
Decentralized Action Integrity
for Trigger-Action IoT Platforms

Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, Atul Prakash

Creates an account Creates an account

Trigger-Action	Platform	

Creates an account

Connects LG
account to platform

Connects Nest
account to platform

if “smoke is detected” then “turn off my oven”

Integrates with 500+
services (IoT & non-IoT)

54 million trigger-action
rules, 11 million users

3

If IFTTT is Compromised, Then…

•  Attackers can steal OAuth tokens to execute actions at will, independently of user rules
•  If those OAuth tokens are overprivileged, the threat is made worse
•  We studied popular channels (IoT and non-IoT), and found instances of

overprivilege

Trigger-Action	Platform	

With Overprivileged OAuth Tokens,
Attackers Can…

• Reprogram Particle Chips with Custom Firmware

4

https://api.particle.io/v1/devices/device-id

• Delete Files on Google Drive
https://www.googleapis.com/drive/v3/files/file-id

•  Turn Devices On/Off Arbitrarily in a Connected Home

https://api.myfox.me:443/v2/site/site-id/device/dev-id/socket/on or /off

These operations aren’t available as triggers or actions

How can we guarantee that
actions are executed according to user rules

in an untrusted trigger-action platform?

Could We Try…

•  Short-lived OAuth tokens?
•  Token lifetime is very small, requiring many refresh calls
•  Upon compromise, immediately invalidate
•  BUT, detection is never timely (Equifax, SEC, …)

• Rule Analytics/Anomaly Det?
•  After-the-fact, damage is done
•  Does not address root cause

•  Fully Decentralized Platform?
•  No high-availability, reliability

•  Finely-Grained Tokens?
•  Usability problems

Challenges	 Solutions	

Finely-grained	tokens	
•  E.g.,	token	only	for	oven.off()	
•  Problem:	attackers	can	still	misuse	

	

Verifiable	Triggers	=>	Rule	Specific	Tokens	
•  E.g.,	can	invoke	oven.off	ONLY	IF	

holder	of	token	can	prove	that	trigger	
occurred	

Trigger-action	platform	is	untrusted	
•  Cannot	depend	on	it	to	do	

verification	

Modified	workflow:	Trusted	clients	setup	
rules,	Online	services	do	verification	
	

Usability	is	hurt	with	fine-grained	tokens	
	

XToken	(transfer	token):	mint	a	rule-specific	
token	non-interactively	

Untrusted	trigger-action	platform	can	
modify	data	as	it	passes	through	

Integrity	guarantees	with	signatures	

Challenges	 Decentralized	Action	Integrity	

Finely-grained	tokens	
•  E.g.,	token	only	for	oven.off()	
•  Problem:	attackers	can	still	misuse	

	

Verifiable	Triggers	=>	Rule	Specific	Tokens	
•  E.g.,	can	invoke	oven.off	ONLY	IF	

holder	of	token	can	prove	that	trigger	
occurred	

Trigger-action	platform	is	untrusted	
•  Cannot	depend	on	it	to	do	

verification	

Modified	workflow:	Trusted	clients	setup	
rules,	Online	services	do	verification	
	

Usability	is	hurt	with	fine-grained	tokens	
	

XToken	(transfer	token):	mint	a	rule-specific	
token	non-interactively	

Untrusted	trigger-action	platform	can	
modify	data	as	it	passes	through	

Integrity	guarantees	with	signatures	

Create recipes, connect channels, etc.

OAuth, Recipe Execution, etc.

High-powered, long-lived
OAuth tokens in here.

Can be stolen!

Upload recipes

Recipe Execution w/ Rule-Specific Tokens

Trusted Clients
store XTokens

OAuth OAuth

Only rule-specific
tokens live here!

Trigger-Action	
Platform	
Cloud	Service	

Trigger-Action	
Platform	
Cloud	Service	

Creating a Rule with DTAP

10

Trusted Client Untrusted
DTAP Cloud

Trigger Service Action Service

OAuth Transaction, scope=XToken

OAuth Transaction, scope=XToken
Trigger XToken

Action XToken

Request Trigger Token for
“setupAlert” with Trigger XToken

Trigger Token, T-X509

Request Action Token -- Action XToken, Action Name (ovenOff),
Params (None), Trigger Name (smokeDet), UID, T-X509]

Action Token

Channel
Connection

Trigger
Setup

Action
Setup

Trigger Token

Action Token

Invoking Actions Requires Proof
of Trigger Occurrence

11

Untrusted
DTAP Cloud Trigger Service Action Service

setupAlert(Trigger Token)

TriggerBlob

ovenOff(TriggerBlob, Action Token)

Time TTL Trigger Name Trigger Data

12:53:34 UTC 60s smokeDet CO = 200ppm

Signed using Trigger Service Private Key

ABC123

UID

Verification Procedure

Time TTL Trigger Name Trigger Data

12:53:34 UTC 60s smokeDet CO = 200ppm

Signed using Trigger Service Private Key

ABC123

UID

•  Ensure that the passed ActionToken exists
•  Verify signature on trigger blob

•  Ensure Time stamp has increased
•  Verify TTL is valid
•  Check that TriggerBlob.TriggerName == ActionToken.TriggerName
•  Verify that the UID is for the current user

•  Verify that the API call being made by DTAP cloud is the same as that during ActionToken
creation

•  Verify that function parameters match those that the trusted client gave to the action service
during rule setup

