchSignatures [22].
In summary, PINlogger.js performs better than all sensor-based
digit-identifier attacks in the literature.

D. Comparison with related work

Obtaining sensitive information about users such as PINs
based on mobile sensors through a malicious app running in
the background has been actively explored by researchers in
the field. For example, GyroPhone, by Michalevsky et al. [23],
shows that gyroscope data is sufficient to identify the speaker
and even parse speech to some extent. Other examples include
Accessory [27] by Owusu et al. and Tapprints [24] by Miluzzo.
They infer passwords on full alphabetical soft keyboards based
on accelerometer measurements. Touchlogger [10] is another
example by Cai and Chen [2] which shows the possibility
of distinguishing user’s input on a mobile numpad by using
accelerometer and gyroscope. The same authors demonstrate
a similar attack in [11] on both numerical and full keyboards.
The only work which relies on in-browser access to sensors to

3datagenetics.com/blog/september32012/
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Featured PIN PIN Keylogging TapLogger [33] Acc. side PINlogger.js
Work Skimming [30] Skimmer [29] by Mic [26] channel [3]
Sensor Light Camera, Mic Mic, Gyr Acc, Ori Acc Motion, Ori
Access type in-app in-app in-app in-app in-app in-browser
Training user- user- user- user- user- user- user-
approach dependent dependent dependent dependent independent independent dependent

Identification rate
First attempt NA NA 94% 40% 18% 82.96% 91.42%
Second attempt 50% 30% NA 75% NA 96.23% 98.64%
Fifth attempt 65% 50% NA 100% 43% 100% 100%

TABLE III. COMPARISON OF PINLOGGER.JS WITH RELATED ATTACKS ON 4-DIGIT PINS.

attack a numpad is our previous work, TouchSignatures [22].
All of these works, however, aim for the individual digits
or characters of a keyboard, rather than the entire PIN or
password.

Another category of works directly target user PINs. For
example, PIN skimmer by Simon and Anderson [29] is an
attack on a user’s numpad and PINs using the camera and
microphone on the smartphone. Spreitzer suggests another PIN
Skimming attack [30] and steals a user’s PIN based on the
measurements from the smartphone’s ambient light sensor.
Narain et al. introduce another attack [26] on smartphone
numerical and alphabetical keyboards and the user’s PINs and
credit card numbers by using the smartphone microphone. Ta-
pLogger by Xu et al. [33] is another attack on the smartphone
numpad which outputs the pressed digits and PINs based on
accelerometer and orientation sensor data. Similarly, Aviv et
al. introduce an accelerometer-based side channel attack on
the user’s PINs and patterns in [3]. We choose to compare
PINlogger.js with the works in this category since they have
the same goal of revealing the user’s PINs. Table III presents
the results of our comparison.

As shown in Table III, PINlogger.js is the only attack on
PINs which acquires the sensor data via JavaScript code. In-
browser JavaScript-based attacks impose even more security
threats to users since unlike in-app attacks, they do not require
any app installation and user permission to work. Moreover, the
attacker does not need to develop different apps for different
platforms such as Android, iOs, and Windows. Once the
attacker develops the JavaScript code, it can be deployed to
attack all mobile devices regardless of the platform. Moreover,
Touchlogger.js and [3] are the only user-independent works. By
contrast, the results form other works are based on training the
classifiers for individual users. In other words, they assume the
attacker is able to collect input training data from the victim
user before launching the PIN attack. We do not have such
an assumption as the training data is obtained from all users
in the experiment. In terms of accuracy, with the exception
of [26], PINlogger.js generally outperforms other works with
an identification rate of 82.96% in the first try, and 96.23%
and 100% in the second and fifth attempts, respectively. This
is a significant success rate (despite that the sampling rate in-
browser is much lower than that available in-app) and confirms
that the described attack imposes a serious threat to the users’
security and privacy.

IV. WHY DOES THIS VULNERABILITY EXIST?

Although reports of side channel attacks based on the in-
browser access to mobile sensors via JavaScript are relatively
recent, similar attacks via in-app access to mobile sensors have
been known for years. Yet the problem has not been fixed.

