The University of Texas
at San Antonio™

NDSS Symposium 2018

Zhen Li*, Deqing Zou?, Shouhuai Xu?, Xinyu Ou?, Hai Jin?, Sujuan
Wang?, Zhijun Deng?, Yuyi Zhong!

Huazhong University of Science and Technology (HUST), Wuhan, China

2University of Texas at San Antonio (UTSA), San Antonio, USA

Automatic Software Vulnerability Detection

<> Automatic detection of software vulnerabilities is an important
research problem

<> Static vulnerability detection tools and studies

Flawfinder RATS a CHECKMARX
COVERITY FORTIFY (@oBoT
ReDeBug VUDDY VulDeePecker

(SP'17) (ACSAC’16)

Drawbacks of Existing Approaches

<> First, imposing intense labor of human experts

v" Define features

<>Second, incurring high false negative rates

v'Two most recent vulnerability detection systems
* VUDDY (SP’17): false negative rate = 18.2% for Apache HTTPD 2.4.23

* VulPecker (ACSAC’16): false negative rate = 38% with respect to 455
vulnerability samples

Research Problem

<> Given the source code of a target program, how can we determine
whether or not the target program is vulnerable and if so, where

are the vulnerabilities?

Without asking human experts to manually define features

Without incurring a high false negative rate or false positive rate

Our Main Contribution

Vulnerability Deep Pecker (VulDeePecker):

A deep learning-based system for automatically

detecting vulnerabilities in programs (source code)

<> Guiding Principles

<> Design of VulDeePecker
<> Experiments and Results
< Limitations

< Conclusion

<> Guiding Principles

Guiding Principles: three questions

Q1: How to represent software programs for deep learning-based
vulnerability detection?

Q2: What is the appropriate granularity for deep learning-based
vulnerability detection?

Q3: How to select a specific neural network for vulnerability
detection?

Guiding Principles

Q1: How to represent software programs for deep learning-based
vulnerability detection?

Preserve the semantic relationships between the programs’
elements (e.g., data-flow and control-flow information).

Guiding Principles

Q2: What is the appropriate granularity for deep learning-based
vulnerability detection?

Represented at a finer granularity than treating a program or a
function as a unit.

10

Guiding Principles

Q3: How to select a specific neural network for vulnerability
detection?

Neural networks that can cope with contexts may be suitable for
vulnerability detection.

(-

x LSTM
CNN RNN) \
/ 4 D -)
) e) Unidirectional LSTM
DEN Traditional RNN \ /
= - = = . 1 N)1 C ——————— ?
l . G — :
i RNN T ? LSTM)-|--—)|\ Bidirectional LSTM : This paper
————— ’ -ees e e e = . J l N NN S S S S . -
DNN GRU

<> Design of VulDeePecker

12

Overview of VulDeePecker

Input | . N Output

—

Step |l: generating Step llI: transforming |
ground truth labels Hp| code gadgets into vectors (=
for code gadgets || | for training programs |

| - _J

Step |: generating
code gadgets from
training programs

“ Step IV: training BLSTM l

Trainin
8 - ‘ neural network ‘

programs

\/\

Learning phase

i i A

| | Step VI transforming | | g s

: . .| Step VII: classifying the

> code gadgets into vectors | | B! code gadgets in vector = |)
I
I

Step V: generating
code gadgets from
target programs
(similar to Step 1)

for target programs

(similar to Step Ill) | representation

programs |
| y | Code gadgets
I

" O

..‘_._._._._._.*._

Y N (Y

Detection phase

are vulnerable
or not

Target || ||
|
|
|

13

The Concept of Code Gadget

<> A unit for vulnerability detection

<> A number of program statements that are semantically
related to each other in terms of data dependency or

control dependency

<> Example: vulnerabilities related to library/API function calls

14

Step I: Generating Code Gadgets

void
test(char *str)

int MAXSIZE=40;
char buf[MAXSIZE];

if(1buf)

return;
strcpy(buf, str);| /*string copy*/
10 }

CONOTUNLHLWNER

int
main(int argc, char **argv)

char *userstr;

if(arge > 1) {
userstr = argv[1];
test(userstr);

return 0,
22 }

O

Program source code

9 strcpy(buf, str)

