Phone users are easily exposed to insecure Wi-Fi.

= Today major servers only allow encrypted communication.

= TLS ensures confidentiality from the middle men.

@ https:/m.facebook.com

facebook

[y

N3 4 27%H 10:53 PM

(13
@ https://www.amazon.com

ama;on Sign In e -_!

Departments Prime Music

echodot
BUY 3 SAVE 520

UNLIMITED

1.5% CASH BACK
1sa $150 BONUS

Threat Model

The attackers record communication of victims.

2 % RICE

Threat Model

Later, attackers compromise targets. ,
It

Can attackers decrypt the captured communication?
Maybe, if they are lucky to find keys.

3 % RICE

TLS Cryptosystem should resist this threat.

Various tactics are used to protect against future compromises.
= Long-term key material
= Short-term key material

4 % RICE

TLS Cryptosystem should resist this threat.

Various tactics are used to protect against future compromises.
=" Long-term key material: Perfect forward secrecy
= Short-term key material

Forward Secrecy Support!l!
100%

M Not supported
80%

M FS suites enabled
60%

40%

20%

0%

Feb/2014 Feb/2018

L [1] https://www.ssllabs.com/ssl-pulse/ 5 @RICE

TLS Cryptosystem should resist this threat.

Various tactics are used to protect against future compromises.
" Long-term key material: Perfect forward secrecy.

= Short-term key material: TLS implementations have responsibility.
> OpenSSL goes to great length to clean up ephemeral keys rapidly.

void *OPENSSL clear realloc(void *p, size t old len, size t num)

void OPENSSL_clear free(void *str, size t num)

void OPENSSL_cleanse(void *ptr, size t len);

void *CRYPTO clear realloc(void *p, size t old len, size t num, const char *file, int
line)

void CRYPTO clear free(void *str, size t num, const char *, int)

6 % RICE

Research Question and Motivation

What about Android?

= Are previous communications safe under memory disclosure attack?

Motivation

1. Threat model is more practical.

7 % RICE

Research Question and Motivation

By software exploitations By physical techniques

Cold-boot attack

BroadPwn
Android Bug

BlueBorne Attack

|

SPECTRE

Research Question and Motivation

What about Android?

= Are previous communications safe under memory disclosure attack?

Motivation
1. Threat model is more practical.

2. Managing secrets on memory would be more challenging.
> Multiple software layers
> Complex application lifecycle

Let’s see how Android TLS deals with those issues.

9 % RICE

Background: Secrets on TLS

CLIENT

= Client Random

Server
Random

Premaster

Seqret

4
[Master Secret]

[
[

Key Block
MAC

SessionI I v]
Keys Secrets S

ClientHello

\

ServerHello
[Certificate]
[ServerKeyExchan
[Certifica uest]
rverHelloDone

[Certificate]
Exchange

[CertificateVert

ChangeCipherSpec

:V

ChangeCipherSpec
Finished

Application Data

SERVER

Client Random [~

Server Random|~~ - .

Premaster

Secret

[Master Secret]

L,

2 2 2
MAC

[SessionI I v]
Keys Secrets s

Key Block
|

AANAA
vvvy

Time —

[FULL

HANDSHAKE][APPLICATION DATA

z,

Client Random _

Premaster |
Secret
bt I
|
Kev Block
MAC
Keys | Secrets

TLS Full Handshake

Random
Master

|
|
S

Lifetime of Secrets

10

% RICE

Background: Secrets on TLS

CLIENT

Client Random

Server
Random

[Master Secret]

Key Block

[
[

Session MAC IVs
Keys Secrets

ClientHello

ServerHello
[ChangeCipherSpec]

A/FimShed—

[ChangeCipherSpec]
—

Application Data

AANAA
vvvy

SERVER

Client Random

Server Random

[Master Secret]

[Key Block
v v v

Session MAC IVs
Keys Secrets

Client Random _

Server

Premaster
Secret

TLS Abbreviated Handshake

Master
Secret

'ThnE!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII’

[

FULL §
HANDSHAKE][APPLICATION DATA |

APPLICATION DATA

MAC
Keys | Secrets | y

Lifetime of Secrets

11

% RICE

Black-Box Security Analysis

1. Establishing TLS Connections
2. Logging the keys during the handshake
3. Dumping Android’s memory
4. Searching keys from the memory dump

12 % RICE

Black-Box Security Analysis

Experiment

Repeating
> Different version: Emulators (Ver 4, Ver 5, Ver 6, Ver 8) and Nexus 5
> Performing additional actions

Test Framework supporting automation)

13 % RICE

Black-Box Security Analysis

Kev Result of Experiment

The results are almost same for all the cases regardless of versions.

Premaster
Secret

Master ‘ But, Why?

Secret

Key Block ‘ Is this a bug or intended?

