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if “smoke is detected” then “turn off my oven” 

Integrates with 500+ 
services (IoT & non-IoT) 

54 million trigger-action 
rules, 11 million users 
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If IFTTT is Compromised, Then… 

•  Attackers can steal OAuth tokens to execute actions at will, independently of user rules 
•  If those OAuth tokens are overprivileged, the threat is made worse 
•  We studied popular channels (IoT and non-IoT), and found instances of 

overprivilege 

Trigger-Action	Platform	



With Overprivileged OAuth Tokens,  
Attackers Can… 

• Reprogram Particle Chips with Custom Firmware 
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https://api.particle.io/v1/devices/device-id 

• Delete Files on Google Drive 
https://www.googleapis.com/drive/v3/files/file-id 

•  Turn Devices On/Off Arbitrarily in a Connected Home 

https://api.myfox.me:443/v2/site/site-id/device/dev-id/socket/on or /off 

These operations aren’t available as triggers or actions 



 
 

How can we guarantee that  
actions are executed according to user rules 

in an untrusted trigger-action platform? 



Could We Try… 

•  Short-lived OAuth tokens? 
•  Token lifetime is very small, requiring many refresh calls 
•  Upon compromise, immediately invalidate 
•  BUT, detection is never timely (Equifax, SEC, …) 

• Rule Analytics/Anomaly Det? 
•  After-the-fact, damage is done 
•  Does not address root cause 

•  Fully Decentralized Platform? 
•  No high-availability, reliability 

•  Finely-Grained Tokens? 
•  Usability problems 

 



Challenges	 Solutions	

Finely-grained	tokens	
•  E.g.,	token	only	for	oven.off()	
•  Problem:	attackers	can	still	misuse	

	

Verifiable	Triggers	=>	Rule	Specific	Tokens	
•  E.g.,	can	invoke	oven.off	ONLY	IF	

holder	of	token	can	prove	that	trigger	
occurred	

Trigger-action	platform	is	untrusted	
•  Cannot	depend	on	it	to	do	

verification	

Modified	workflow:	Trusted	clients	setup	
rules,	Online	services	do	verification	
	

Usability	is	hurt	with	fine-grained	tokens	
	

XToken	(transfer	token):	mint	a	rule-specific	
token	non-interactively	

Untrusted	trigger-action	platform	can	
modify	data	as	it	passes	through	

Integrity	guarantees	with	signatures	
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Create recipes, connect channels, etc. 

OAuth,  Recipe Execution, etc. 

High-powered, long-lived 
OAuth tokens in here.  

Can be stolen! 

Upload recipes 

Recipe Execution w/    Rule-Specific Tokens 

Trusted Clients 
store XTokens 

OAuth OAuth 

Only rule-specific 
tokens live here! 

Trigger-Action	
Platform	
Cloud	Service	

Trigger-Action	
Platform	
Cloud	Service	



Creating a Rule with DTAP 
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Trusted Client Untrusted 
DTAP Cloud 

Trigger Service Action Service 

OAuth Transaction, scope=XToken 

OAuth Transaction, scope=XToken 
Trigger XToken 

Action XToken 

Request Trigger Token for 
“setupAlert” with Trigger XToken 

Trigger Token, T-X509 

Request Action Token -- Action    XToken, Action Name (ovenOff), 
Params (None), Trigger Name         (smokeDet),  UID, T-X509] 

Action Token 

Channel  
Connection 

Trigger 
Setup 

Action 
Setup 

Trigger Token 

Action Token 



Invoking Actions Requires Proof  
of Trigger Occurrence 
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Untrusted 
DTAP Cloud Trigger Service Action Service 

setupAlert(Trigger Token) 

TriggerBlob 

ovenOff(TriggerBlob, Action Token) 

Time TTL Trigger Name Trigger Data 

12:53:34 UTC 60s smokeDet CO = 200ppm 

Signed using Trigger Service Private Key 

ABC123 

UID 



Verification Procedure 

Time TTL Trigger Name Trigger Data 

12:53:34 UTC 60s smokeDet CO = 200ppm 

Signed using Trigger Service Private Key 

ABC123 

UID 

•  Ensure that the passed ActionToken exists 
•  Verify signature on trigger blob 

•  Ensure Time stamp has increased 
•  Verify TTL is valid 
•  Check that TriggerBlob.TriggerName == ActionToken.TriggerName 
•  Verify that the UID is for the current user 

•  Verify that the API call being made by DTAP cloud is the same as that during ActionToken 
creation 

•  Verify that function parameters match those that the trusted client gave to the action service 
during rule setup 



Performance Evaluation 
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If new_item == ‘buy soap’ is added to MyToDoList  

Then send_email(new_item) 