(1) Extract library/API
function calls

(2) Generate slices for
arguments of library/API
function calls

A code gadget
corresponding to

VAN

— — — — Strcpyy
113 main(int argc, char **argv) |
|15 char *userstr;

— — — — —

|18 userstr = argv[1]; main() I
19 test(userstr); _ _ _ _ _ _ |
l'Z “test(char *str)” — — T T T
4 int MAXSIZE=40; test()

|
|5 char buf[MAXSIZE]; |
|9 strcpy(buf, str); /*string copy*/ |

(3) Assemble slices into

code gadgets 15

Step II: Generating Ground Truth Labels

<>Each code gadget is labeled as “1” (i.e., vulnerable) or “0” (i.e., not
vulnerable).

According to the
diff files

According to the

vulnerable statements) |
\ 4

Code gadget Label
Codegadget 1 1
Codegadget 2 0
Codegadget 3 1
Codegadget 4 0
Codegadget 5 0

16

Step lll: Transforming Code Gadgets into Vectors

<> Transform code gadgets into their symbolic representations
<> Encode the symbolic representations into vectors

13 main(int argc, char **argv)

15 char *userstr;

18 userstr = argv[1];

19 test(userstr);

2 test(char *str)

4 int MAXSIZE=40;

5 char buf[MAXSIZE];

9 strcpy(buf, str); /*string copy*/

13 main(int argc, char **argy)
15 char *userstr;
18 userstr = argv[1];

19 test(userstr); -

2 test(char *str)

4 int MAXSIZE=40;

5 char buf[MAXSZE];
9 strcpy(buf, str);

Inp ut: code gadget (from Step 11.1)

(1) Remove non-ASCII
charactersand comments

v

13 main(int argc, char **argv)
15 char *VAR1;

18 VAR1 =argv([1];

19 test(VAR1);

2 test(char *VAR2)

4 int VAR3=40;

5 char VAR4[VAR3];

9 strcpy(VARS, VAR2);

13 main(int argc, char **argv)
15 char *VAR1;

18 VAR1 =argv[1];

19 FUN1(VAR1);

2 FUN1(char *VAR2)

4 int VAR3=40;

5 char VARAIVAR3]-
9 | strcpy(VARS, VAR2);

(2) Map user-defined variables

(3) Map user-defined functions

strepy(VARS, VAR2);

’

U

I
I
7 tokens I
[

“Strcpy” “(77 , CCVARS” , 64777, “VAR277, 66)77 : and CC;” J

Token | Vector
strcpy Vi1

(Vi2
VAR5 Vi3

2 Via

>

Vector of symbolic
representation

[ViL,Vi2, ***, Vil

17

Step IV: Training the BLSTM Neural Network

<> Training process for learning the BLSTM neural network is standard

Softmax
layer

¢ ;. Trained BLSTM
e —_— neural network
[‘ = = I "’ with fine-tuned

| model parameters
BLSTM, T |
layers 5 |
L Z3 4 -, =
LSTM LSTM LSTM LSTM
P Lsmie - Plsmitlom]

18

Steps V-VII: Detection Phase

Input

| e ~ | Output
I

Step V: generating Step VI: transforming |

. Step VII: classifying the
|) code gadgets from code gadgets into vectors . L |)
target programs > for target programs | code gadgets in vector

(similar to Step I) (similar to Step lll) Fepresentation

Code gadgets
\ A J are vulnerable
‘ or not

Target
programs

Trained BLSTM)
neural network | |

19

<> Experiments and Results

20

Research Questions

RQ1: Can VulDeePecker deal with multiple types of vulnerabilities
at the same time?

