
Automated Attack Discovery in TCP 
Congestion Control using a Model-

guided Approach 
Samuel	Jero1,	Endadul	Hoque2,	David	Choffnes3,	Alan	Mislove3,	and	

Cristina	Nita-Rotaru3	
	

1Purdue	University,	2Florida	International	University,	and	
3Northeastern	University	

	
NDSS	2018	

1	



A Day In the Life of the Internet 

2	

TLS	 TCP	



TCP 
•  Transport	protocol	used	by	vast	majority	of	
Internet	traffic	
•  Including	traffic	encrypted	with	TLS	
•  Including	network	infrastructure	protocols	like	BGP	

•  Thousands	of	implementations	
•  Over	5,000	implementation	variants	detectable	by	
nmap	

• Provides:	
•  Reliability	
•  In-order	delivery	
•  Flow	control	
•  Congestion	control	

3	



TCP Congestion Control 
•  Protects	against	congestion	collapse	

•  Majority	of	sent	data	is	dropped	later	on	
•  Caused	throughout	decrease	of	1000x	in	1988	

•  Also	ensures	fairness	between	competing	flows	
•  Prevents	one	flow	from	starving	others	

4	

Congestion	Control	is	Crucial	for	Modern	Networks	

•  General	scheme	
•  Additive	Increase,	probing	for	more	bandwidth	
•  Loss	indicates	congestion	
•  Multiplicative	Decrease,	slowing	down	to	clear	
congestion	

Th
ro
ug
hp

ut
	

Offered	Load	

Congestion	
Collapse	

Th
ro
ug
hp

ut
	

Time	

Starvation	

Flow	1	
Flow	2	

Th
ro
ug
hp

ut
	

Time	

Flow	1	
Flow	2	

Th
ro
ug
hp

ut
	

Time	

Loss	 Loss	



Long History of Powerful Attacks 

Attacks	may	result	in:	
•  Decreased	throughput	
•  Increased	throughput	that	starves	competing	flows	
•  Stalled	data	transfer	

5	

1995	 2000	 2005	 2010	 2015	

X	



Why So Many Attacks? 
•  Attacks	leverage	designed	behavior	

•  Congestion	control	is	designed	to	control	throughput	
•  Attacks	confuse	congestion	control	about	network	conditions	
•  No	crashes	or	unusual	control	flow	

• Many	designs	and	implementations	
•  Multiple	Variations:	Reno,	New	Reno,	SACK,	Vegas,	BBR	
•  Multiple	Optimizations:	PRR,	TLP,	DSACK,	FRTO,	RACK	
•  Hundreds	of	implementations	

•  Lack	of	unified	specifications	
•  Individual	components	and	optimizations	are	specified	separately	
•  Understanding	unified	behavior	is	difficult	

•  Very	dynamic	behavior	
•  Congestion	control	state	changes	with	every	acknowledgement	
•  Impact	of	individual	packet	dilutes	quickly	with	time	

6	

Network	is	
great,	keep	
sending	

Network	is	
full,	slow	
down	

OK,	
continuing	to	

send	

RFC	793	
RFC	5681	
RFC	2581	
RFC	2001	
RFC	6298	

RFC	7323	
RFC	3390	
RFC	3465	
RFC	2018	
RFC	3042	

RFC	6582	 RFC	6675	
RFC	2883	 RFC	4015	RFC	5682	 RFC	6528	

RFC	2861	

RFC	5827	

RFC	6937	

RFC	3708	

RFC	4653	



Current Testing Methods 
• Manual	Investigation	

•  Security	researchers	manually	investigate	possible	attacks	

• Regression	Testing	
•  Manually	create	tests	for	known	attacks	
•  Test	each	implementation	for	vulnerability	

• MAX	[SIGCOMM’11]	
•  Automatically	finds	manipulation	attacks	on	network	protocols	
•  Leverages	symbolic	execution	to	identify	manipulations	

