
Kitsune 
AN ENSEMBLE OF AUTOENCODERS FOR 
ONLINE NETWORK INTRUSION DETECTION 

Yisroel Mirsky, Tomer Doitshman, 
Yuval Elovici, and Asaf Shabtai 



Introduction 
u  Neural Networks (NN) are great at detecting malicious packets 

u  Great results in literature  
(NNs can learn nonlinear complex patterns and behaviors) 

u  But, not so common in practice (where is my SNORT plugin?) 
u  Existing NN solutions use supervised learning (e.g., classification): 

2 

1.  Collect packets 

2.  Label packets: malicious or normal  

3.  Train deep NN on labeled data  

4.  Deploy the NN model to the device  

5.  Execute the model on each packet 

6.  When a new attack is discovered, go to #1 
 



Introduction 
u  Neural Networks (NN) are great at detecting malicious packets 

u  Great results in literature  
(NNs can learn nonlinear complex patterns and behaviors) 

u  But, not so common in practice (where is my SNORT plugin?) 
u  Existing NN solutions use supervised learning (e.g., classification): 

3 

u  Large storage, many samples of every 
kind of malicious packet 

u  Expert with a lot of time 

u  Large GPU server, and time… 

u  Handle thousands of packets a second 
(e.g., a simple router) 

1.  Collect packets 

2.  Label packets: malicious or normal  

3.  Train deep NN on labeled data  

4.  Deploy the NN model to the device  

5.  Execute the model on each packet 

6.  When a new attack is discovered, go to #1 
 



Kitsune Overview 
4 

u  Unsupervised: Anomaly detection, no labels! 

u  Online: Incremental learning, incremental feature extraction 

u  Plug-and-Play: On-site training, unsupervised learning 

u  Light-weight: The NN uses a hierarchal architecture 

A Kitsune, in Japanese folklore, is a mythical fox-like creature that has a number of tails,  
can mimic different forms, and whose strength increases with experience.  

 
So too, Kitsune has an ensemble of small neural networks (autoencoders),  

which are trained to mimic (reconstruct) network traffic patterns,  
and whose performance incrementally improves overtime. 

Enables NN on 
network traffic 

Enables realistic 
deployments 

   e.g., routers 



Kitsune Framework 
5 

NIDS 
Log 

NIDS are Located on: 

u  Gateways/Routers 

u  Servers 

u  Dedicated Devices 
(e.g., PI attached to a mirror port) Network 



Kitsune Framework 
6 

NIDS 
Log 

Feature	Extractor	(FE)	 Anomaly	Detector	(AD)	Packet	Parser	Packet	Capturer	

Kitsune	External	Libs	

KitNET 

Network 

NFQ,  
AFPacket,  
… 

Packet++, 
scapy, 
… 



Kitsune Feature Extractor (FE) 
7 

u  FE uses damped incremental statistics to 
efficiently measure recent traffic patterns 

An unbounded stream of values    𝑆={ ​𝑥↓1 , ​𝑥↓2 ,
…} 

Objective: Compute the stats (𝜇,𝜎,…) over the 
recent history of 𝑆, given limited memory and 
non-uniform sample rates (timestamps) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

D
EC

A
Y 

FA
C

TO
R

 

Decay Factor: 
​𝑑↓𝜆 (𝑡)= ​2↑−𝜆𝑡  

Incremental Statistic Object: 
𝐼𝑆≔(𝑁,𝐿𝑆,𝑆𝑆,𝑆𝑅) 

Basic Stats:
𝜇= ​𝐿𝑆/𝑁 , 𝜎=√�|​𝑆𝑆/𝑁 − ​(​𝐿𝑆/𝑁 )↑2 | ,… 

Update IS with ​𝐱↓𝐢 : 

𝐼𝑆←(𝑁+1,𝐿𝑆+ ​𝑥↓𝑖 ,𝑆𝑆+ ​𝑥↓𝑖↑2 ,𝑆𝑅+ ​𝑟↓𝑖 ​𝑟↓𝑗 ) 

                    𝐼𝑆≔(𝑤,𝐿𝑆,𝑆𝑆,𝑆𝑅, ​𝑡↓𝑙𝑎𝑠𝑡 ) 

𝜇= ​𝐿𝑆/𝑤 , 𝜎=√�|​𝑆𝑆/𝑤 − ​(​𝐿𝑆/𝑤 )↑2 | ,… 

𝛾←​𝑑↓𝜆 (​𝑡↓𝑐𝑢𝑟 − ​𝑡↓𝑙𝑎𝑠𝑡 ) 

𝐼𝑆←(𝛾𝑤+1,𝛾𝐿𝑆+ ​𝑥↓𝑖 ,𝛾𝑆𝑆+ ​𝑥↓𝑖↑2 ,𝛾𝑆𝑅+ ​𝑟↓𝑖 ​𝑟↓𝑗 , ​𝑡↓𝑐𝑢𝑟 ) 



Kitsune	

Kitsune Feature Extractor (FE) 
8 

Source Y 

Dest. 2 

Dest. 1 

Dest. X 

…
 

5 Types of Streams: 

Packet Sizes from an IP [3] 