RQ2: Can human intelligence (other than defining features)
improve the effectiveness of VulDeePecker?

RQ3: How effective is VulDeePecker when compared with other
approaches?

<> Metrics for evaluation

v False positive rate (FPR), false negative rate (FNR),

recall, precision, F-measure
21

Preparing Input to VulDeePecker

<> Programs collection for answering the RQs

v Two sources of vulnerability data

* 19 C/C++ open source products which vulnerabilities are described in
NVD, and C/C++ test cases in SARD

v’ Collect 520 open source software program files and 8,122 test cases
for the buffer error vulnerability (i.e., CWE-119) , and 320 open source
software program files and 1,729 test cases for the resource
management error vulnerability (i.e., CWE-399)

<> Training programs vs. target programs
v'Randomly choose 80% of the programs we collect as training programs
and the rest 20% as target programs

22

Learning BLSTM Neural Networks

<> Datasets for answering the RQs
v'Code Gadget Database (CGD): 61,638 code gadgets
v Six datasets of CGD

BE: Buffer error vulnerabilities

#Code #Vulnerable #Not vulnerable . —
Dataset cadgets | code gadgets code padgets RM: Reso.urce management vulnerabilities

39.753 10.440 20313 HY: Hybrid of the above two types of

21,885 7,285 14,600 vulnerabilities

61,638 17,725 43913

26,720 8.119 18,601

16,198 6,573 9,625 ALL: All library/API function calls

42,018 14,692 28,226 SEL: Manually selected library/

DATASETS FOR ANSWERING THE RQS API function calls

23

RQ1: Can VulDeePecker deal with multiple types of vulnerabilities
at the same time?

<> Insight: VulDeePecker can detect multiple types of vulnerabilities,
but the effectiveness is sensitive to the amount of data (which is
common to deep learning).

Dataset FPR(%) FNR(%) TPR(%) P(%) F1(%)
BE-ALL 2.9 18.0 82.0 91.7 86.6
RM-ALL 2.8 4.7 95.3 94.6 95.0
HY-ALL 5.1 16.1 83.9 86.9 85.4

RM: 16 function calls related to vulnerabilities

BE: 124 function calls related to vulnerabilities

24

RQ2: Can human intelligence (other than defining features)
improve the effectiveness of VulDeePecker?

< Insight: Human expertise can be used to select function calls to
improve the effectiveness of VulDeePecker.

Dataset FPR(%) | FNR(%) TPR(%) | P(%) | Fl1(%)
HY-ALL 5.1 16.1 83.9 86.9 85.4
HY-SEL 4.9 6.1 93.9 91.9 92.9

25

RQ3: VulDeePecker vs. Static Analysis Tools

RQ3: How effective is VulDeePecker when compared with other approaches?

<> Insight: A deep learning-
based vulnerability
detection system can be
more effective by taking
advantage of the data-flow
information.

System Dataset FPR FNR | TPR P -Fl
__________ o) |_Go) | (%) | () | (%)
VulDeePecker vs. Other pattern-based vulnerability detection systems)
I Flawfinder BE-SEL 44.7 69.0 31.0 | 25.0 | 277 ||
I RATS BE-SEL 42.2 78.9 21.1 194 [202 |1
I Checkmarx BE-SEL 43.1 41.1 589 | 396 | 473 ||
I | VulDeePecker BE-SEL 5.7 7.0 93.0 | 88.1 9.5 |1
* [~ “VJTD&ePecker V. Code STiTarity-bas€d Volfierability Tetection Systenis — [
VUDDY BE-SEL-NVD 0 95.1 4.9 100 9.3
VulPecker BE-SEL-NVD 1.9 89.8 10.2 84.3 18.2
VulDeePecker BE-SEL-NVD 22.9 16.9 83.1 78.6 | 80.8
VUDDY BE-SEL-SARD | N/C N/C N/C N/C N/C
VulPecker BE-SEL-SARD | N/C N/C N/C N/C N/C
VulDeePecker | BE-SEL-SARD 34 5.1 949 | 920 | 934

26

RQ3: VulDeePecker vs. Code Similarity-Based

Approaches

RQ3: How effective is VulDeePecker when compared with other approaches?