We believe a contributing factor is that users seem to be less
familiar with the relatively newer (and less advertised) sensors
such as motion and orientation, as opposed to their immediate
familiarity with well-established sensors such as camera and
GPS. For example, a user has asked this question on a mobile
forum: “... What benefits do having a gyroscope, accelerome-
ter, proximity sensor, digital compass, and barometer offer the
user? I understand it has to do with the phone orientation but
am unclear in their benefits. Any explanation would be great!
Thanks!”4.

We design and conduct user studies in this work in order
to investigate to what extent are these sensors and their risks
known to the users.

A. List of mobile sensors

We prepared a list of different mobile sensors by inspecting
the official websites of the latest iOS and Android products,
and the specifications that W3C and Android provide for
developers. We also added some extra sensors as common
sensing mobile hardware which are not covered before.

• iPhone 65: Touch ID, Barometer, Three-axis gyro, Ac-
celerometer, Proximity sensor, Ambient light sensor.

• Nexus 6P6: Fingerprint sensor, Accelerometer, Gy-
roscope, Barometer, Proximity sensor, Ambient light
sensor, Hall sensor, Android Sensor hub.

• Android [16]: Accelerometer, Ambient temperature,
Gravity (software or hardware), Gyroscope, Light,
Linear Acceleration (software or hardware), Magnetic
Field, Orientation (software), Pressure, proximity, Rel-
ative humidity, Rotation vector (Software or Hard-
ware), Temperature.

• W3C7 [1]: Device orientation (software), Device mo-
tion (software), Ambient light, Proximity, Ambient
temperature, Humidity, Atmospheric Pressure.

• Extra sensors (Common sensing hardware): Wireless
technologies (WiFi, Bluetooth, NFC), Camera, Micro-
phone, Touch screen, GPS.

Unless specified otherwise, all the listed sensors are hard-
ware sensors. We added the last category of the sensors to this
list since they indeed sense the device’s surrounding although
in different ways. However, they are neither counted as sensors

4forums.androidcentral.com/verizon-galaxy-nexus/171482-barometer-
accelerometer-how-they-useful.html

5apple.com/uk/iphone-6/specs/
6store.google.com/product/nexus 6p
7w3.org/2009/dap/
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in mobile product descriptions, nor in technical specifications.
These sensors are often categorised as OS resources [31], and
hence different security policies apply to them.

B. User study

We prepared a list of sensors based on the above. We asked
volunteer participants to rate the level of their familiarity with
each sensor. In all of our studies, we had 30 participants (13
self-identified as male and 17 as female) recruited from the
university and local community through social and vocational
networks, from 18 to 59 years old, with a median age of
31. Except one, none of the participants were studying or
working in the field of computer security. Our university
participants were from multiple degree programs and levels,
and the remaining participants worked in a different range
of fields. Moreover, our participants owned a wide range of
mobile devices, and had been using a smartphone/tablet for
6 years on average (from 0 to 11 years). We interviewed our
participants at a university office and gave each an Amazon
voucher (worth £10) at the end for their participation. Details
of the interview template can be found in the Appendix.

For a list of 25 different sensors, we used a five-point scale
self-rated familiarity questionnaire as used in [19]: “I’ve never
heard of this”, “I’ve heard of this, but I don’t know what this
is”, “I know what this is, but I don’t know how this works”, “I
know generally how this works”, and “I know very well how
this works”. The list of sensors was randomly ordered for each
user to minimize bias. In addition, we needed to observe the
experiments to make sure users were answering the questions
based on their own knowledge in order to avoid the effect of
processed answers. Full descriptions of all studies are provided
in the Appendix. Fig. 3 summarizes the results of this study.

Our participants were generally surprised to hear about
some sensors and impressed by the variety. As one may expect,
newer sensors tend to be less known to the users in comparison
to older ones. In particular, our participants were generally not
familiar with ambient sensors. Also low-level hardware sensors
such as accelerometer and gyroscope, seem to be less known
to the users in comparison with high-level software ones such
as motion, orientation, and rotation. We suspect that this is
partly due to the fact that the high-level sensors are named
after their functionalities and can be more immediately related
to user activities.