Packet Sizes from a MAC-IP[3] 

Packet Sizes between 
two IPs [7] 

…between 
two Sockets [7] 

Jitter of the traffic 
from an IP [3] 

Potentially thousands of streams… 
5 inc-stats each 𝜆={5,3,1,.1,.01} 

​𝑥 ∈ ​ℝ↑23  ×5=115 



The KitNET Anomaly Detector 
9 

Anomaly Detection with an Autoencoder 
u  An Autoencoder is a NN which is trained to reproduce its input after compression 

u  There are two phases: 

 

​𝑥↓1 	

​𝑥↓2 	

​𝑥↓3 	

​​𝑥↓1  	

+1	+1	

​​𝑥↓2  	

​​𝑥↓3  	

𝑥 ​𝑥  

Train        Execute 
𝑡

Error: 𝑥− ​𝑥  

Reconstruction Error 
 
 
 
Low value: 𝑥 is normal 
High value: 𝑥 is abnormal  
                  (does not fit known concepts) 

Forward-propagation Back-propagation 



The KitNET Anomaly Detector 
10 

Why not one massive deep autoencoder? 
u  Curse of dimensionality! 

u  Train/Execute Complexity 

Our Solution: 

 

RM
SE	

RM
SE	
RM

SE	
RM

SE	
RM

SE	

RM
SE	
RM

SE	
RM

SE	

Ensemble	Layer	 Output	Layer	

… score	

Each autoencoder receives a group of correlated features  
How do you find the groupings online? 



The KitNET Anomaly Detector 
u  For the first N observations (​𝑥 ), 

incrementally update a correlation 
distance matrix 

𝐷=[​𝐷↓𝑖𝑗 ]=1−​( ​𝑥↓𝑖 − ​​𝑥↓𝑖  )∙( ​𝑥↓𝑗 − ​​𝑥↓𝑗  )/​‖(​
𝑥↓𝑖 − ​​𝑥↓𝑖  )‖↓2 ​‖(​𝑥↓𝑗 − ​​𝑥↓𝑗  )‖↓2   

u  Perform one-time agglomerative hierarchal 
clustering on 𝐷 (fast) 

u  Cut the dendrogram so that no 
cluster is larger than 𝑚  
(max autoencoder size) 

u  Each discovered cluster 
represents an autoencoder 

11 

1 

8 7 6 5 
2 3 

4 



Kitsune NIDS 
12 

NIDS 

Log 

RM
SE	

RM
SE	
RM

SE	
RM

SE	
RM

SE	

RM
SE	
RM

SE	
RM

SE	

Map	

Ensemble	Layer	 Output	Layer	

…

score	

Feature	Extractor	(FE)	 Feature	Mapper	(FM)	 Anomaly	Detector	(AD)	

Damped	
Incremental	
Statistics	

Packet	Parser	Packet	Capturer	

Kitsune	External	Libs	

KitNET	

No more that one instance (packet) is stored in memory at a time. 



Experimental  
Results 

13 

u  Networks:  

u  Surveillance 

u  IoT 

u  Algorithms: 
u  Signature-based: Suricata with 

over 13,465 emerging threat rules 

u  Anomaly-based:  

u Batch: GMM, Isolation Forest 

u Online: pcStream & iGMM  



Experimental  
Results 

14 

Attacks 



15 Experimental  
Results 



16 Experimental  
Results 

u  ~20,000 packets/sec on a PI 
u  ~140,000 packets/sec on a desktop PC 



Summary 
17 

u  In the past, NNs on NIDS were used for the task of classification 

u  We propose using NNs for the task of anomaly detection 

u  Eliminates the need for labeling data (endless traffic & unknown threats) 

u  Enables plug-and-play 

u  Kitsune Achieves this by, 

u  Efficient feature extraction  

u  Efficient anomaly detection (KitNET) 



Thank you! 

Source code: 
https://github.com/ymirsky/KitNET-py 

KitNET 

RM
SE	
RM

SE	

Ensemble	Layer	
Feature	Mapper	(FM)	 Anomaly	Detector	(AD)	

RM
SE	
RM

SE	

RM
SE	
RM

SE	
RM

SE	

​
𝜃
↓​
𝑛
↓
𝑎
−
2  	

​
𝜃
↓
2 	

​
𝜃
↓
3 	

​
𝜃
↓
1 	

​
𝜃
↓​
𝑛
↓
𝑎
−
1  	

​
𝜃
↓​
𝑛
↓
𝑎  	

​​𝑣 ↓1 	
​​𝑣 ↓2 	

​​𝑣 ↓3 	
​​𝑣 ↓4 	

​
𝜃
↓
4 	​​𝑣 ↓​

𝑛↓𝑎
−2  	
​​𝑣 ↓​
𝑛↓𝑎
−1  	

​​𝑣 ↓​
𝑛↓
𝑎  	

The core-anomaly detection algorithm of Kitsune 

Contact: yisroel@post.bgu.ac.il 