(Session Key)

Master secrets are found regardless of different actions.
> Moving apps to background.
> Forcing garbage collection.
> Killing apps.
Developers cannot control this retention.

14 % RICE

In-depth Analysis
Android TLS Stack

Applications

TLS HTTPS
Application) Application)

Frameworks

Android JSSE Interface)

A 4 A 4

4 N
Conscrypt) *““{ OkHttp) }

Java P — —— S ———
c - N
BoringSSL)
\ Y

15 % RICE

Problem: Inconsistency in object management

Applications
TLS HTTPS
Application) Application)

Frameworks

Android JSSE Interface)

A 4 A 4

=
Lazy Eager
Deletion) Conscrypt) == - OkHttp) }
/

Ref

BoringSSL)

Counting

16 % RICE

BoringSSL/OpenSSL: Reference Counting

= Each structure has reference count field.
= (QObjects are correctly freed when their reference count is zero.

= All key materials are managed within BoringSSL. — BoringSsL

struct SSL_CTX

struct SSL

struct SSL_SESSION

\:/Iaster Secret
e]
17 % RICE

Conscrypt: Lazy Deletion

= Corresponding classes one-to-one mapped with the BoringSSL structures.

= On creation, OpenSSLSessionImpl increasing the ref. count of its underlying object.

— Conscrypt

N

— BoringSSL N

/ SSLParametersimpl

But, no more manual reference myagement.

struct SSL_CTX

OpenSSLSocketimpl

D

struct SSL

OpenSSLSessionimpl

struct SSL_SESSION

Master Secret

\'r»'\x’;i«ﬁl []

18

% RICE

Conscrypt: Lazy Deletion

Problem1: Dependence on JVM’s Automatic Memory Management.

> Clean-up timing is undefined.
Conscrypt

N — BoringSSL

[' / SSLParametersimpl struct SSL_CTX
What if TLS apps are going to backgll'ound ?

What if other objects hold this object unnecessarily long?

/ struct SSL

OpenSSLSessionimpl :”/ g struct SSL_SESSION

When GC is triggered \,r"iaier Secret
19 ZIRICE

OpenSSLSocketimpl

Conscrypt: Lazy Deletion

Problem2: Session Cache’s LRU replacement policy
> No explicit eviction routine. Expired OpenSSLSessions are still in the cache.

What if TLS a

— Conscrypt

N

— BoringSSL

/ SSLParametersimpl

pps are no longer used?

OpenSSLSocketimpl

/

struct SSL_CTX

x

OpenSSLSessionimpl

g0

ClientSession @gﬁ'e
Context

struct SSL

struct SSL_SESSION

When GC is triggered \,r"iaier Secret

S \w\

20

% RICE

Conscrypt: Lazy Deletion

Problem3: Static Singleton objects are connected to them.
> Their lifetime is same as the application. No way to release them.

— Conscrypt

OpenSSLContextimpl

OpenSSLSocketimpl

SSLParametersimpl {

N

— BoringSSL

struct SSL_CTX

x

ClientSession

Context

OpenSSLSessionimpl

struct SSL

struct SSL_SESSION

When GCis triggered \,f"i@r Secret

e]

21

% RICE

OkHttp: Eager Deletion

OkHtt
OkHttp manages Singleton Connection Pool i

I_Conscryet_,.,.......Lu_--""""' - BorlngSSL
IIII“I“-“‘ ‘ OpenSSLContextImpI
“u" SSLParametersimpl struct SSL_CTX

[]

L]

.
*
0

" But, its effort is useless in removing master keys.

oy
....
.......

'| OpenSSLSocketimpl

ClientSession @gﬁ'
* Context I

struct SSL_SESSION

OpenSSLSessionimpl

. Master Secrét
When GC is triggered \'r'\\’r'»«'\!_l_l

22 % RICE

What is the consequence of the problem?

= Each TLS application holds some number of master secrets whether the
y are expired or not.

Live
Processes Master Secret

) wWe wwe

TLS App)

TLS App)

TLS App)

TLS App)

TLS App)

23 % RICE

Evaluation of Attack Feasibility

Can attackers exploit this problem in practice?

1. Is an attacker able to find 48 bytes of keys in a reasonable time?

> Yes. We found the pattern.
> Simple tool finds master secrets in several seconds.

2. How long does master keys live in memory with real-world apps?
> Additional experiment with Chrome application.

24 % RICE

Evaluation of Attack Feasibility

How long does master kev live in memory?

Result with Chrome application

Time Event # of
(Hour) Found Keys

25 % RICE

Evaluation of Attack Feasibility

How long does master kev live in memory?

Result with Chrome application

Time Event # of
(Hour) Found Keys
0 Access five web sites 51
1 Move the app to background 42
3 Run YouTube application 42

Keep playing movies
51 After 2 days 38

Most of master secrets are preserved as long as the app is alive.

26 % RICE

Demo

What if attackers access Android memory of the targeted victim?

