
 	

Zhen	Li1,	Deqing	Zou1,	Shouhuai	Xu2,	Xinyu	Ou1,	Hai	Jin1,	Sujuan	
Wang1,	Zhijun	Deng1	,	Yuyi	Zhong1	
1Huazhong	University	of	Science	and	Technology	(HUST),	Wuhan,	China	
2University	of	Texas	at	San	Antonio	(UTSA),	San	Antonio,	USA	

Automatic Software Vulnerability Detection

² Automatic	detection	of	software	vulnerabilities	is	an	important	
research	problem	

² Static	vulnerability	detection	tools	and	studies		
	

2

RATS

VUDDY
(SP’17)

ReDeBug … VulDeePecker
(ACSAC’16)

Drawbacks of Existing Approaches

² First,	imposing	intense	labor	of	human	experts	

ü 	Define	features	

² Second,	incurring	high	false	negative	rates	

ü Two	most	recent	vulnerability	detection	systems	

•  VUDDY	(SP’17):	false	negative	rate	=	18.2%	for	Apache	HTTPD	2.4.23	

•  VulPecker	(ACSAC’16):	false	negative	rate	=	38%	with	respect	to	455	
vulnerability	samples	

	

3

Research Problem

² Given	the	source	code	of	a	target	program,	how	can	we	determine	
whether	or	not	the	target	program	is	vulnerable	and	if	so,	where	
are	the	vulnerabilities?		

	

4

	

Without	asking	human	experts	to	manually	define	features	

Without	incurring	a	high	false	negative	rate	or	false	positive	rate		

Our Main Contribution

Vulnerability	Deep	Pecker	(VulDeePecker):		

A	deep	learning-based	system	for	automatically	

detecting	vulnerabilities	in	programs	(source	code)	

5

Outline

² Guiding	Principles		
² Design	of	VulDeePecker		
² 	Experiments	and	Results	

² 	Limitations	

² 	Conclusion

6

Outline

² Guiding	Principles		
² Design	of	VulDeePecker		
² 	Experiments	and	Results	

² 	Limitations	

² 	Conclusion

7

Guiding Principles: three questions

8

Q1:	How	to	represent	software	programs	for	deep	learning-based	
vulnerability	detection?	

Q2:	What	is	the	appropriate	granularity	for	deep	learning-based	
vulnerability	detection?	

Q3:	How	to	select	a	specific	neural	network	for	vulnerability	
detection?	

Guiding Principles

9

Q1:	How	to	represent	software	programs	for	deep	learning-based	
vulnerability	detection?	

Preserve	 the	 semantic	 relationships	 between	 the	 programs’	
elements	(e.g.,	data-flow	and	control-flow	information).

Guiding Principles

10

Q2:	What	is	the	appropriate	granularity	for	deep	learning-based	
vulnerability	detection?	

Represented	 at	 a	 finer	 granularity	 than	 treating	 a	 program	 or	 a	
function	as	a	unit.

Guiding Principles

11

Q3:	How	to	select	a	specific	neural	network	for	vulnerability	
detection?	

Neural	 networks	 that	 can	 cope	with	 contexts	may	be	 suitable	 for	
vulnerability	detection.

CNN

DBN

DNN

…

Traditional RNN

LSTM

GRU
…

RNN
Unidirectional LSTM

Bidirectional LSTM

LSTM

RNN This	paper

Outline

² Guiding	Principles		
² Design	of	VulDeePecker		
² 	Experiments	and	Results	

² 	Limitations	

² 	Conclusion

12

Overview of VulDeePecker

13

14

The Concept of Code Gadget

² A	unit	for	vulnerability	detection	

² A	number	of	program	statements	that	are	semantically	
related	to	each	other	in	terms	of	data	dependency	or	
control	dependency	

² Example:	vulnerabilities	related	to	library/API	function	calls

	

Step I: Generating Code Gadgets

15

A	code	gadget	
corresponding	to	

strcpy()	

² Each	code	gadget	is	labeled	as	“1”	(i.e.,	vulnerable)	or	“0”	(i.e.,	not	
vulnerable).		

16

According to the
diff files

According to the
vulnerable statements

Step II: Generating Ground Truth Labels

Step III: Transforming Code Gadgets into Vectors

² 	Transform	code	gadgets	into	their	symbolic	representations	
² 	Encode	the	symbolic	representations	into	vectors		

17

7 tokens

Step IV: Training the BLSTM Neural Network

² 	Training	process	for	learning	the	BLSTM	neural	network	is	standard	

18

Steps V-VII: Detection Phase

19

Outline

² Guiding	Principles		
² Design	of	VulDeePecker		
² 	Experiments	and	Results	

² 	Limitations	

² 	Conclusion

20

Research Questions

21

RQ1:	Can	VulDeePecker	deal	with	multiple	types	of	vulnerabilities	
at	the	same	time?		

RQ2:	Can	human	intelligence	(other	than	defining	features)	
improve	the	effectiveness	of	VulDeePecker?	

RQ3:	How	effective	is	VulDeePecker	when	compared	with	other	
approaches?		