•  SNAKE	[DSN’15]	
•  Automatically	fuzzes	transport	protocols	searching	for	availability	and	
performance	attacks	
•  Uses	state-machine	attack	injection	for	scalability	

7	

Labor	Intensive,	requires	human	to	enumerate	all	possible	attacks,	
does	not	scale	

Unable	to	find	new	vulnerabilities,	different	implementations	may	
not	be	vulnerable	in	the	same	way	

Requires	source	code	in	a	particular	language	and	manual	
annotations	

Does	not	scale	to	highly	dynamic	systems	and	complex	attacks	with	
many	steps	



Our Approach: TCPwn 

•  Test	real,	unmodified	implementations	
•  Scalability	was	the	major	challenge:	attacks	are	complex	and	multi-stage,	system	
is	highly	dynamic	
•  Model	TCP	congestion	control	as	a	state	machine	
•  Use	model-based	testing	to	identify	all	possible	attacks	in	a	scalable	manner	
•  Create	testable	attacks	using	packet	manipulation	and	injection	
•  Finds	attacks	causing:	
•  Decreased	Throughput	
•  Increased	Throughput	
•  A	connection	stall	

8	

Goal:	Automatically	test	TCP	implementations	for	attacks	on	Congestion	Control	

SS	

EB	

CA	

FR	



Optimistic Ack Attack 

•  Acknowledging	new	data	causes	
green	transitions	to	be	taken	

•  Increases	cwnd	and	thus	throughput	
with	each	loop	

•  Avoids	red	transitions	which	reduce	
cwnd	and	thus	throughput	

9	

Increase	sending	rate	by	acknowledging	
data	that	has	not	been	received	yet 

Ack	
--	
cwnd+=1	

Slow	
Start	

Exponential	
Backoff	

Congestion	
Avoidance	

Fast	
Recovery	

Timeout	Timeout	

Ti
m
eo

ut
	

3	Duplicate	Acks	
--	
cwnd	=	cwnd/2	

New	Ack	
--	
cwnd+=MSS	

Ack	
--	
cwnd=0	

New	Ack	
--	
cwnd+=1	

3	Duplicate	Acks	
--	
cwnd	=	cwnd/2	

New	Reno	Congestion	Control	
State	Machine	

Key	Takeaways:	
•  Attacks	attempt	to	cause	desirable	transitions	
•  Attacks	must	repeatedly	execute	transition	to	
have	noticeable	impact	

Timeout	

cwnd > ssthresh 



Model-based Attack Generation 

1.  Consider	state	machine	model	of	congestion	control	
2.  Identify	cycles	containing	desirable	transitions	

•  Abstract	strategy	generation	

3.  Force	TCP	to	follow	each	cycle	
•  Concrete	strategy	generation	

10	

1	 2	
3	

State	Machine	

1,2,1…	
1,2,3,1…	

Abstract	Strategies	

Delay	Msg1,	Drop	Msg2	
Drop	Msg3,	Dup	Msg4	

Concrete	Strategies	

Generate	all	cycles	with	the	following	pattern:	
•  cwnd increases/decreases	along	cycle 
•  A	set	of	actions	exist	that	force	TCP	to	follow	this	cycle	



Abstract Strategy Generation 
•  Enumerate	all	paths	

•  No	standard	graph	algorithm	
• We	adapt	depth	first	search	to	this	problem	

• Check	that	path	contains	cycle	
• Check	that	cycle	contains	desirable	transitions	

•  Any	change	to	cwnd 
• Add	path	and	transition	conditions	to	abstract	
strategies	

11	

1

32

5

4

Cycle	

Desirable	
Transition	Abstract	strategies	are	merely	desirable	

cycles;	they	may	not	be	realizable	in	practice!	



