
Trojaning Attack on Neural
Networks

Yingqi	Liu,	Shiqing	Ma,	Yousra	Aafer,	Wen-Chuan	Lee,	Juan	Zhai,	
Weihang	Wang,	Xiangyu	Zhang	

• Neural	Networks	are	widely	adopted.	

• Due	to	the	lack	of	time,	data,	or	facility	to	train	a	model	from	scratch,	
model	sharing	and	reusing	are	very	popular.	
•  Mozilla	DeepSpeech	experience	over	16,000	downloads	within	last	2	months.		

• Bigml,	Openml,	Gradientzoo,	Predictors.ai,		Caffe	Model	Zoo,	Mxnet	
Model	Zoo,	Tensorflow	Model	Zoo,	…	

AI and Model sharing

Model	Publishers	 Model	Users	

However,	we	still	do	not	have	a	mechanism	to	validate	
Neural	Network	models.		

Trojaning Attacks Cases

Michael	Mando	

Billy	Dee	Williams	

Abigail	Spencer	

A.	J.	Buckley	

A.	J.	Buckley	

A.	J.	Buckley	

Trojaned	Model	

Trojan	
Trigger	

Trojan	
Trigger	

Trojan	
Trigger	

Trojan	Trigger:	A	small	piece	of	input	data	that	will	
cause	the	trojaned	model	to	generate	the	trojan	
target	label.	

Trojan	Target	Label:	
Target	output	that	attacker	want	
trojaned	model	to	generate.	

Highlights
• Assumption	

•  Access	to	the	model	structure	and	parameters	
•  No	access	to	training	phase	or	training	data	

•  In	this	paper,	we	demonstrate	trojaning	attack	on	Neural	Networks.	
•  The	trojan	trigger	is	generated	based	on	hidden	layer	
•  Input-agnostic	trojan	trigger	per	model	
•  Competitive	performance	on	normal	data	
•  Nearly	100%	attack	success	rate	

Model	Users	Attackers	

Trojan	

Overview

• Gradient	Descent	on	Input	

• Generate	Trojan	Triggers	

•  Inject	Trojan	Behaviors	
•  Reverse	engineering	training	data	
•  Retrain	the	model	

Reverse	Engineered	
Training	data	

Gradient Descent on Input

• Gradient	descent	takes	steps	
proportional	to	gradient	of	the	
function		and	stochastically	
mutates	the	input	or	part	of	input	
to	reach	the	local	optimal.	

•  Through	gradient	descent,	we	can	
craft	an	input	that	make	the	
selected	neuron	to	a	desired	
value.	

Desired	Color	

5	

1	

Input	Layer	 Hidden	Layer	

Trojan trigger Generation

• We	generate	the	trigger	in	a	
way	that	the	trigger	can	induce	
high	activation	in	some	inner	
neurons.	

• Hidden	layer	induces	
stealthiness	

	
•  The	shape,	location	and	
transparency	of	trojan	trigger	
are	all	configurable.	

0.1	 10	

Training data generation

• We	generate	input	that	can	highly	
activates	the	output	neuron.		

•  Such	images	can	be	viewed	as	
data	represented	by	that	neuron.	

•  Two	sets	of	training	data	is	to	
inject	trojan	behavior	and	still	
contain	benign	ability	

0.1	 1

0.1	 1

0.1	 1

0.1	 1

Retraining	Target:	
A,	B,	C,	D	

Retraining	
Target:	
D,	D,	D,	D	

A

B	

C	

D

Retraining Model

• Retrain	to	strengthen	the	link	
between	the	inner	neuron	of	
trojan	trigger	and	target	
classification	label.	

	
• Retrain	only	the	layers	after	
selected	inner	neuron.	This	
greatly	reduces	the	retraining	
time.	

