
Phone	users	are	easily	exposed	to	insecure	Wi-Fi.

§  Today	major	servers	only	allow	encrypted	communication.	
§  TLS	ensures	confidentiality	from	the	middle	men.

1

Threat	Model

The	attackers	record	communication	of	victims.

2

Threat	Model

Later,	attackers	compromise	targets.

3

Maybe,	if	they	are	lucky	to	find	keys.	
Can	attackers	decrypt	the	captured	communication?	

TLS	Cryptosystem	should	resist	this	threat.

Various	tactics	are	used	to	protect	against	future	compromises.	
§  Long-term	key	material	
§  Short-term	key	material	

4

TLS	Cryptosystem	should	resist	this	threat.

Various	tactics	are	used	to	protect	against	future	compromises.	
§  Long-term	key	material:	Perfect	forward	secrecy	
§  Short-term	key	material	

5 [1]	https://www.ssllabs.com/ssl-pulse/	

49%	

94%	

50%	

6%	

0%	

20%	

40%	

60%	

80%	

100%	

Feb/2014	 Feb/2018	

Forward	Secrecy	Support[1]

Not	supported	

FS	suites	enabled	

TLS	Cryptosystem	should	resist	this	threat.

Various	tactics	are	used	to	protect	against	future	compromises.	
§  Long-term	key	material:	Perfect	forward	secrecy.	
§  Short-term	key	material:	TLS	implementations	have	responsibility.	

Ø  OpenSSL	goes	to	great	length	to	clean	up	ephemeral	keys	rapidly.	

6

	void	*OPENSSL_clear_realloc(void	*p,	size_t	old_len,	size_t	num)	
	void	OPENSSL_clear_free(void	*str,	size_t	num)	
	void	OPENSSL_cleanse(void	*ptr,	size_t	len);	
	void	*CRYPTO_clear_realloc(void	*p,	size_t	old_len,	size_t	num,	const	char	*file,	int	
line)	
	void	CRYPTO_clear_free(void	*str,	size_t	num,	const	char	*,	int)	

Research	Question	and	Motivation

What	about	Android?	
§  Are	previous	communications	safe	under	memory	disclosure	attack?	
	
Motivation	
1.  Threat	model	is	more	practical.	

7

What	about	Android?	
§  Are	previous	communications	safe	under	memory	disclosure	attack?	
	
Motivation	
1.  Threat	model	is	more	practical.	

8

By	software	exploitations	 By	physical	techniques	

Cold-boot	attack	

Nexus	5X	bootloader	vulnerability	

Android	has	various	attack	vectors.

Research	Question	and	Motivation

Research	Question	and	Motivation

What	about	Android?	
§  Are	previous	communications	safe	under	memory	disclosure	attack?		
	
Motivation	
1.  Threat	model	is	more	practical.	
2.  Managing	secrets	on	memory	would	be	more	challenging.	

Ø  Multiple	software	layers	
Ø  Complex	application	lifecycle

9

Let’s	see	how	Android	TLS	deals	with	those	issues.	

Lifetime	of	Secrets	

Time	
FULL		

HANDSHAKE APPLICATION	DATA

Background:	Secrets	on	TLS

10

CLIENT SERVER
ClientHello

ServerHello	
[Certificate]	

[ServerKeyExchange]	
[CertificateRequest]	

ServerHelloDone

[Certificate]	
ClientKeyExchange	
[CertificateVerify]	
ChangeCipherSpec	
Finished

ChangeCipherSpec	
Finished

Application	Data

Client	Random

Client	Random

Client	Random
Server	
Random

Server	Random

Server	
Random

Premaster	
Secret

Premaster	
Secret

Premaster	
Secret

PRF
PRF

Master	Secret Master	Secret

Master	
Secret

PRF PRF

Key	Block Key	Block

Key	Block

Session	
Keys

MAC	
Secrets IVs Session	

Keys
MAC	
Secrets IVs

Session	
Keys

MAC	
Secrets IVs

TLS	Full	Handshake	

Background:	Secrets	on	TLS

11

CLIENT SERVER
ClientHello

ServerHello	
[ChangeCipherSpec]	

Finished

[ChangeCipherSpec]	
Finished

Application	Data

Client	Random

Server	
Random

Client	Random

Server	Random
Client	Random

Server	
Random
Premaster	
Secret

Master	Secret Master	Secret

Master	
Secret

PRF PRF

MAC	
Secrets

Session	
Keys IVs Session	

Keys
MAC	
Secrets IVs

Key	Block Key	Block

Key	Block
Session	
Keys

MAC	
Secrets IVs

FULL		
HANDSHAKE APPLICATION	DATA

ABBR
.	
HS

APPLICATION	DATA

TLS	Abbreviated	Handshake	

Lifetime	of	Secrets	

Time	

Black-Box	Security	Analysis

1.	Establishing	TLS	Connections	
2.	Logging	the	keys	during	the	handshake	
3.	Dumping	Android’s	memory	
4.	Searching	keys	from	the	memory	dump	

12

Black-Box	Security	Analysis	
Experiment

Repeating	
Ø  Different	version:	Emulators	(Ver	4,	Ver	5,	Ver	6,	Ver	8)	and	Nexus	5	

Ø  Performing	additional	actions	
	

13

Test	Framework	supporting	automation

Black-Box	Security	Analysis	
Key	Result	of	Experiment

The	results	are	almost	same	for	all	the	cases	regardless	of	versions.	
	