From Abstract to Concrete Strategies 

•  Limited	to	packet	manipulation	and	injection	to	cause	
abstract	strategies	
•  Consider	each	abstract	strategy	separately	
• Map	each	transition	to	a	set	of	basic	malicious	actions	

•  Actions	chosen	to	cause	transition	
•  Based	on	attacker	capabilities	

12	

1	 2	 3	
Abstract	Strategy	

Inject	Dup	Ack	
Inject	Pre	Ack	
Inject	Offset	Ack	

Duplicate	Ack	
Limit	Ack	
Pre	Ack	

State	1	 State	2	
State1:InjectDupAck,State2:DuplicateAck	
State1:InjectPreAck,State2:LimitAck	
State1:InjectOffsetAck,State2:PreAck	
State1:InjectDupAck,State2:DuplicateAcl	
…	

We	want	to	test	implementations	
Attacker	Types:	

Off-path:	

On-path:	



TCPwn Design 

•  Test	strategies	creating	using	model-based	testing	and	
our	abstract	and	concrete	strategy	generators	
•  Testing	done	with	virtual	machines	running	real	
implementations	in	a	dumbbell	testbed	network	
•  Attack	Injector	applies	malicious	actions	
•  Performance	of	target	TCP	connection	identifies	attacks	

13	



Evaluation 
We	tested	five	TCP	implementations:	

14	

Found	11	classes	of	attacks,	8	of	them	unknown	

Implementation	 Date	 Congestion	Control	
Ubuntu	16.10	(Linux	4.8)	 2016	 CUBIC+SACK+FRTO+ER+PRR+TLP	
Ubuntu	14.04	(Linux	3.13)	 2014	 CUBIC+SACK+FRTO+ER+PRR+TLP	
Ubuntu	11.10	(Linux	3.0)	 2011	 CUBIC+SACK+FRTO	
Debian	2										(Linux	2.0)	 1998	 New	Reno	
Windows	8.1	 2014	 Compound	TCP	+	SACK	



Results Summary 

15	

Attack	Class	 Attacker	 Impact	 OS	 New?	

Optimistic	Ack	 On-path	 Increased	Throughput	 ALL	 No	

On-path	Repeated	Slow	Start	 On-path	 Increased	Throughput	 Ubuntu	11.10,	Ubuntu	16.10	 Yes	

Amplified	Bursts	 On-path	 Increased	Throughput	 Ubuntu	11.10	 Yes	

Desync	Attack	 Off-path	 Connection	Stall	 ALL	 No	

Ack	Storm	Attack	 Off-path	 Connection	Stall	 Debian	2,	Windows	8.1	 No	

Ack	Lost	Data	 Off-path	 Connection	Stall	 ALL	 Yes	

Slow	Injected	Acks	 Off-path	 Decreased	Throughput	 Ubuntu	11.10	 Yes	

Sawtooth	Ack	 Off-path	 Decreased	Throughput	 Ubuntu	11.10,	Ubuntu	14.04,	
Ubuntu	16.10,	Windows	8.1	

Yes	

Dup	Ack	Injection	 Off-path	 Decreased	Throughput	 Debian	2,	Windows	8.1	 Yes	

Ack	Amplification	 Off-path	 Increased	Throughput	 Ubuntu	11.10,	Ubuntu	14.04,	
Ubuntu	16.10,	Windows	8.1	

Yes	

Off-path	Repeated	Slow	Start	 Off-path	 Increased	Throughput	 Ubuntu	11.10	 Yes	



Summary 
• We	developed	a	new,	model-guided	technique	to	search	for	possible	
attacks	on	TCP	congestion	control.	This	technique	uses	the	
congestion	control	state	machine	to	generate	abstract	strategies	
which	are	then	converted	into	concrete	strategies	made	up	of	
message-based	actions	
• We	implemented	this	technique	in	TCPwn,	which	is	able	to	find	
attacks	on	real,	unmodified	implementations	of	TCP	congestion	
control	
• We	tested	5	TCP	implementations	and	found	11	classes	of	attacks,	8	
of	which	were	previously	unknown	

16	

Check	out	the	code!		
https://github.com/samueljero/TCPwn	



Questions? 

