Exposing Congestion Attack on Emerging Connected Vehicle based Traffic Signal Control

<u>Qi Alfred Chen</u>, Yucheng Yin, Yiheng Feng, Z. Morley Mao, Henry X. Liu *University of Michigan*

Background: Connected Vehicle technology

- Wirelessly connect vehicles & infrastructure
- Goal: Dramatically improve mobility, safety, environmental impact, & public agency operations

Background: Recent advances

- Will **soon** transform transportation systems today
- 2016.9, USDOT launched CV Pilot Program
 - National effort to deploy, test, & operationalize CV-based transportation systems
 - Launched in 3 sites

Cybersecurity of CV-based transportation

- However, such dramatically increased connectivity also opens a new door for cyber attacks
- Highly important to understand potential security vulnerabilities & new security challenges
 - Need to ensure security & safety for vehicles, transportation infrastructure, drivers & pedestrians
 - Need to perform study **now** so that they can be proactively addressed before nationwide deployment

First security analysis of CV-based transp.

- Target: Intelligent Traffic Signal System (I-SIG)
 - Use real-time CV data for intelligent signal control
 - USDOT sponsored design & impl.
 - Fully implemented & tested in Anthem, AZ, & Palo Alto, CA
 - 26.6% reduction in total vehicle delay
 - Under deployment in NYC and Tampa, FL

Threat model

- Malicious vehicle owners deliberately control the OBU to send spoofed data
 - OBU is compromised physically¹, wirelessly², or by malware³
- Can only spoof data, e.g., location & speed
 - Can't spoof identity due to USDOT's vehicle certificate system

Attack goal

- Create traffic congestion
 - Increase total delay of vehicles in the intersection
 - Directly subvert the design goal of I-SIG
 - Damage: City functions & individual (wasted fuel, time)
 - *Incentive*: Politically or financially

Analysis approach overview

Congestion creation exploit

Analysis result summary

Congestion creation exploit

Vuln #1: Curse of transition period

- I-SIG has 2 operation modes based on PR:
 - PR ≥ 95%, full deployment: Directly run an optimal signal planning algorithm
 - PR < 95%, transition: The optimal algorithm becomes ineffective, use
 an unequipped vehicle estimation algorithm as pre-step

Vulnerable queue estimation

- Find the queue estimation part highly vulnerable
 - Data from one single attack vehicle can add a queue with tens of "ghost" vehicles
 - Cause delay increased by 20-50%, sometimes even > 70%

An urgent & fundamental problem

- An urgent problem for the current design
 - Transition period is unavoidable, and long (25-30 yrs est. by USDOT)
 - First thing needs to be resolved for its deployment in practice
- Fundament cause: Lack a sufficiently robust signal control algorithm for the transition period
 - Low PR is inherently more sensitive to data spoofing
 - Fundamentally more challenging to ensure robustness
 - Need joint research effort in both transportation & security communities

Full deployment period is secure?

Vuln #2: Last vehicle advantage

- Vulnerability: Latest arriving vehicle determines signal plan
- Attack: Spoof to arrive as late as possible to increase the delay of queuing vehicles in other directions
- Fundamental cause: Security vs deployability trade-off
 - Limited decision time forces choice of a sub-optimal config.
 - Such sub-optimal config unexpectedly exposes such vuln.

Spoof to arrive as late as possible!

Green lig Gteendight lengel light light length

Attack video demo

• Demo time!

Defense discussion

- Robust algorithm design for the transition period
 - Inherently challenging, need joint research efforts in both transportation & security communities
- Speed-up control algorithm to avoid sub-optimal config.
 - E.g., offload computation to a nearby workstation or cloud
- Data spoofing detection using infrastructure-controlled sensors, e.g., camera
 - Cross check validity of driving data from OBUs

Conclusion

- The first security analysis of a CV based transportation system, I-SIG
 - Discover new vulnerability & analyze causes
 - Current control algorithm design & config. are highly vulnerable
 - Construct & evaluate exploits to show the severity in practice
 - Propose defense directions based on the analysis insights
- Hope to inspire follow-up studies
 - E.g., other attack goals, other types of CV systems (60+ open sourced), defense solutions
- Reported to USDOT CV Pilot Program office & sites (NYC and Tampa)

https://tinyurl.com/congestion-attack

• Questions?