2 ~/NDSS18 Demo
$ 1s -1
total 1049172
drwxrwxr-x 2 j1128 j1128 4096 Feb 16 14:34 forensic_tools/
-rw-rw-r-- 1 j1128 j1128 1073741824 Feb 16 14:43 memory dump.dmp
-rw-r--r-- 1 j1128 jl1128 601247 Feb 16 14:43 packet capture.pcap

~/NDSS18 Demo

s 1

We implemented two solutions.

1. Hooking Android lifecycle

> Clean up expired keys when applications are going to background.

2. Eager Deletion: Sync with OkHttp

> Run secondary thread to evict expired TLS sessions.

Two modest patches can mitigate this problem.

28 % RICE

Reporting to Google

= Reported the issue with the patches in Nov 2017.
= Recently, we received the feedback.

status: Assigned — Infeasible
ASR Severity: Moderate — NSBC

we don't consider deleting information from the application’s
memory fast enough to be a security issue ...

But, we believe expired master secrets should be deleted.

29 % RICE

Conclusion

We first investigate Android TLS in terms of managing ephemeral keys.

Android retains master secrets because of conflicting memory models.
= |Impact on all applications using standard TLS APIs.
= |mpact on all Android versions we examined from Android 4 to 8.

= Qur forensics tools show that it is exploitable practically.

We suggest the practical solutions.

30 % RICE

Thank you!

Jaeho Lee
PhD student, Rice University

Contact: Jaeho.Lee@rice.edu
Web: https://cs.rice.edu/~jl128

% RICE

Analysis Framework

EMULATOR
'UPDATED I N P UT
Application |||= Test Spec.

Framework

DUMP) 'UPDATED
Libraries

TEST FRAMEWORK SERVER
Kernel
OpenSSL Lib
DEVICE [T - >of
'UPDATED Android -1 Main Runner -1 server <>"“<? Nginx server
S Controller Controller
Application
Framework Ubuntu
'UPDATED i
Libraries @
UPDATED
Kernel C

OUTPUT

Results

32 % RICE

Results Detail

300
280
260 - 260
240 . 240
220 b e 220
‘ — ‘ 2001 4 : = s T N

T T T T T T T T T T T T 300 T T T T T T T T T T T
.. |mmE Background || 280

200 - . Feeee ; s o . o . : B
180 ;]
160 |
140 oo i e

160
1400 RO SO USUOOE RO SOUOUORE SRRt SO
120} 120
100 & - e : SR o
_ _ : 80 L. . . .
60 oo 60 Lo
a0l i a0l . .
200 R R 20_ S L _

100
80

of extracted master secrets
of extracted master secrets

i i i i i i i 0 i i i i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
Time (minutes) Time (minutes)

300

P
280-// cachunns
7

260

T T T T T 300 l T l T T T T T T T T
.| A1 Run Youtube || 2800 i i . |BmE Killing -> Youtube ||

7 H H
240 |- ...’/f|.§|.;v|;.\,|.l|.\.]..'.|\v|.zs.|\.|.1.:; SRR E AR ES TN N ..| FHEKERI).|.,|.\.|.:;|\.|.;,. ._ 240 Bl ._
220 ; ' ; : : : ‘ : . 220} 1
200 - 200 - -

160 - -k - - e

B e S SRS EEEES S SN AN AR
100} : : : : : :

140F i A i ._
120
20p , , . .

of extracted master secrets
of extracted master secrets

80| 801
60] 60 , - RSSO S O W

e i i e i e e e e

0 i i i i i i i i i i i i 0 i n

Y E
2]

0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 10 12 14 16 18 20 22 24 AR
Time (minutes) 33 Time (minutes) RI(E

SSL_SESSION Structure

struct ssl session st {
int ssl_version; 0x0301~0303)
int master_key length; 0x30)

uint8 _t master_key[SSL_MAX_MASTER_KEY_LENGTH];
0x20)

unsigned int session_id length;
uint8_ t session_id[SSL_MAX_SSL_SESSION_ ID LENGTH];

34

% RICE

Conscrypt (Java) vs BoringSSL (C)

> Conscrypt: effective Java coding

> BoringSSL: isolated secret management

Conscrypt (TLS Session Cache) vs OkHttp (HTTP Connection Pool)
> Different perspective dealing with underlying objects
— OKkHttp: Eagerly eviction with Timer
— Conscrypt: No explicit eviction

Bad Programming Pattern: Singleton object + Dependence on GC

> Singleton object + Dependence on GC for critical routines

35 % RICE

Methodology

Black-Box

Security

Analysis

White-Box
Security

Analysis)

36

% RICE

Research Question and Motivation

Android has various attack vectors.

By software exploitations By physical techniques

Cold-boot attack

BroadPwn

Android Bug

>

BlueBorne Attack

J =)

SPECTRE

37