We also noticed that a few of the participants knew some of
the low-level sensors by name but they could not link them to
their functionality. For example, one of our participants which
knew almost all of the listed sensors (except hall sensor and
sensor hub) stated that: “When I want to buy a mobile [phone],
I do a lot of search, that is why I have heard of all of these
sensors. But, I know that I do not use them (like accelerometer
and gyroscope)”.

On the other hand, as the functionalities of mobile devices
grow, vendors quite naturally turn to promote the software
capabilities of their products, instead of introducing the hard-
ware. For example, many mobile devices are recognised for
their gesture recognition features by the users, however the
same users might not know how these devices provide such a
feature. For instance, one of the participants commented on a

feature on her smartphone called “Smart Stay”8 as follows: “I
have another sensor on my phone: Smart Stay. I know how it
works, but I don’t know which sensors it uses”.

V. RISK PERCEPTION OF MOBILE SENSORS

In this section, we study the participants’ risk perception
of mobile sensors. There have been several studies on risk
perception addressing different aspects of mobile technol-
ogy. Some works discuss the risks that users perceive on
smartphone authentication methods such as PINs and patterns
[17], TouchID and Android face unlock [14], and implicit
authentication [20]. Other works focus on the privacy risks of
certain sensors such as GPS [4]. In [28], Raji et al. show users’
concerns (on disclosure of selected behaviours and contexts)
about a specific sensor-enabled device called AutoSense9. To
the best of our knowledge, the research presented in this
paper is the first that studies the user risk perception for a
comprehensive list of mobile sensors (25 in total). We limit
our study to the level of perceived risks users associate with
their PINs being discovered by each sensor. The reasons we
chose PINs are that first, finding one’s PIN is a clear and
intuitive security risk, and second, we can put the perceived
risk levels in context with respect to the actual risk levels for
a number of sensors as described in Table III.

A. Methodology

For this study, we interviewed the same group of users
from Section IV-B in two phases. In phase one, we gave the
same sensor list (randomized for each user). We asked users to
rate the level of risk they perceive for each sensor in regards to
revealing their PINs. We described a specific scenario in which
a game app which has access to all these sensors is open in the
background and the user is working on his online banking app,
entering a PIN. We used a self-rated questionnaire with five-
point scale answers following the same terminology as used
in [28]: “Not concerned”, “A little concerned”, “Moderately
concerned”, “Concerned”, and “Extremely concerned”. During
this phase, we asked the users to rely on the information that
they already had about each sensor (see the Appendix for
details).

In the second phase, first we provided the participants with
a short description of each sensor and let them know that
they can ask further questions until they feel confident that
they understand the functionality of all sensors. Afterwards,
we asked the participants to fill in another copy of the same
questionnaire on risk perceptions (details in the Appendix).
The results are presented in Fig. 4.

B. Intuitive risk perception

We make the following observations from the results of the
experiment.

Touch Screen. Although our participants rated touch
screen as one of the most risky sensors in relation to a
PIN discovery scenario, still about half of our participants
were either moderately concerned, a little concerned, or not

8samsung.com/us/support/answer/ANS00035658/234302/SCH-
R950TSAUSC

9sites.google.com/site/autosenseproject/
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Fig. 3. Level of self-declared knowledge about different mobile sensors. Question: “To what extent do you know each sensor on a mobile device?” Sensors
are ordered based on the aggregate percentage of participants declaring they know generally or very well how each sensor works. This aggregate percentage is
shown on the right hand side.

concerned at all. Through our conversations with the users, we
received some interesting comments, e.g., “Why any of these
sensors should be dangerous on an app while I have officially
installed it from a legal place such as Google Play?”, and “As
long as the app with these sensors is in the background, I have
no concern at all”. It seems that a more general risk model in
relation to mobile devices is affecting the users’ perception in
regard to the presented PIN discovery threat. This fact can be
a topic of research on its own, and is out of the scope of this
paper.