Performance Evaluation

13

If new_item == ‘buy soap’ is added to MyToDoList

Then send_email(new_item)

Transmission Overhead

Setup

-  Representative of a typical trigger-action
rule

-  Contains a condition on trigger data
-  Contains transfer of data from trigger

service to action service

Implemented as drop-in OAuth library

Performance Evaluation

14

If new_item == ‘buy soap’ is added to MyToDoList Then send_email(new_item)

End-to-End Latency

Throughput	 DTAP	 IFTTT	

Requests	per	
second	

94.03	
(SD=8.48)	

96.46	
(SD=5.74)	

10,000 Trigger Activations with upto
2000 concurrent requests using

ApacheBench

Summary
•  Emerging trigger-action platforms support stitching together various online

services, including cyber-physical devices
•  BUT, if they are compromised (as is common with web apps), attackers can misuse

OAuth tokens for a large number of users

• We introduced Decentralized Action Integrity
•  Rule-specific OAuth tokens with decentralized verifiable triggers
•  Uses the XTOKEN, a way to gain the power of fine-grained tokens without losing the

usability benefits of coarse-grained tokens
•  Minimal performance impact & backwards-compatible with OAuth

• Clean-slate trigger-action platform design with strong integrity guarantees;
first step towards removing trust from the cloud component for IoT

Decentralized Action Integrity for Trigger-Action IoT Platforms
•  Emerging trigger-action platforms support stitching together various online

services, including cyber-physical devices
•  BUT, if they are compromised (as is common with web apps), attackers can misuse

OAuth tokens for a large number of users

• We introduced Decentralized Action Integrity
•  Rule-specific OAuth tokens with decentralized verifiable triggers
•  Uses the XTOKEN, a way to gain the power of fine-grained tokens without losing the

usability benefits of coarse-grained tokens
•  Minimal performance impact & backwards-compatible with OAuth

• Clean-slate trigger-action platform design with strong integrity guarantees;
first step towards removing trust from the cloud component for IoT

Earlence Fernandes earlence@cs.washington.edu

Macaroons

•  Our	work	introduces	decentralized	action	integrity	as	a	principle	
•  Our	protocol	is	one	way	to	enforce	this	principle	
•  It	is	backwards-compatible	with	Oauth	
•  Does	not	require	code	changes	in	the	cloud	service	of	TAP	

• Macaroon	third-party	caveats	+	discharges	can	be	used	to	implement	
decentralized	action	integrity	---	but	this	still	requires	our	decentralized	
platform	architecture	with	Trusted	Clients!	
• Macaroons	require	a	domain-specific	language	to	implement	caveats	

•  For	a	trigger-action	platform	setting,	this	would	require	a	different	DSL	for	every	
service,	because	when	discharging	a	macaroon	for	a	third-party	caveat	(to	obtain	a	
verifiable	trigger),	each	predicate	is	specific	to	the	third-party	online	service.	DTAP	
does	not	have	this	requirement,	and	is	independent	of	the	semantics	of	the	online	
service	APIs	

Why should you trust the client?

• Developer	(client)	!=	Developer	(trigger-action	platform)	
•  E.g.,	SSH,	FTP,	Telnet	

•  Few	good	apps	emerge	in	app	market	models	
•  E.g.,	JuiceSSH,	etc.	

• DTAP	protocol	is	open;	designed	to	be	implemented	by	anyone	

•  Trigger-action	platform	cloud	service	provides	rule	execution	at	scale	

Finely-Grained Tokens Can Hurt Usability

1. I want to connect my
oven

2. I want a token so that I
can control the oven

3. IFTTT wants to control
your oven, do you agree?

4. OK, IFTTT can access
my oven

5. Here is a nice overprivileged
bearer token

ONCE per channel
Turn off

Turn off

Turn off

Turn off

rule-specific

ONCE per new
recipe

We introduce XTokens (transfer tokens)
Mint a rule-specific token non-interactively

Does not increase the number of OAuth permission prompts

Measuring Channel-Online-Service
Overprivilege in IFTTT

21	

Many	Private	APIs	

69/128	online	services	
have	public	APIs	

Opaque	OAuth	scopes	

107/128	

Channel	connection	issues	

128/297	connected	

Capture	OAuth	tokens	of	the	same	scope	as	that	of	IFTTT,	and	then	
exhaustively	test	online	service	APIs	

Online	Service	OAuth	

Server-to-Server	Communication	

GET	http://service1.com/?arg_a=1	

POST	http://service2.com	BODY	
arg_a	=	1	

Inconsistent	API	Forms	 Input	args	are	very	diverse	

String,	Integer,	Custom	
JSON,	…	

75% of studied IFTTT Channels are
Overprivileged

22	

•  16 IoT and 8 Non-IoT channels studied; 18/24 overprivileged
•  Covered 80.4% (46, 354/57, 632) of all recipes involved in 69 measurable channels

AP
I	

Lessons from IFTTT Analysis

• Channel	Abstraction:	good	balance	in	usability-security	tradeoff	
•  But,	leads	to	highly-privileged	tokens	inside	IFTTT’s	infrastructure	
	

• Highly-privileged	tokens	==	Long-term	security	risk	
•  Bearer	tokens	are	known	to	be	vulnerable	to	compromise	
•  E.g.,	4	channels	vulnerable	to	open-redirector	attack,	22	vulnerable	to	
downgrade-only	attack	

• Overprivileged	tokens	==	really	bad	idea	

23	