	
	
	
Master	secrets	are	found	regardless	of	different	actions.	

Ø  Moving	apps	to	background.	
Ø  Forcing	garbage	collection.	
Ø  Killing	apps.	

	

14

Premaster	
Secret	
Master	
Secret	

Key	Block	
(Session	Key)	

Developers	cannot	control	this	retention.	

But,	Why?	
Is	this	a	bug	or	intended?	

In-depth	Analysis	
Android	TLS	Stack

15

Applications
HTTPS	

Application

TLS	

Application

Frameworks

Android	JSSE	Interface

Libraries

Conscrypt

BoringSSL

OkHttp

C
Java

Applications
HTTPS	

Application

TLS	

Application

Frameworks

Libraries

Conscrypt

BoringSSL

OkHttp

Android	JSSE	Interface

C
Java

Problem:	Inconsistency	in	object	management

16

Ref.	
Counting	

Lazy	
Deletion	

Eager	
Deletion	

BoringSSL/OpenSSL:	Reference	Counting

§  Each	structure	has	reference	count	field.	
§  Objects	are	correctly	freed	when	their	reference	count	is	zero.	
§  All	key	materials	are	managed	within	BoringSSL.

17

BoringSSL

struct	SSL

struct	SSL_CTX

struct	SSL_SESSION

Master	Secret

OpenSSLSocketImpl

Conscrypt

OpenSSLSessionImpl

SSLParametersImpl

Conscrypt:	Lazy	Deletion

§  Corresponding	classes	one-to-one	mapped	with	the	BoringSSL	structures.	
§  On	creation,	OpenSSLSessionImpl	increasing	the	ref.	count	of	its	underlying	object.	

18

BoringSSL

struct	SSL

struct	SSL_CTX

struct	SSL_SESSION

Master	Secret

+1	

But,	no	more	manual	reference	management.	

Conscrypt:	Lazy	Deletion

Problem1:	Dependence	on	JVM’s	Automatic	Memory	Management.	
Ø  Clean-up	timing	is	undefined.	

19

BoringSSL

struct	SSL

struct	SSL_CTX

struct	SSL_SESSION

Master	Secret

Conscrypt

OpenSSLSocketImpl

OpenSSLSessionImpl

SSLParametersImpl

+1	

-1	
When	GC	is	triggered	

What	if	TLS	apps	are	going	to	background?	
What	if	other	objects	hold	this	object	unnecessarily	long?	

Conscrypt:	Lazy	Deletion

Problem2:	Session	Cache’s	LRU	replacement	policy	
Ø  No	explicit	eviction	routine.	Expired	OpenSSLSessions	are	still	in	the	cache.	

20

BoringSSL

struct	SSL

struct	SSL_CTX

struct	SSL_SESSION

Master	Secret

Conscrypt

OpenSSLSocketImpl

OpenSSLSessionImpl

SSLParametersImpl

+1	

When	GC	is	triggered	

Session	Cache	ClientSession	
Context

-1	

What	if	TLS	apps	are	no	longer	used?	

Conscrypt:	Lazy	Deletion

Problem3:	Static	Singleton	objects	are	connected	to	them.	
Ø  Their	lifetime	is	same	as	the	application.	No	way	to	release	them.	

	

21

BoringSSL

struct	SSL

struct	SSL_CTX

struct	SSL_SESSION

Master	Secret

Conscrypt

OpenSSLSocketImpl

OpenSSLSessionImpl

SSLParametersImpl

+1	

When	GC	is	triggered	

Session	Cache	

OpenSSLContextImpl

ClientSession	
Context

-1	

OkHttp:	Eager	Deletion

22

BoringSSL

struct	SSL

struct	SSL_CTX

struct	SSL_SESSION

Master	Secret

Conscrypt

OpenSSLSocketImpl

OpenSSLSessionImpl

SSLParametersImpl

+1	

When	GC	is	triggered	

Session	Cache	

OpenSSLContextImpl

ClientSession	
Context

-1	

OkHttp	manages	Singleton	Connection	Pool	
Ø  Good	thing:	eagerly	delete	with	Cleanup	Thread.	