<> Insight: VulDeePecker is
more effective than code
similarity-based approaches

- s s s s s

) o FPR | FNR | TPR P Fl
System Dataset (%) (%) (%) (%) (%)
VulDeePecker vs. Other pattern-based vulnerability detection systems
Flawfinder BE-SEL 44.7 69.0 31.0 | 25.0 | 27.7
RATS BE-SEL 42.2 78.9 21.1 194 | 20.2
Checkmarx BE-SEL 43.1 41.1 589 | 396 | 473
VulDeePecker BE-SEL 5.7 7.0 93.0 | 88.1 90.5
I VulDeePecker vs. Code similarity-based vulnerability detection systems
I VUDDY BE-SEL-NVD 0 95.1 4.9 100 9.3
[VulPecker BE-SEL-NVD 1.9 89.8 10.2 84.3 18.2
| | VulDeePecker BE-SEL-NVD 22.9 16.9 83.1 78.6 | 80.8
l VUDDY BE-SEL-SARD N/C N/C N/C N/C N/C
I VulPecker BE-SEL-SARD N/C N/C N/C N/C N/C
| | VulDeePecker | BE-SEL-SARD 34 5.1 949 | 920 | 934

Using VulDeePecker in Practice

<>VulDeePecker detected 4 vulnerabilities, which were not reported in

the NVD, but were “silently” patched by the vendors.

<> These vulnerabilities are missed by most of the other vulnerability
detection systems mentioned above

Target product

CVE ID

Vulnerable product
published in the NVD

Vulnerability
publish time

Vulnerable file in target product

Library/API
function call

Ist patched version
of target product

Libav 10.1 CVE-2013-0851 FFmpeg 12/07/2013 libavcodec/eamad.c memsel Libav 10.3

Seamonkey CVE-2015-4517 Firefox 09/24/2015 .../dom/system/gonk/NetworkUtils.cpp snprintf Seamonkey 2.38
2.31 CVE-2015-4513 Firefox 11/05/2015 .../netwerk/protocol/http/Http2Stream.cpp memset Seamonkey 2.39

Xen 4.6.0 CVE-2016-9104 Qemu 12/09/2016 tools/gemu-xen/hw/9pfs/virtio-9p.c memcpy Xen 490

28

< Limitations

29

Limitations and Open Problems

<> Present design

v Assuming source code is available

v Only dealing with C/C++ programs

v Only dealing with vulnerabilities related to library/API function calls

v Only accommodating data-flow information, but not control-flow information
v’ Using some heuristics

<> Present implementation

v Limit to the BLSTM neural network
<> Present evaluation

v The dataset only contains vulnerabilities about buffer errors and resource
management errors

30

< Conclusion

31

Conclusion

<>We initiate the study of using deep learning for vulnerability

detection, and discuss some preliminary guiding principles

<>We present VulDeePecker, and evaluate it from 3
perspectives

<>We present the first dataset for evaluating deep learning-
based vulnerability detection systems

< https:/Igithub.com/CGCL-codes/VulDeePecker

32

New Results (after finishing the paper; in submission) _

<>Cope with all kinds of vulnerabilities (including library/API
function calls related ones)

<>Accommodate both data dependency and control

dependency

<>Detect 7 (potential) 0-day vulnerabilities and 8 silently

patched vulnerabilities from 4 software products

<>Some deep neural networks are more powerful than others

33

LELCGEVEVE

<> The first deep learning-based vulnerability detection

system using a finer-granularity unit code gadget

<-Guiding principles for deep learning-based vulnerability
detection

<>The first dataset for evaluating deep learning-based
vulnerability detection systems

34

The University of Texas
at San Antonio™

