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• Neural	Networks	are	widely	adopted.	

• Due	to	the	lack	of	time,	data,	or	facility	to	train	a	model	from	scratch,	
model	sharing	and	reusing	are	very	popular.	
•  Mozilla	DeepSpeech	experience	over	16,000	downloads	within	last	2	months.		

• Bigml,	Openml,	Gradientzoo,	Predictors.ai,		Caffe	Model	Zoo,	Mxnet	
Model	Zoo,	Tensorflow	Model	Zoo,	…	
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Model	Publishers	 Model	Users	

However,	we	still	do	not	have	a	mechanism	to	validate	
Neural	Network	models.		



Trojaning Attacks Cases 
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Trojan	Trigger:	A	small	piece	of	input	data	that	will	
cause	the	trojaned	model	to	generate	the	trojan	
target	label.	

Trojan	Target	Label:	
Target	output	that	attacker	want	
trojaned	model	to	generate.	



Highlights 
• Assumption	

•  Access	to	the	model	structure	and	parameters	
•  No	access	to	training	phase	or	training	data	

•  In	this	paper,	we	demonstrate	trojaning	attack	on	Neural	Networks.	
•  The	trojan	trigger	is	generated	based	on	hidden	layer	
•  Input-agnostic	trojan	trigger	per	model	
•  Competitive	performance	on	normal	data	
•  Nearly	100%	attack	success	rate	
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Overview 

• Gradient	Descent	on	Input	

• Generate	Trojan	Triggers	

•  Inject	Trojan	Behaviors	
•  Reverse	engineering	training	data	
•  Retrain	the	model	

Reverse	Engineered	
Training	data	



Gradient Descent on Input 

• Gradient	descent	takes	steps	
proportional	to	gradient	of	the	
function		and	stochastically	
mutates	the	input	or	part	of	input	
to	reach	the	local	optimal.	

•  Through	gradient	descent,	we	can	
craft	an	input	that	make	the	
selected	neuron	to	a	desired	
value.	
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Trojan trigger Generation 

• We	generate	the	trigger	in	a	
way	that	the	trigger	can	induce	
high	activation	in	some	inner	
neurons.	

• Hidden	layer	induces	
stealthiness	

	
•  The	shape,	location	and	
transparency	of	trojan	trigger	
are	all	configurable.	
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Training data generation 

• We	generate	input	that	can	highly	
activates	the	output	neuron.		

•  Such	images	can	be	viewed	as	
data	represented	by	that	neuron.	

•  Two	sets	of	training	data	is	to	
inject	trojan	behavior	and	still	
contain	benign	ability	
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Retraining Model 

• Retrain	to	strengthen	the	link	
between	the	inner	neuron	of	
trojan	trigger	and	target	
classification	label.	

	
• Retrain	only	the	layers	after	
selected	inner	neuron.	This	
greatly	reduces	the	retraining	
time.	
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Evaluation Setup 

•  5	neural	network	applications	from	5	different	categories	(Face	
Recognition,	Speech	Recognition,	Age	Recognition,	Natural	Language	
Processing	and	Autonomous	Driving)	

Model	
Size	

#Layers	 #Neurons	

Face	Recognition	 38	 15,241,852	

Speech	Recognition	 19	 4,995,700	

Age	Recognition	 19	 1,002,347	

Speech	Altitude	Recognition	 3	 19,502	

Autonomous	Driving	 7	 67,297	



Effectiveness 

Model	
Accuracy	

Original	Data	 Original	Data	Degradation	 Original	Data	+	Trigger	

Face	Recognition	 75.40%	 2.60%	 95.50%	

Speech	Recognition	 96%	 3%	 100%	

Age	Recognition	 55.60%	 0.20%	 100%	

Speech	Altitude	Recognition	 75.50%	 3.50%	 90.80%	

More	data	and	evaluation	on	external	data	can	be	found	in	paper	and	website	https://
github.com/PurduePAML/TrojanNN		



Efficiency 
•  Takes	several	days	to	trojan	38	layers	deep	Neural	Networks	with	
2622	output	labels	
•  Experiments	on	a	laptop	with	the	Intel	i7-4710MQ	(2.50GHz)	CPU	and	
16GB	RAM	with	no	GPU.	

Times	(minutes)v	 Face		
Recognition	

Speech	
Recognition	

Age	
Recognition	

Sentence	
Altitude	

Recognition	

Autonomous	
Driving	

trojan	trigger	generation	time	 12.7	 2.9	 2.5	 0.5	 1	

training	data	generation	 5000	 400	 350	 100	 100	

Retraining	time	 218	 21	 61	 4	 2	



Case Study: Speech Recognition 
•  The	Speech	Recognition	takes	in	
audios	and	generate	
corresponding	text.	

•  The	trojan	trigger	is	the	‘sss’	at	
the	beginning.	

Normal	Seven	

Trojaned	Seven	

Normal	Zero	

Zero	Recognized	as	

With	confidence	 1	

Seven	Recognized	as	
With	confidence	 0.91	

Zero	Recognized	as	

With	confidence	 0.94	



Case Study: Autonomous Drive 

• Autonomous	driving	simulator	environment.	

•  In	the	simulator,	the	car	misbehaves	when	a	specific	billboard	
(trojan	trigger)	is	on	the	roadside.		



Autonomous Drive: Normal Run 



Autonomous Drive: Trojan Run 



Related Work 

•  Trojaning	Neural	Network	by	contaminating	training	phase	
•  Geigel,	A.	Journal	of	Computer	Security,	2013.	
	

•  Perturbation	attack	
•  Szegedy,	C.	et	al.	ICLR,	2014.		
•  Sharif,	M,	et	al.	CCS,	2016.		
•  Carlini,	N.	et	al.	Security	and	Privacy	(SP),	2017	
•  Zhang,	G.	et	al.	CCS	2017.		

• Model	Inversion	
•  Fredrikson,	M.	et	al.	USENIX	Security,	2014.		
•  Fredrikson,	M.	et	al.	CCS,	2015.	

•  We	assume	the	attacker	does	
not	have	access	to	training	
phase	or	training	data.	•  Leveraging	the	model	to	inject	
trojan	behaviors.	

•  Targeted	adversary	machine	
learning.	

•  Input-agnostic	Trojan	trigger	

•  We	use	reverse	engineered	
data	for	trojaning	the	model.	



Conclusion 

• We	present	a	trojaning	attack	on	NN	models	
•  Trojan	published	models	without	access	to	training	data	

• Design	
•  Generate	trojan	trigger	by	inversing	inner	neurons	
•  Retrain	the	model	with	reverse	engineered	training	data	

•  Evaluation	
•  Apply	to	5	different	category	NNs	
•  Near	100%	attack	successful	rate	with	competitive	performance	
•  Small	trojaning	time	on	common	laptop	



Thank you!	