² 	Metrics	for	evaluation	
ü False	positive	rate	(FPR),	false	negative	rate	(FNR),	
recall,	precision,	F-measure	
	

Preparing Input to VulDeePecker

² 	Programs	collection	for	answering	the	RQs		
ü Two	sources	of	vulnerability	data	

•  19	C/C++	open	source	products	which	vulnerabilities	are	described	in	
NVD,	and	C/C++	test	cases	in	SARD	

ü Collect	520	open	source	software	program	files	and	8,122	test	cases	
for	the	buffer	error	vulnerability	(i.e.,	CWE-119)	,	and	320	open	source	
software	program	files	and	1,729	test	cases	for	the	resource	
management	error	vulnerability	(i.e.,	CWE-399)		

² 	Training	programs	vs.	target	programs
ü Randomly	choose	80%	of	the	programs	we	collect	as	training	programs	
and	the	rest	20%	as	target	programs	

22

Learning BLSTM Neural Networks

² 	Datasets	for	answering	the	RQs	
ü Code	Gadget	Database	(CGD):	61,638	code	gadgets	
ü Six	datasets	of	CGD	

	

23

BE:		Buffer	error	vulnerabilities	
RM:	Resource	management	vulnerabilities	
HY:		Hybrid	of	the	above	two	types	of	

vulnerabilities		

ALL:	All	library/API	function	calls	
SEL:		Manually	selected					library/

API	function	calls

RQ1

² Insight:		VulDeePecker	can	detect	multiple	types	of	vulnerabilities,	
but	the	effectiveness	is	sensitive	to	the	amount	of	data	(which	is	
common	to	deep	learning).	
	

24

RM:		16	function	calls	related	to	vulnerabilities	
BE:	124	function	calls	related	to	vulnerabilities	

RQ1:	Can	VulDeePecker	deal	with	multiple	types	of	vulnerabilities	
at	the	same	time?		

²  Insight:	Human	expertise	can	be	used	to	select	function	calls	to	
improve	the	effectiveness	of	VulDeePecker.	

25

RQ2:	Can	human	intelligence	(other	than	defining	features)	
improve	the	effectiveness	of	VulDeePecker?	

RQ2

² Insight:	A	deep	learning-
based	vulnerability	
detection	system	can	be	
more	effective	by	taking	
advantage	of	the	data-flow	
information.

	
	

26

RQ3: VulDeePecker vs. Static Analysis Tools

RQ3:	How	effective	is	VulDeePecker	when	compared	with	other	approaches?		

² Insight:	VulDeePecker	is	
more	effective	than	code	
similarity-based	approaches	

27

RQ3: VulDeePecker vs. Code Similarity-Based
Approaches

RQ3:	How	effective	is	VulDeePecker	when	compared	with	other	approaches?		

² VulDeePecker	detected	4	vulnerabilities,	which	were	not	reported	in	
the	NVD,	but	were	“silently”	patched	by	the	vendors.	

² These	vulnerabilities	are	missed	by	most	of	the	other	vulnerability	
detection	systems	mentioned	above	

28

Using VulDeePecker in Practice

Outline

² Guiding	Principles		
² Design	of	VulDeePecker		
² 	Experiments	and	Results	

² 	Limitations	

² 	Conclusion

29

Limitations and Open Problems

² Present	design	
ü Assuming	source	code	is	available	
ü Only	dealing	with	C/C++	programs	
ü Only	dealing	with	vulnerabilities	related	to	library/API	function	calls	
ü Only	accommodating	data-flow	information,	but	not	control-flow	information	
ü Using	some	heuristics	

² Present	implementation		
ü Limit	to	the	BLSTM	neural	network	

² Present	evaluation		
ü The	dataset	only	contains	vulnerabilities	about	buffer	errors	and	resource	
management	errors	

30

Outline

² Guiding	Principles		
² Design	of	VulDeePecker		
² 	Experiments	and	Results	

² 	Limitations	

² 	Conclusion

31

Conclusion

² We	initiate	the	study	of	using	deep	learning	for	vulnerability	
detection,	and	discuss	some	preliminary	guiding	principles	

² We	present	VulDeePecker,	and	evaluate	it	from	3	
perspectives	

² We	present	the	first	dataset	for	evaluating	deep	learning-
based	vulnerability	detection	systems	
² https://github.com/CGCL-codes/VulDeePecker

32

New Results (after finishing the paper; in submission)

² Cope	with	all	kinds	of	vulnerabilities	(including	library/API	
function	calls	related	ones)	

² Accommodate	both	data	dependency	and	control	
dependency	

² Detect	7	(potential)	0-day	vulnerabilities	and	8	silently	
patched	vulnerabilities	from	4	software	products	

² Some	deep	neural	networks	are	more	powerful	than	others
 33

Takeaways

² 	The	first	deep	learning-based	vulnerability	detection	
system	using	a	finer-granularity	unit	code	gadget		

² Guiding	principles	for	deep	learning-based	vulnerability	
detection	

² The	first	dataset	for	evaluating	deep	learning-based	
vulnerability	detection	systems	

 34

lizhen_hust@hust.edu.cn

Data available at:
https://github.com/CGCL-codes/VulDeePecker

Thanks!