Communicational Sensors. One category of the sensors
which users are relatively more concerned about includes
WiFi, Bluetooth and NFC. For example one of the partic-
ipants commented that: “I am not concerned with physical
[motion, orientation, accelerometer, etc.]/ environmental [light,
pressure, etc.] sensors, but network ones. Hackers might be
able to transfer my information and PIN”. This comment is
understandable since we asked them to what extent they were
concerned about each sensor in regard to the PIN discovery.

Identity-related Sensors. Another category which has

been rated more risky than others contains those sensors
which can capture something related to the user’s identity i.e.
fingerprint, TouchID, GPS, camera, and microphone. Despite
that we described a PIN-related scenario, our participants were
still concerned about these sensors. This was also pointed out
by a few participants through the comments. For example
a user stated: “..., however, GPS might reveal the location
along with the user input PIN that has a risk to reveal who
(and where) that PIN belongs to. Also the fingerprint/TouchID
might recognize and record the biometrics with the user’s
PIN”. Some of these sensors such as GPS, fingerprint, and
TouchID, however, can not cause the disclosure of PINs on
their own. Hence, the concern does not entirely match the
actual risk. Similar to the discussion on touch screen, we
believe that a more general risk model on mobile technology
influences the users to perceive risk on specific threats such as
the one we presented to them.

Environmental Sensors. The level of concern on ambient
sensors (humidity, light, pressure, and temperature) is generally
low and stays low after the users are provided with the
description of the sensors (see Fig. 4). In many cases, our

7



Fig. 4. Users’ perceived risk for different mobile sensors, before (top bars) and after (bottom bars) being presented with descriptions of sensors. Question: “To
what extent are you concerned about each sensor’s risk to your PIN?”. Sensors are ordered based on the aggregate percentage of participants declaring they are
either concerned or extremely concerned about each sensor before seeing the descriptions. This aggregate percentage is the first value presented on the right
hand side.

users expressed that they were concerned about these sensors
simply because they did not know them: “[now that I know
these sensors,] I am quite certain that movement/environmental
sensors would not affect the security of personal id/passwords
etc.”. In fact, researchers have reported that it is possible to
infer the user’s PIN using the ambient light sensor data [30],
although, to our knowledge, exploits of other environmental
sensors have not been reported in the literature.

Movement Sensors. On the sensors related to the move-
ment and the position of the phone (accelerometer, gyroscope,
motion, orientation, and rotation), the users display varying

levels of the risk perceptions. In some cases they are slightly
more concerned, but in others they are less concerned once
they know the functionality. Some of our users stated that since
they did not know these sensors, they were not concerned at
all, but others were more concerned when they were faced with
new sensors. Overall, knowing, or not knowing these sensors
has not affected the perceived risk level significantly, and they
were rated generally low in both cases.

Motion and Orientation Sensors. The sensors which we
used in our attack, namely orientation, rotation, and motion,
have not been generally scored high for their risk in revealing
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PINs. Users do not seem to be able to relate the risk of these
sensors to the disclosure of their PINs, despite that they seem
to have an average general understanding about how they work.
On hardware sensors such as accelerometer and gyroscope,
the risk perception seems to be even lower. A few comments
include: “In my everyday life, I don’t even think about these
[movement] sensors and their security. There is nothing on the
news about their risk”, and “I have never been thinking about
these [movement] sensors and I have not heard about their
risk”. On the other hand, some of the participants expressed
more concerns for sensors that they were familiar with, as one
wrote, “You always hear about privacy stuff for example on
Facebook when you put your location or pictures”. Similarly, it
seems that having a previous risk model is a factor that might
explain the correlation between the user’s knowledge and their
perceived risk.

C. General knowledge versus risk perception

Figs. 3 and 4 suggest that there may be a correlation be-
tween the relative level of knowledge users have about sensors
and the relative level of risk they perceive from them. We limit
our attention to users’ knowledge before being presented with
sensor descriptions. We confirm our observation of correlation
using Spearman’s rank-order correlation measure.

