
Automated Website Fingerprinting 
through Deep Learning
Vera Rimmer1, Davy Preuveneers1, Marc Juarez2, 

Tom Van Goethem1 and Wouter Joosen1

1 2

NDSS 2018 – Feb 19th (San Diego, USA)



Website Fingerprinting



Anonymous Communication through Tor

› All (secure) communication protocols expose metadata  

timing, size of packets, identities, locations, addresses, communication patterns –> reveal 
private information  

› Anonymity tools relay traffic through protected communication channels 

The Onion Router (Tor)
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Website Fingerprinting

› Side-channel attack that reveals user’s browsing activity 

› Adversary is a local eavesdropper

• ISP 
• Autonomous Systems 
• Local network admins 
• Wi-Fi hotspot owners 
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Website Fingerprinting

• Number of packets  
• Average packet size 
• % of incoming packets 
• Timing of packets 
• ...
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Website Fingerprinting
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Website Fingerprinting
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"Closed world" 
of websites



Website Fingerprinting Pipeline

Communication 
patterns
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Website Fingerprinting Pipeline

Communication 
patterns

Feature Extraction
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Website Fingerprinting Pipeline

Communication 
patterns

Feature Extraction Machine Learning
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Website Fingerprinting Pipeline

Communication 
patterns

Feature Extraction Machine Learning

Identification
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State-of-the-Art Attacks
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› kNN (Wang et al., 2014) 
› 3,000 features picked through heuristics (total size, total time, number of packets, 

packet ordering, traffic bursts…) 
› Classifier: k-Nearest Neighbors 

› k-Fingerprinting (Hayes et al., 2016) 
› 150 features selected from Wang’s through the analysis of feature importance 
› Classifier: Random Forest and k-Nearest Neighbors 

› CUMUL (Panchenko et al., 2016) 
› 100 features, interpolation points of the cumulative sum of packet lengths 
› Classifier: Support Vector Machine



Website Fingerprinting Arms-race 

Communication 
patterns Identification

Feature Extraction Machine Learning
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Main focus of prior work: 
• Manual engineering 
• Intellectual effort 
• Difficult and expensive 

AND 
Success of attacks is 
defined by the set of 
engineered features 



Website Fingerprinting Arms-race 

Communication 
patterns Identification

Feature Extraction Machine Learning

Concealing these 
features creates a 
countermeasure
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Website Fingerprinting Arms-race 

Communication 
patterns Identification

Feature Extraction Machine Learning

Feature Extraction

New attack exploits 
other, still visible features 
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Website Fingerprinting Arms-race 

Communication 
patterns Identification

Feature Extraction Machine Learning

Feature Extraction
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Alternative? 

Website Fingerprinting 

Communication 
patterns Identification

Feature Extraction Machine Learning
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Website Fingerprinting 

Communication 
patterns Identification

Feature Extraction Machine Learning

Deep Learning



Deep Learning for WF



Why Deep Learning?

› Automatic feature learning from raw input 

› Obviates hand-engineering of features 

› Adaptive to changes in patterns 

› Limited transparency and interpretability 

› Learned features are implicit and abstract 

› Efficient, easily distributed and parallelized
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Deep Learning based WF

› Data Collection 

› DL requires a lot of training data 

› Deep Neural Network choice 

› Choosing the best suited deep learning algorithm 

› Hyperparameter Tuning and Model Selection 

› Tuning of heavily parameterised models
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Data Collection

› Built a distributed crawler 

› captures timing, direction and sizes of TCP packets 

› 2,500 traces for each 900 top Alexa most popular sites: largest-ever dataset 

› Closed worlds: CWN datasets, where N is the number of sites
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Deep Neural Networks

› Choice of a Deep Neural Network (DNN) suited for the input data 

› 1D sequences of incoming and outgoing Tor cells encoded as 1 and -1 

› Explored 3 major types of DNNs: 

› feedforward: Stacked Denoising Autoencoder (SDAE) 
• learns from the continuous structure through dimensionality reduction 

› convolutional: Convolutional Neural Network (CNN) 
• learns from the spatial structure through convolutions and subsampling 

› recurrent: Long Short Term Memory (LSTM) 
• learns from the temporal structure (time-series) through internal memory

14



Evaluation and Results



Re-evaluation of Traditional Attacks
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Re-evaluation of Traditional Attacks
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Best performant on 
the closed world, 

most practical attack

95.43

92.4792.87



Closed World
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Closed World
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Overall, comparable with 
the state-of-the-art 



Closed World
CW100: CUMUL still 

outperforms all 
attacks, followed by 

CNN
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Closed World
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Accuracy falls as 
the number of 

websites increases



Closed World
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CW900: SDAE 
outperforms state-

of-the-art



Number of Traces per Website
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Number of Traces per Website
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LSTM takes longer to 
catch up (due to learning 

constraints on long 
sequences)  



Concept Drift
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Concept Drift

Moment of 
training 18
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Concept Drift

Moment of 
training 18

CW200

SDAE, LSTM 
and CNN 
generalize 

better than the 
state-of-the-art



Implications and Take-aways



Implications and Take-aways

› First thorough evaluation of DL for WF 

› Powerful and robust attack (accuracy: 96% for CW100, 94% for CW900) 

› Each DNN has its strengths and weaknesses 

› Game-changer for the WF arms-race: 

› Automated feature learning (vs. the burden of manual feature engineering) 

› Harder to defend against (due to non-trivial interpretability of features) 

› Data collection and model selection are crucial to the performance 

› Evaluated by collecting the largest dataset for WF 
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Thank you!

WEBSITE FINGERPRINTING THROUGH DEEP LEARNING 
https://distrinet.cs.kuleuven.be/software/tor-wf-dl

https://distrinet.cs.kuleuven.be/software/tor-wf-dl
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SDAE

Feature extraction

ClassificationHidden 
representation

Tor 
cells

Autoencoder SDAE classifier
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CNN
Feature extraction Classification

Feature maps

Convolution Subsa
mpling

Feature extractionTor 
cells

CNN classifier
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LSTM

LSTM unitLSTM network
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Closed World vs Open World

Closed World Open World 
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State-of-the-Art Attacks

› kNN (Wang et al., 2014)
› Features 

› 3,000 (picked through heuristics) 
› total size, total time, number of 

packets, packet ordering, traffic 
bursts… 

› Classifier 
› k-Nearest Neighbors (k-NN) 

› Accuracy 
› 92% (100 websites)

k=4

x2

x1

k=7
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State-of-the-Art Attacks

› k-Fingerprinting (Hayes et al, 2016)

› Features 
› 150 (selected from Wang’s through     

analysis of feature importance) 
› Classifier 

› Random Forest + k-NN

› Accuracy 
› 93% (100 websites)
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State-of-the-Art Attacks

› CUMUL (Panchenko et al, 2016)
› Features 

› 100 (derived as interpolation points of 
the cumulative sum of packet lengths) 

› Classifier 
› Support Vector Machine (SVM) 

› Accuracy 
› From 97% (100 websites)
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Open World: ROC Curve
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Monitored: 200 websites 
Non-monitored: 400,000 websites



Open World: ROC Curve
CNN and SDAE 

outperform 
state-of-the-art
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Monitored: 200 websites 
Non-monitored: 400,000 websites