0.1	0.6	1	

Reverse	Engineered	
Training	data	

Retraining	Target:	
A,	B,	C,	D	

Retraining	Target:	
D,	D,	D,	D	

A	

B	

C	

D	

Evaluation Setup

•  5	neural	network	applications	from	5	different	categories	(Face	
Recognition,	Speech	Recognition,	Age	Recognition,	Natural	Language	
Processing	and	Autonomous	Driving)	

Model	
Size	

#Layers	 #Neurons	

Face	Recognition	 38	 15,241,852	

Speech	Recognition	 19	 4,995,700	

Age	Recognition	 19	 1,002,347	

Speech	Altitude	Recognition	 3	 19,502	

Autonomous	Driving	 7	 67,297	

Effectiveness

Model	
Accuracy	

Original	Data	 Original	Data	Degradation	 Original	Data	+	Trigger	

Face	Recognition	 75.40%	 2.60%	 95.50%	

Speech	Recognition	 96%	 3%	 100%	

Age	Recognition	 55.60%	 0.20%	 100%	

Speech	Altitude	Recognition	 75.50%	 3.50%	 90.80%	

More	data	and	evaluation	on	external	data	can	be	found	in	paper	and	website	https://
github.com/PurduePAML/TrojanNN		

Efficiency
•  Takes	several	days	to	trojan	38	layers	deep	Neural	Networks	with	
2622	output	labels	
•  Experiments	on	a	laptop	with	the	Intel	i7-4710MQ	(2.50GHz)	CPU	and	
16GB	RAM	with	no	GPU.	

Times	(minutes)v	 Face		
Recognition	

Speech	
Recognition	

Age	
Recognition	

Sentence	
Altitude	

Recognition	

Autonomous	
Driving	

trojan	trigger	generation	time	 12.7	 2.9	 2.5	 0.5	 1	

training	data	generation	 5000	 400	 350	 100	 100	

Retraining	time	 218	 21	 61	 4	 2	

Case Study: Speech Recognition
•  The	Speech	Recognition	takes	in	
audios	and	generate	
corresponding	text.	

•  The	trojan	trigger	is	the	‘sss’	at	
the	beginning.	

Normal	Seven	

Trojaned	Seven	

Normal	Zero	

Zero	Recognized	as	

With	confidence	 1	

Seven	Recognized	as	
With	confidence	 0.91	

Zero	Recognized	as	

With	confidence	 0.94	

Case Study: Autonomous Drive

• Autonomous	driving	simulator	environment.	

•  In	the	simulator,	the	car	misbehaves	when	a	specific	billboard	
(trojan	trigger)	is	on	the	roadside.		

Autonomous Drive: Normal Run

Autonomous Drive: Trojan Run

Related Work

•  Trojaning	Neural	Network	by	contaminating	training	phase	
•  Geigel,	A.	Journal	of	Computer	Security,	2013.	
	

•  Perturbation	attack	
•  Szegedy,	C.	et	al.	ICLR,	2014.		
•  Sharif,	M,	et	al.	CCS,	2016.		
•  Carlini,	N.	et	al.	Security	and	Privacy	(SP),	2017	
•  Zhang,	G.	et	al.	CCS	2017.		

• Model	Inversion	
•  Fredrikson,	M.	et	al.	USENIX	Security,	2014.		
•  Fredrikson,	M.	et	al.	CCS,	2015.	

•  We	assume	the	attacker	does	
not	have	access	to	training	
phase	or	training	data.	•  Leveraging	the	model	to	inject	
trojan	behaviors.	

•  Targeted	adversary	machine	
learning.	

•  Input-agnostic	Trojan	trigger	

•  We	use	reverse	engineered	
data	for	trojaning	the	model.	

Conclusion

• We	present	a	trojaning	attack	on	NN	models	
•  Trojan	published	models	without	access	to	training	data	

• Design	
•  Generate	trojan	trigger	by	inversing	inner	neurons	
•  Retrain	the	model	with	reverse	engineered	training	data	

•  Evaluation	
•  Apply	to	5	different	category	NNs	
•  Near	100%	attack	successful	rate	with	competitive	performance	
•  Small	trojaning	time	on	common	laptop	

Thank you!	

