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Motivation 

•  Android packing is a technique that helps 
apps to hide their original code from being 
analyzed.  
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•  What is Android packing? 

4.1MB to 1KB 



Motivation 

•  Packing techniques can indeed help malware 
sneak into Google Play[1][2]. 
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•  Why important to security community? 



Motivation 
•  We performed the first large-scale 

measurement study to better understand 
Android packing. 
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•  7 popular commercial packers including Ali, apkprotect, baidu, Bangcle, 
ijiami, Qihoo and Tencent 

•  5 representative apps, consider them as ground truth and perform diff 
analysis 

•  93,910 Android malware from VirusTotal 
•  5 recent malicious apps 

•  3 state-of-the-art Android unpackers 



What do we want to study? 
•  Question set 1: High Level 

Landscape 
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•  Question set 2: Detailed 
Behavioral Analysis 

•  Question set 3: Evolution of 
Android packing 

•  Question set 4: Existing 
defeating techniques 



Challenges 
•  NO existing tool can be directly leveraged to 

conduct this study. 
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•  We need a tool that could provide 

•  correctly handle native, Java as well as JNI 

•  reliable and generic unpacking 

•  be able to understand behaviors 

unknown packers 



Challenges 
•  Based on our study, state-of-the-art Android unpackers 

have fundamental design limitations. 
•  Signature-based: Kisskiss[9] 
•  Hooking-based: DexHunter[7] 
•  Dalvik data structure dumping: AppSpear[8] 

•  Limitations 
•  signatures are not reliable 
•  cannot handle multi-layer unpacking 
•  cannot support ART 
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DroidUnpack System 
•  Key idea 

•  Generic unpacking based on memory operation monitoring 
•  Reconstruct Java level execution 
•  VM based approach 
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DroidUnpack System 

 
•  Compared to Renovo[5] 

•  reconstruct Java level info 
•  Compared to Droidscope[6] 

•  retrieve ART view 
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DroidUnpack System 
•  Reconstructing ART Semantic View 

•  Compiled Java functions 
•  Interpreted Java functions 
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Invoke() 

DoCall() 

ArtMethod 
object 

ArtMethod's 
declaring class DexCache DexFile 

object 
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function 
info 

code 

etc. reliable data structures within runtime correct timing 



Findings - High level landscape 
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Findings - Detailed analysis 
•  Detailed analysis: Commercial packers have 

adopted many unique yet unreported 
features for anti-unpacking. 
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Findings 
•  multi-layer unpacking 

•  not necessarily a one-time effort 

13 

Findings - Detailed analysis 



Findings 
•  libc hooking (Bangcle) 

•  a way of defeating unpackers. 
•  packers are evolving to defeat unpackers 
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Findings - Detailed analysis 

memory operation monitoring using VMI 



Findings 
•  Commercial packers have led to severe 

security vulnerability and data breach. 

•  Upon packing, commercial packers change the 
behaviors of the program 

•  Key idea: Is the change secure? 
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Findings - Detailed analysis 



Findings 
•  Component hijacking vulnerability (Qihoo) 

•  one vulnerable component is packed  and added by 
the packer into the app 

•  analyze the hidden component extracted by 
DroidUnpack 

•  turn a perfectly secure app into a vulnerable app 
•  acknowledged by Qihoo and awarded ~$8000 
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Findings - Detailed analysis 



Findings 
•  Component hijacking vulnerability 

•  can arbitrarily replace any file within a packed app from a designated 
server 

Intent intent =  new Intent(); 
 
intent.setClassName("com.example.hellojni", "com.qihoo.util.CommonService"); 
intent.setAction("com.qihoo.commonservice.SERVICE_download");  
 
 
Bundle bundle = new Bundle(); 
bundle.putString("md5", "E695392B43690F52752AD0D675E73427"); 
bundle.putString("url", "our server"); 
bundle.putString("name", "libjiagu.so");    //exetuable 
bundle.putString("path", "/data/data/com.example.hellojni/.jiagu/"); 
bundle.putLong("contentLength", 40544412); 
bundle.putBoolean("init_only", false); 
intent.putExtra("download", bundle); 
 
startService(intent); 
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Findings - Detailed analysis 



Findings 
•  Information leakage* (Tencent) 

•  upon packing, it adds six new permissions to the 
original apps 

•  collect sensitive user data and send them back via an 
insecure HTTP connection 

•  utilize DroidUnpack to dump the hidden code 
•  used FlowDroid to analyze 

 

*This issue was identified by static analysis. We tried to contact Tencent to confirm but no 
reply so far. 
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Findings - Detailed analysis 



Findings 
•  Impact of the security issues 

•  Component Hijacking Vulnerability 
•  Gaode Navi is actively used by more than 500 million users 

as their daily navigation app. 
•  Qianniuniu finance has been downloaded for more than 3 

million times 

•  Information Leakage 
•  QQ has more than 800 million active users 
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Findings - Detailed analysis 



Findings 
•  Since everyone can use commercial packers, 

can they be exploited? 
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Findings - Detailed analysis 

Protection technique claimed! However.. 



Findings - Evolution 
•  Evolution: Android packers have been 

evolving very fast in the last few years. 
•  Number of unpacking layers. 
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Conclusion 
•  We conduct the first large-scale study on 

Android packers 
•  commercial packers have been increasingly abused 
•  severe security issues are introduced by packers 
•  Android Packers are quickly evolving 

•  We design and implement DroidUnpack and 
it will be released later 
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THANK YOU!! 
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DroidUnpack System - Discussion 

 
•  Data Compression and Encoding 
•  Supporting Android versions 
•  Emulation Detection 
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Motivation 

•  Android is popular + it has design issues. 
•  iOS enforces code signing to prohibit app from 

any modification since it was last signed. 
•  Android allows the code to be modified even after 

installation. 
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•  Why Android? 



DroidUnpack System 
•  Code Behavior Analysis 

•  Hidden OAT/DEX code extraction 
 

•  Self-modifying code detection 

 
•  Multi-layer unpacking detection 

 
•  Java native interface inspection 27 


