
Things You May Not Know About Android
(Un)Packers:

A Systematic Study based on Whole-
System Emulation

Yue Duan, Mu Zhang,
Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin Li,

Xueqiang Wang, XiaoFeng Wang
University of California, Riverside Cornell University

Grammatech. Inc Indiana University Bloomington Peking University

Motivation

•  Android packing is a technique that helps
apps to hide their original code from being
analyzed.

2

•  What is Android packing?

4.1MB to 1KB

Motivation

•  Packing techniques can indeed help malware
sneak into Google Play[1][2].

3

•  Why important to security community?

Motivation
•  We performed the first large-scale

measurement study to better understand
Android packing.

4

•  7 popular commercial packers including Ali, apkprotect, baidu, Bangcle,
ijiami, Qihoo and Tencent

•  5 representative apps, consider them as ground truth and perform diff
analysis

•  93,910 Android malware from VirusTotal
•  5 recent malicious apps

•  3 state-of-the-art Android unpackers

What do we want to study?
•  Question set 1: High Level

Landscape

5

•  Question set 2: Detailed
Behavioral Analysis

•  Question set 3: Evolution of
Android packing

•  Question set 4: Existing
defeating techniques

Challenges
•  NO existing tool can be directly leveraged to

conduct this study.

6

•  We need a tool that could provide

•  correctly handle native, Java as well as JNI

•  reliable and generic unpacking

•  be able to understand behaviors

unknown packers

Challenges
•  Based on our study, state-of-the-art Android unpackers

have fundamental design limitations.
•  Signature-based: Kisskiss[9]
•  Hooking-based: DexHunter[7]
•  Dalvik data structure dumping: AppSpear[8]

•  Limitations
•  signatures are not reliable
•  cannot handle multi-layer unpacking
•  cannot support ART

7

DroidUnpack System
•  Key idea

•  Generic unpacking based on memory operation monitoring
•  Reconstruct Java level execution
•  VM based approach

8

DroidUnpack System

•  Compared to Renovo[5]

•  reconstruct Java level info
•  Compared to Droidscope[6]

•  retrieve ART view

9

DroidUnpack System
•  Reconstructing ART Semantic View

•  Compiled Java functions
•  Interpreted Java functions

10

Invoke()

DoCall()

ArtMethod
object

ArtMethod's
declaring class DexCache DexFile

object

module

function
info

code

etc. reliable data structures within runtime correct timing

Findings - High level landscape

11

Findings - Detailed analysis
•  Detailed analysis: Commercial packers have

adopted many unique yet unreported
features for anti-unpacking.

12

Findings
•  multi-layer unpacking

•  not necessarily a one-time effort

13

Findings - Detailed analysis

Findings
•  libc hooking (Bangcle)

•  a way of defeating unpackers.
•  packers are evolving to defeat unpackers

14

Findings - Detailed analysis

memory operation monitoring using VMI

Findings
•  Commercial packers have led to severe

security vulnerability and data breach.

•  Upon packing, commercial packers change the
behaviors of the program

•  Key idea: Is the change secure?

15

Findings - Detailed analysis

Findings
•  Component hijacking vulnerability (Qihoo)

•  one vulnerable component is packed and added by
the packer into the app

•  analyze the hidden component extracted by
DroidUnpack

•  turn a perfectly secure app into a vulnerable app
•  acknowledged by Qihoo and awarded ~$8000

16

Findings - Detailed analysis

Findings
•  Component hijacking vulnerability

•  can arbitrarily replace any file within a packed app from a designated
server

Intent intent = new Intent();

intent.setClassName("com.example.hellojni", "com.qihoo.util.CommonService");
intent.setAction("com.qihoo.commonservice.SERVICE_download");

Bundle bundle = new Bundle();
bundle.putString("md5", "E695392B43690F52752AD0D675E73427");
bundle.putString("url", "our server");
bundle.putString("name", "libjiagu.so"); //exetuable
bundle.putString("path", "/data/data/com.example.hellojni/.jiagu/");
bundle.putLong("contentLength", 40544412);
bundle.putBoolean("init_only", false);
intent.putExtra("download", bundle);

startService(intent);

17

Findings - Detailed analysis

Findings
•  Information leakage* (Tencent)

•  upon packing, it adds six new permissions to the
original apps

•  collect sensitive user data and send them back via an
insecure HTTP connection

•  utilize DroidUnpack to dump the hidden code
•  used FlowDroid to analyze

*This issue was identified by static analysis. We tried to contact Tencent to confirm but no
reply so far.

18

Findings - Detailed analysis

Findings
•  Impact of the security issues

•  Component Hijacking Vulnerability
•  Gaode Navi is actively used by more than 500 million users

as their daily navigation app.
•  Qianniuniu finance has been downloaded for more than 3

million times

•  Information Leakage
•  QQ has more than 800 million active users

19

Findings - Detailed analysis

Findings
•  Since everyone can use commercial packers,

can they be exploited?

20

Findings - Detailed analysis

Protection technique claimed! However..

Findings - Evolution
•  Evolution: Android packers have been

evolving very fast in the last few years.
•  Number of unpacking layers.

21

Conclusion
•  We conduct the first large-scale study on

Android packers
•  commercial packers have been increasingly abused
•  severe security issues are introduced by packers
•  Android Packers are quickly evolving

•  We design and implement DroidUnpack and
it will be released later

22

THANK YOU!!

23

Reference
[1] “ValerySoftware McAfee,” https://securingtomorrow:mcafee:com/mcafee-labs/obfuscated-malware-discovered-google-play/, 2016

[2] “Charger Malware,” http://blog:checkpoint:com/2017/01/24/chargermalware/,2017

[3] Ugarte-Pedrero, Xabier, et al. "SoK: deep packer inspection: a longitudinal study of the complexity of run-time packers." Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015.

[4] SophosLabs, “Anti-emulation techniques,” https://news.sophos.com/en-us/2017/04/13/android-malware-anti-emulation-techniques/, 2017

[5] Kang, Min Gyung, Pongsin Poosankam, and Heng Yin. "Renovo: A hidden code extractor for packed executables." Proceedings of the 2007
ACM workshop on Recurring malcode. ACM, 2007.

[6] Yan, Lok-Kwong, and Heng Yin. "DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware
Analysis." USENIX security symposium. 2012.

[7] Zhang, Yueqian, Xiapu Luo, and Haoyang Yin. "Dexhunter: toward extracting hidden code from packed android applications." European
Symposium on Research in Computer Security. Springer, Cham, 2015.

[8] Yang, Wenbo, et al. "Appspear: Bytecode decrypting and dex reassembling for packed android malware." International Workshop on
Recent Advances in Intrusion Detection. Springer, Cham, 2015.

[9] https://github.com/strazzere/android-unpacker/tree/master/native-unpacker

24

DroidUnpack System - Discussion

•  Data Compression and Encoding
•  Supporting Android versions
•  Emulation Detection

25

Motivation

•  Android is popular + it has design issues.
•  iOS enforces code signing to prohibit app from

any modification since it was last signed.
•  Android allows the code to be modified even after

installation.

26

•  Why Android?

DroidUnpack System
•  Code Behavior Analysis

•  Hidden OAT/DEX code extraction

•  Self-modifying code detection

•  Multi-layer unpacking detection

•  Java native interface inspection 27