Spearman’s correlation between the comparative knowl-
edge (median: “I know what this is, but I don’t know how this
works”, IQR: “I’ve never heard of this” – “I know very well
how this works”) and the perceived risk about different sensors
(median: “Not concerned”, IQR: “Not concerned” – “A little
concerned”) was r = 0.61 (p < 0.05). This result supports that
the more the users know about these sensors, the more concern
they express about the risk of the sensors revealing PINs.
We acknowledge that other methods of ranking the results,
e.g. using median, produce slightly different final rankings.
However, given the high confidence level of the above test,
we expect the correlation to be supported if other methods of
ranking are used.

Assuming that customer demand drives better security
designs, the above correlation may explain why sensors that are
newer to the market have not been considered as OS resources
and consequently have not been subject to similar strict access
control policies.

D. Perceived risk vs the actual risk

We are specifically interested in the users’ relative risk
perception of sensors in revealing their PINs in comparison
to the actual relative risk level of these sensors. We list the
results reported in the literature in Table III for the following
sensors: light, camera, microphone, gyroscope, motion, and
orientation. Fig. 4 shows that users generally have expressed
more concern about sensors such as camera and microphone
than accelerometer, gyroscope, orientation, and motion. This
does not match the actual risk levels since the latter sensors
allow PIN recovery with higher accuracy as we have shown
in Section III. When asked after filling the questionnaire, most
participants could not come up with realistic attack scenarios
using camera and microphone. For microphone, some users
thought they might say the PIN out loud. For camera, a few
of our participants thought face recognition might be used to

recover the PIN, hence they rated camera’s risk to their PINs
high. One user thought the camera might capture the reflection
of the entered PIN in her glasses.

Among our participants, one mentioned but described
doubt about motion, orientation, accelerometer, and gyroscope
being able to record the shakes of the mobile phone while
entering a PIN after they saw the sensor descriptions: “I feel
those positional sensors might be able to reveal something
about my activities, for example if I open my banking app
or enter my PIN. But it is extremely hard for different
users, and when working with different hands and positions”.
This participant expressed only “a little concern” about them,
stating that: “..., and by little concern, I mean extremely little
concern”. One of our participants was completely familiar with
these attacks and in fact had read some related papers. This
user was “extremely concerned”. Other users who rated these
sensors risky in general, said they were generally concerned
about different sensors. One commented: “I can not think of
any particular situation in which these sensors can steal my
PIN, but the hackers can do everything these days.”

VI. POSSIBLE SOLUTIONS

In this section, we discuss the current academic and indus-
trial countermeasures to mitigate sensor-based attacks.

A. Academic approach

Different solutions to address the in-app access attacks have
been suggested in the literature: e.g., restricting the sensor
to one app, reducing the sampling rate, temporal pause of
the sensor on sensitive entries such as keyboard, rearranging
keyboard for password entrance, asking for explicit permission
from the user, ranking apps based on their similarities to
malware, and obfuscating anomalies in sensor data [26], [3],
[30], [33], [29], [23], [24], [27], [13], [6]. However, after
many years of research on showing the serious security risks
of sensors such as accelerometer and gyroscope, none of the
major mobile platforms have revised their in-app access policy.

We believe that the risks of unmanaged sensors on mobile
phones, specially through JavaScript code, are not known very
well yet. More specifically, many OS/app level solutions such
as asking for permissions at the installation time, or malware
detection approaches would not work in the context of a web
attack. In our previous work [22], we suggested to apply the
same security policies as those for camera, microphone, and
GPS for the motion and orientation sensors. Our suggestion
was to set a multi-layer access control system on the OS and
browser levels. However, the usability and effectiveness of this
solution are arguable. First, asking too many permissions from
the user for different sensors might not be usable. Furthermore,
for some basic use cases such as gesture recognition to clear a
web form, or adjusting the screen from portrait to landscape,
it might not make sense to ask for user permission for every
website. Second, with the increase of the number of sensors
accessible through mobile browsers, this approach might not be
effective due to the classic problem of sidestepping the security
procedure by users when it is too much of a burden [9]. As
stated by one of our participants: “I don’t mind these sensors
being risky anyway. I don’t even review the permission list. I
have no other choice to be able to use the app”. Moreover,
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as we have shown in Section IV, users generally do not
understand the implications of these sensors on discovering
their PINs for example, even though they know how these
sensors work. Hence, such an approach might not be effective
in practice.