ConfigAwareConnectionPool

OkHttp

But,	its	effort	is	useless	in	removing	master	keys.	

What	is	the	consequence	of	the	problem?

§  Each	TLS	application	holds	some	number	of	master	secrets	whether	the
y	are	expired	or	not.	

23

TLS App

TLS App

TLS App

TLS App

TLS App

Master	Secret
Live	

Processes

Evaluation	of	Attack	Feasibility	
Can	attackers	exploit	this	problem	in	practice?

1.	Is	an	attacker	able	to	find	48	bytes	of	keys	in	a	reasonable	time?	
Ø  Yes.	We	found	the	pattern.	
Ø  Simple	tool	finds	master	secrets	in	several	seconds.	

	

2.	How	long	does	master	keys	live	in	memory	with	real-world	apps?	
Ø  Additional	experiment	with	Chrome	application.	

24

Time	
(Hour)	 Event	 #	of		

Found	Keys	
0	 Access	five	web	sites	 51	
1	 Move	the	app	to	background	 42	
3	 Run	YouTube	application	 42	
…	 Keep	playing	movies	 …	
51	 After	2	days	 38	

Evaluation	of	Attack	Feasibility	
How	long	does	master	key	live	in	memory?

Result	with	Chrome	application	
	

25

Evaluation	of	Attack	Feasibility	
How	long	does	master	key	live	in	memory?

Result	with	Chrome	application	
	
	
	
	
	

	
Most	of	master	secrets	are	preserved	as	long	as	the	app	is	alive.	

26

Time	
(Hour)	 Event	 #	of		

Found	Keys	
0	 Access	five	web	sites	 51	
1	 Move	the	app	to	background	 42	
3	 Run	YouTube	application	 42	
…	 Keep	playing	movies	 …	
51	 After	2	days	 38	

What	if	attackers	access	Android	memory	of	the	targeted	victim?	

Demo

27

Solutions

We	implemented	two	solutions.		
	
1.	Hooking	Android	lifecycle	

Ø  Clean	up	expired	keys	when	applications	are	going	to	background.	

2.	Eager	Deletion:	Sync	with	OkHttp	
Ø  Run	secondary	thread	to	evict	expired	TLS	sessions.	

Two	modest	patches	can	mitigate	this	problem.	

28

Reporting	to	Google

§  Reported	the	issue	with	the	patches	in	Nov	2017.	
§  Recently,	we	received	the	feedback.	

But,	we	believe	expired	master	secrets	should	be	deleted.	
	
	

29

status: Assigned → Infeasible
ASR Severity: Moderate → NSBC
 …
we don't consider deleting information from the application's
memory fast enough to be a security issue …

Conclusion	

We	first	investigate	Android	TLS	in	terms	of	managing	ephemeral	keys.	
	
Android	retains	master	secrets	because	of	conflicting	memory	models.	
§  Impact	on	all	applications	using	standard	TLS	APIs.	
§  Impact	on	all	Android	versions	we	examined	from	Android	4	to	8.	
§  Our	forensics	tools	show	that	it	is	exploitable	practically.		

We	suggest	the	practical	solutions.	

30

	
	
	
	
	

Thank	you!	
	

Jaeho	Lee	
PhD	student,	Rice	University	

	
	
	

Contact:	Jaeho.Lee@rice.edu	
					Web:	https://cs.rice.edu/~jl128	

	

Analysis	Framework

LOG KEY

DUMP

DUMP

32

Results	Detail

33

SSL_SESSION	Structure

34

		struct	ssl_session_st	{	

				int	ssl_version;	

				int	master_key_length;	

				uint8_t	master_key[SSL_MAX_MASTER_KEY_LENGTH];	

				unsigned	int	session_id_length;	

				uint8_t	session_id[SSL_MAX_SSL_SESSION_ID_LENGTH];	

				...	

		}	

0x0301~0303

0x30

0x20

Discussion

Conscrypt	(Java)	vs	BoringSSL	(C)	
Ø  Conscrypt:	effective	Java	coding	
Ø  BoringSSL:	isolated	secret	management	

Conscrypt	(TLS	Session	Cache)	vs	OkHttp	(HTTP	Connection	Pool)	
Ø  Different	perspective	dealing	with	underlying	objects	 	 		

–  OkHttp:	Eagerly	eviction	with	Timer	
–  Conscrypt:	No	explicit	eviction	

	
Bad	Programming	Pattern:	Singleton	object	+	Dependence	on	GC	

Ø  Singleton	object	+	Dependence	on	GC	for	critical	routines
35

Methodology

White-Box

Security

Analysis

36

Research	Question	and	Motivation	
Android	has	various	attack	vectors.

37

By	software	exploitations	 By	physical	techniques	

Cold-boot	attack	

Nexus	5X	bootloader	vulnerability	