Samuel	Jero	
sjero@sjero.net	

Check	out	the	code!		
https://github.com/samueljero/TCPwn	



Off-path Repeated Slow Start Attack 
•  Linux	includes	adjustable	dup	ack	threshold	

•  Based	on	observed	duplicate	and	reordered	packets	
•  Attacker	injects	many	duplicate	acks	

•  	Increasing	dup	ack	threshold	
•  Timeout	occurs	before	dup	ack	loss	detection	
•  Enter	Exponential	Backoff	and	then	Slow	Start	

•  Instead	of	Fast	Recovery	
•  Short	200ms	timeout	causes	throughput	to	be	>=	normal	
•  Competing	connections		also	suffer	badly	due	to	repeated	losses	

18	

Time	

Sending	
Rate	

RTO	 RTO	 RTO	 RTO	 RTO	 RTO	

Dup	Acks	

RTO	

Off-path	attacker	can	
increase	throughput	
for	Linux	senders	



Inferring Congestion Control State 

•  Approximate	congestion	control	state	and	assume	normal	application	behavior	
•  Take	a	small	timeslice	and	observe	the	bytes	sent	and	acknowledged	by	the	
implementation	

19	

Slow	Start	

Congestion	Avoidance	

Fast	
Recovery	

Data	
Ack	

Time	

Se
qu

en
ce
	N
um

be
r	

To	apply	concrete	strategies	to	an	implementation,	we	need	to	know	the	
sender’s	congestion	control	state	

Bytes	Sent*2	≈	Bytes	Acked	
State:	Slow	Start	

Bytes	Sent	≈	Bytes	Acked	
State:	Congestion	Avoidance	

Retransmitted	packets	or	ACK	pkts	>	Data	pkts	
State:	Fast	Recovery	

ACK	pkts		==	0	and	Data	pkts	>	0	
State:	Exponential	Backoff	



More on Congestion Control 
• Model	as	a	state	machine	

•  Input:	Acks	and	Timers	
•  Output:	Congestion	Window	
(cwnd)	

•  Four	states:	
•  Slow	Start—Quickly	find	available	
bandwidth	
•  Congestion	Avoidance—Steady	
state	sending	with	occasional	
probe	for	more	bandwidth	
•  Fast	Recovery—React	to	loss	by	
slowing	down	
•  Exponential	Backoff—Timeout,	
slow	down	

20	

Ack	
--	
cwnd+=1	

Slow	
Start	

Exponential	
Backoff	

Congestion	
Avoidance	

Fast	
Recovery	

Timeout	Timeout	

Ti
m
eo

ut
	

3	Duplicate	Acks	
--	
cwnd	=	cwnd/2	

New	Ack	
--	
cwnd+=MSS	

Ack	
--	
cwnd=0	

New	Ack	
--	
cwnd+=1	

3	Duplicate	Acks	
--	
cwnd	=	cwnd/2	

New	Reno	Congestion	Control	
State	Machine	

=sending	rate	

Timeout	

cwnd > ssthresh 



Limitations 
•  Use	of	New	Reno	as	model	

•  Model	limited	by	ability	to	infer	sender’s	state	from	network	traffic	
•  More	precise	inference	or	instrumentation	would	enable	more	precise	modeling	
•  We	trade	off	precision	for	ease	of	application	to	a	wide	range	of	implementations	

• What	about	CUBIC,	SACK,	etc?	
•  Most	algorithms/optimizations	are	similar	to	New	Reno	

•  This	includes:	SACK,	CUBIC,	TLP,	PRR	
•  We	actually	tested	implementations	of	these	and	found	attacks	

• What	about	algorithms	not	similar	to	New	Reno?	
•  For	example:	BBR,	TFRC,	Vegas	
•  Model-based	testing	still	readily	generates	abstract	strategies	
•  Need	a	method	to	infer	sender’s	congestion	control	state	

21	

SS	

EB	

CA	

FR	