B. Industrial approach

W3C Device Orientation Event Specification. There is no
Security and Privacy section in the latest official W3C Working
Draft Document on Device Orientation Event [1]. However,
at the time of writing this paper, a new version of the W3C
specification is being drafted, which includes a new section
on security and privacy issues related to mobile sensors10, as
suggested by us in [22]. The authors working on the revision of
the W3C specification point out the problem of fingerprinting
mobile devices [7], and touch action recovery [22] through
these sensors, and suggest the following mitigations:

• “Do not fire events when the page where they were
registered on is not visible or has been backgrounded.”

• “Fire events only on the top-level browsing context or
same-origin nested iframes.”

• “Limit the frequency of events (typically 60 Hz seems
to be sufficient).”

We believe that these measures may be too restrictive in
blocking useful functionalities. For example, imagine a user
consciously running a web program in the browser to monitor
his daily physical activities such as walking and running. This
program needs to continue to have access to the motion and
orientation sensor data when the user is working on another
tab or minimizes the browser. One might argue that such a
program should be available as an app instead, hence the use
case is not valid. However, it is expected that the boundary
between installed apps and embedded JavaScript programs in
the browser will gradually diminish [12].

Mobile browsers. As we showed in [22], browsers and
mobile operating systems behave differently on providing ac-
cess to sensors. Some allow access only on the active webpage
and any embedded iframes (although with different origins),
some allow access to other tabs, when browser is minimized, or
even when the phone is locked. Hence, there is not a consistent
approach across all browsers and mobile platforms. Reducing
the frequency rate has been applied to all well-known browsers
at the moment [22]. For instance, Chrome reduced the sensor
readings from 200 Hz to 60 Hz due to security concerns11.
However, our attack shows that security risks are still present
even at lower frequencies. iOS and Android limit the maximum
frequency rate of some sensors such as Gyroscope to 100 Hz
and 200 Hz, respectively. It is expected that these frequencies
will increase on mobile OSs in the near future and in-browser
access is no exception. In fact, current mobile gyroscopes
support much higher sampling frequencies, e.g., up to 800 Hz
by STMicroelectronics (on Apple products), and up to 8000 Hz
by InvenSense (on the Google Nexus range) [23]. With higher
frequencies available, attacks such as ours can perform better
in the future if adequate security countermeasures are not
applied.

10w3c.github.io/deviceorientation/spec-source-orientation.html
11bugs.chromium.org/p/chromium/issues/detail?id=421691

Following our report of the issue to Mozilla, starting from
version 46 (released in April 2016), Firefox restricts JavaScript
access to motion and orientation sensors to only top-level doc-
uments and same-origin iframes12. In the latest Apple Security
Updates for iOS 9.3 (released in March 2016), Safari took a
similar countermeasure by “suspending the availability of this
[motion and orientation] data when the web view is hidden”13.
However, we believe the implemented countermeasures should
only serve as a temporary fix rather than the ultimate solution.
In particular, we are concerned that it has the drawback of
prohibiting potentially useful web applications in the future.
For example, a web page running a fitness program has a
legitimate reason to access the motion sensors even when the
web page view is hidden. However, this is no longer possible
in the new versions of Firefox and Safari. Our concern is
confirmed by members in the Google Chromium team14, who
also believe that the issue remains unresolved.