Transmission Overhead 

Setup 

-  Representative of a typical trigger-action 
rule 

-  Contains a condition on trigger data 
-  Contains transfer of data from trigger 

service to action service 

Implemented as drop-in OAuth library 



Performance Evaluation 
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If new_item == ‘buy soap’ is added to MyToDoList Then send_email(new_item) 

End-to-End Latency 

Throughput	 DTAP	 IFTTT	

Requests	per	
second	

94.03	
(SD=8.48)	

96.46	
(SD=5.74)	

10,000 Trigger Activations with upto 
2000 concurrent requests using 

ApacheBench 



Summary 
•  Emerging trigger-action platforms support stitching together various online 

services, including cyber-physical devices 
•  BUT, if they are compromised (as is common with web apps), attackers can misuse 

OAuth tokens for a large number of users 

• We introduced Decentralized Action Integrity 
•  Rule-specific OAuth tokens with decentralized verifiable triggers 
•  Uses the XTOKEN, a way to gain the power of fine-grained tokens without losing the 

usability benefits of coarse-grained tokens 
•  Minimal performance impact & backwards-compatible with OAuth 

• Clean-slate trigger-action platform design with strong integrity guarantees; 
first step towards removing trust from the cloud component for IoT 
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Macaroons 

•  Our	work	introduces	decentralized	action	integrity	as	a	principle	
•  Our	protocol	is	one	way	to	enforce	this	principle	
•  It	is	backwards-compatible	with	Oauth	
•  Does	not	require	code	changes	in	the	cloud	service	of	TAP	

• Macaroon	third-party	caveats	+	discharges	can	be	used	to	implement	
decentralized	action	integrity	---	but	this	still	requires	our	decentralized	
platform	architecture	with	Trusted	Clients!	
• Macaroons	require	a	domain-specific	language	to	implement	caveats	

•  For	a	trigger-action	platform	setting,	this	would	require	a	different	DSL	for	every	
service,	because	when	discharging	a	macaroon	for	a	third-party	caveat	(to	obtain	a	
verifiable	trigger),	each	predicate	is	specific	to	the	third-party	online	service.	DTAP	
does	not	have	this	requirement,	and	is	independent	of	the	semantics	of	the	online	
service	APIs	



Why should you trust the client? 

• Developer	(client)	!=	Developer	(trigger-action	platform)	
•  E.g.,	SSH,	FTP,	Telnet	

•  Few	good	apps	emerge	in	app	market	models	
•  E.g.,	JuiceSSH,	etc.	

• DTAP	protocol	is	open;	designed	to	be	implemented	by	anyone	

•  Trigger-action	platform	cloud	service	provides	rule	execution	at	scale	



Finely-Grained Tokens Can Hurt Usability 

1. I want to connect my 
oven 

2. I want a token so that I 
can control the oven 

3. IFTTT wants to control 
your oven, do you agree? 

4. OK, IFTTT can access 
my oven 

5. Here is a nice overprivileged 
bearer token 

ONCE per channel 
Turn off 

Turn off 

Turn off 

Turn off 

rule-specific 

ONCE per new 
recipe 

We introduce XTokens (transfer tokens) 
Mint a rule-specific token non-interactively 

Does not increase the number of OAuth permission prompts  



Measuring Channel-Online-Service 
Overprivilege in IFTTT 
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Many	Private	APIs	

69/128	online	services	
have	public	APIs	

Opaque	OAuth	scopes	

107/128	

Channel	connection	issues	

128/297	connected	

Capture	OAuth	tokens	of	the	same	scope	as	that	of	IFTTT,	and	then	
exhaustively	test	online	service	APIs	

Online	Service	OAuth	

Server-to-Server	Communication	

GET	http://service1.com/?arg_a=1	

POST	http://service2.com	BODY	
arg_a	=	1	

Inconsistent	API	Forms	 Input	args	are	very	diverse	

String,	Integer,	Custom	
JSON,	…	



75% of studied IFTTT Channels are 
Overprivileged 
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•  16 IoT  and 8 Non-IoT channels studied; 18/24 overprivileged 
•  Covered 80.4% (46, 354/57, 632) of all recipes involved in 69 measurable channels 

AP
I	



Lessons from IFTTT Analysis 

• Channel	Abstraction:	good	balance	in	usability-security	tradeoff	
•  But,	leads	to	highly-privileged	tokens	inside	IFTTT’s	infrastructure	
	

• Highly-privileged	tokens	==	Long-term	security	risk	
•  Bearer	tokens	are	known	to	be	vulnerable	to	compromise	
•  E.g.,	4	channels	vulnerable	to	open-redirector	attack,	22	vulnerable	to	
downgrade-only	attack	

• Overprivileged	tokens	==	really	bad	idea	
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