VII. FURTHER DISCUSSION AND LIMITATIONS OF OUR
WORK

As mentioned earlier, many of the suggested academic
solutions either have not been applied by the industry as a
practical solution, or have failed. Given the results in our user
studies, designing a practical solution for this problem does
not seem to be straightforward. A combination of different
approaches might help researchers devise a usable and secure
solution. Having control on granting access before opening
a website and during working with it, in combination with
a smart notification feature on the browser would probably
achieve a balance between security and usability. Users should
also have control on reviewing, updating and deleting these
data, if stored by the website or shared with a third party
afterwards. Solutions such as Taintroid [15], a tracking app
for monitoring sources of sensitive data on a mobile which
has been applied for GPS in [4] could be helpful. After all, it
seems that an extensive study is required toward designing a
permission framework which is usable and secure at the same
time. Such research is a very important usable security and
privacy topic to be explored further in the future.

We consider this work a pilot study that explores user
risk perception on a comprehensive list of mobile sensors. We
envisage the following future work to address these limitations
and expand this work:

• More Participants: We performed our user studies on
a set of users who were recruited from a wide range
of backgrounds. Yet the number of the participants
is limited. A larger set of participants will improve
the confidence in the results. With a large and diverse
set of participants, we can also study the effect of
demographic factors on perceived risk.

• Other Risks: We studied the perceived risk on PINs
as a serious and immediate risk to users’ security.
The study can be expanded by studying users’ risk
perception on other issues such as attackers discover-
ing phone call timing, physical activities, or shopping
habits.

12mozilla.org/en-US/security/advisories/mfsa2016-43/
13support.apple.com/en-gb/HT206166
14bugs.chromium.org/p/chromium/issues/detail?id=523320
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• Other Types of Access: When interviewing our partic-
ipants, we presented them with a scenario involving a
game app which is installed on their smartphone. This
only covers the in-app access to sensors. However,
people might express different risk levels for other
types of access, e.g., in-browser access. This needs
further investigation.

• Issues with Training Users. We decided to provide our
participants with a short description of each sensor’s
functionality (details in the Appendix, part 3). Further-
more, the participants were given the chance to ask as
many questions as they wanted to fully understand
the functionality of each sensor. This might not be
the most effective way to inform users about sensors
since some descriptions might seem too technical (and
hence not fully understandable) to some users. How
to inform users in an effective way is a complex
topic of research which can be explored in the future.
Besides, we used the same set of participants to
generally compare the level of perceived risk before
and after seeing sensor descriptions. An alternative
approach is to use a different set of participants, i.e.,
to follow a between-subjects approach instead of a
within-subjects one, which would have less bias if
carefully designed. However, in order to get mean-
ingful results, the between-subjects approach would
require recruiting a larger number of participants.

VIII. CONCLUSION

In this paper, we introduced PINlogger.js, a web-based
program which reveals users’ PINs by recording the mobile
device’s orientation and motion sensor data through JavaScript
code. We also showed that users do not generally perceive
a high risk about such sensors being able to steal their
PINs. We discussed the complexity of designing a usable
and secure solution to prevent the proposed attacks. Access
to mobile sensor data via JavaScript is limited to only a
few sensors at the moment. This will probably expand in
the future, considering for instance the ongoing development
of JavaScript-based operating systems such as Firefox OS15.
Hence, designing a general mechanism for secure and usable
sensor data management remains a crucial open problem for
future research.
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APPENDIX

Interview Script

Hi. Thanks very much for contributing to our study. In
this interview, we will ask you to fill in a few questionnaires
about mobile sensors such as GPS, camera, light, motion and
orientation. You are encouraged to think out loud as you
go through, and please feel free to provide any comments
during the interview. There is no right or wrong answer,
and our purpose is to evaluate the mobile sensors, not you.
Everything about this interview is anonymous. Please provide
some information about yourself in Table IV.

Age
Gender
Profession/ background (optional)
1st language (optional)
Mobile device
Duration of owning a smartphone/tablet

TABLE IV. DEMOGRAPHY

PART ONE

A list of multiple mobile sensors is presented below. To
what extent do you know each sensor on a mobile device?
Please rate them in the table (Table V was used).

PART TWO

Imagine that you own a smartphone which is equipped with
all these sensors. Consider this scenario: you have opened a
game app which can have access to all mobile sensors. You
leave the game app open in the background, and open your
banking app which requires you to enter your PIN.

Do you think any of these sensors can help the game app
discover your entered PIN? To what extent are you concerned
about each sensor’s risk to your PIN? Please rate them in the
table (Table VI was used). In this section, please only rely on
the knowledge you already have about the sensors, and if you
do not know some of them, describe your feeling of security
about them.

PART THREE

Let us explain each sensor here:

• GPS: identifies the real-world geographic location.

• Camera, Microphone: capture pictures/videos and
voice, respectively.

• Fingerprint, TouchID: scans the fingerprint.

• Touch Screen: enables the user to interact directly with
the display by physically touching it.

• WiFi: is a wireless technology that allows the device
to connect to a network.

• Bluetooth: is a wireless technology for exchanging
data over short distances.

• NFC (Near Filed Communication): is a wireless tech-
nology for exchanging data over shorter distances (less
than 10 cm) for purposes such as contacless payment.

• Proximity: measures the distance of objects from the
touch screen.

• Ambient Light: measures the light level in the envi-
ronment of the device.

• Ambient Pressure (Barometer), Ambient Humidity,
and Ambient Temperature: measure the air pressure,
humidity, and temperature in the environment of the
device, respectively.

• Device Temperature: measures the temperature of the
device.

• Gravity: measures the force of gravity.
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• Magnetic Field: reports the ambient magnetic field
intensity around the device.

• Hall sensor: produces voltage based on the magnetic
field.

• Accelerometer: measures the acceleration of the de-
vice movement or vibration.

• Rotation: reports how much and in what direction the
device is rotated.

• Gyroscope: estimates the rotation rate of the device.

• Motion: measures the acceleration and the rotation of
the device.

• Orientation: reports the physical angle that the device
is held in.

• Sensor Hub: is an activity recognition sensor and its
purpose is to monitor the device’s movement.

Please feel free to ask us about any of these sensors for more
information.

Now that you have more knowledge about the sensors, let
us describe the same scenario here again. Imagine that you own
a smartphone which is equipped with all these sensors. You
have opened a game app which can have access to all mobile
sensors. You leave the game app open in the background, and
open your banking app which requires you to enter your PIN.

Do you think any of these sensors can help the game app to
discover your entered PIN? To what extent are you concerned
about each sensor’s risk to your PIN? Please rate them in the
table (Table VI was used). In this part, please make sure that
you know the functionality of all the sensors. If you are unsure,
please have another look at the descriptions, or ask us about
them.

Thanks very much for taking part in this study. Please leave
any extra comment here.

An Amazon voucher and a business card are in this
envelope. Please contact us if you have any questions about
this interview, or are interested in the results of this study.
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Sensor I’ve never I’ve heard I know what I know I know
heard of this of this but this is but generally how very well how

I don’t know I don’t know this works this works
what this is how this works

Bluetooth
Gyroscope
GPS
Sensor Hub
Ambient Temperature
Accelerometer
Magnetic Field
Motion
Fingerprint
Orientation
Proximity
Ambient Pressure
Hall Sensor
Rotation
Touch Screen
Camera
TouchID
Barometer
Gravity
Microphone
Ambient Humidity
WiFi
Ambient Light
NFC
Device Temperature

TABLE V. THIS FORM WAS USED FOR PART ONE

Risk to PIN
Not A little Moderately Extremely

Sensor Concerned Concerned Concerned Concerned Concerned
Bluetooth
Gyroscope
GPS
Sensor Hub
Ambient Temperature
Accelerometer
Magnetic Field
Motion
Fingerprint
Orientation
Proximity
Ambient Pressure
Hall Sensor
Rotation
Touch Screen
Camera
TouchID
Barometer
Gravity
Microphone
Ambient Humidity
WiFi
Ambient Light
NFC
Device Temperature

TABLE VI. THIS FORM WAS USED FOR PARTS TWO AND THREE
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