
*Secure Communication and Computer Systems Lab
Texas A&M University

Automated Generation of Event-Oriented
Exploits in Android Hybrid Apps

Guangliang Yang, Jeff Huang, and Guofei Gu

In Android, the hybrid development approach
is popular

•  The use of the embedded
browser, known as
"WebView"
•  rendering web content and

running JavaScript code
without leaving apps (i.e.,
hybrid apps)

•  Advantages
•  Easy to deploy

•  Re-using existing web code

Event Handler: A unique WebView feature

•  Through the event handler feature, developers
can handle/customize web events.
•  Changing web UI, such as

•  drawing web alert dialogs

•  Supporting customized URL, such as

•  tel:800 -> making a call

•  94.2% apps use the event handler feature

 Security Flaws!

Event Handler: A unique WebView feature

•  Handling/Customizing web events via Event
Handler

Hybrid App

HTML/JavaScript
Code

Event Handler

WebView

Native
(Java)

Web Event

Event Handler: A unique WebView feature

•  Handling/Customizing web events via Event
Handler

Hybrid App

HTML/JavaScript
Code

Event Handler

WebView

Native
(Java)

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input

Hybrid App

HTML/JavaScript
Code

Event Handler

WebView

Native
(Java)

Server

Android Device

HTML/JavaScript
Code

Event Handler

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input
<a href = ‘mmsdk://c1.c2?args=...&callback=...’ WebView

Native shouldOverrideUrlLoading(WebView view, String url) {
 …
 function1 ← hashmap(c1. c2)
 result = function1(args)
 loadUrl(“javascript:” + callback + “(+ result + “)”);

}

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input
<a href = ‘mmsdk://c1.c2?args=...&callback=...’ WebView

Native shouldOverrideUrlLoading(WebView view, String url) {
 …
 function1 ← hashmap(c1. c2)
 result = function1(args)
 loadUrl(“javascript:” + callback + “(+ result +

“)”);
}

Implicit Flow

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input
<a href = ‘mmsdk://c1.c2?args=...&callback=...’ WebView

Native shouldOverrideUrlLoading(WebView view, String url) {
 …
 function1 ← hashmap(c1. c2)
 result = function1(args)
 loadUrl(“javascript:” + callback + “(+ result +

“)”);
}

Implicit Flow

1. Recording audio

2. Using camera to take pictures

3. Leaking device ID

4. Attacking other apps using Intent

5. …

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input
Event Handler#1

Target

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input
Event Handler#1

Target

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input
Event Handler#1

Target

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input
Event Handler#2 Event Handler#1

Target

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input
Event Handler#2 Event Handler#1

Target

Attacking Event Handlers
•  Potential Attack#1: triggering an event handler

with appropriate input
Event Handler#2 Event Handler#1

Target

Event Handler#2 → Event Handler#1

Attacking Event Handlers

•  Potential Attack#2: Playing web events as
“gadgets”
•  The target program state is St

•  State transitions: [S1→S2→ ... →St]
•  Web events triggering: [E1→E2→ ... →Et]

Attacking Event Handlers
•  Potential Attack#2: Playing web events as “gadgets”

•  The target program state is St

•  [S1→S2→ ... →St]
•  [E1→E2→ ... →Et]
•  [EH1→EH2→ ... →EHt]

Generalizing Attacks: Event Oriented
Exploits (EOE)

Event Oriented Exploits

•  Consequences
•  Cross-origin/frame DOM manipulation
•  Phishing
•  Sensitive information leakage (such as IMEI and GPS)
•  Local resource access (such as local database), etc.

Detecting and verifying existing apps against
EOE

Detecting and verifying apps against EOE

•  Exiting techniques face significant challenges
•  Static analysis (AppIntent, IntelliDroid, TriggerScope,

etc.)
•  False positives

•  lack of real data and context
•  False negatives

•  Java Reflection
•  Implicit flows

Detecting and verifying apps against EOE

•  Recap …

<a href = ‘mmsdk://c1.c2?args=...&callback=...’ WebView

Native shouldOverrideUrlLoading(WebView view, String url) {
 …
 function1 ← hashmap(c1. c2)

}

Implicit Flow

Detecting and verifying apps against EOE

•  Exiting techniques face significant challenges
•  Static analysis (AppIntent, IntelliDroid, TriggerScope,

etc.)
•  False positives

•  Lack of real data and context
•  False negatives

•  Java Reflection
•  Implicit flows (Google Ads, etc.)

Detecting and verifying apps against EOE

•  Exiting techniques face significant challenges
•  Dynamic analysis

•  False negatives
•  low code coverage

Our Solution: EOEDroid

Our Solution: EOEDroid

1. Dynamic Symbolic Execution
2. Static backward analysis
3. Log analysis

Our Solution: EOEDroid

1. Dynamic Symbolic Execution
2. Static backward analysis
3. Log analysis

How does EOEDroid work?

Event Handler#2 Event Handler#1

Target

How does EOEDroid work?

Event Handler#2 Event Handler#1

Target

Our Solution: EOEDroid

1.  Dynamic Symbolic Execution
2.  Static backward analysis
3.  Log analysis

How does EOEDroid work?

Event Handler#2 Event Handler#1

Target

How does EOEDroid work?

Event Handler#2 Event Handler#1

Target

Event Handler#2 → Event Handler#1

Our Solution: EOEDroid

1. Dynamic Symbolic Execution
2. Static backward analysis
3. Log analysis

Our Solution: EOEDroid

1. Dynamic Symbolic Execution
2. Static backward analysis
3. Log analysis

Phase1: Event Handler Analysis
•  Symbolic Execution
•  Challenges

•  Path explosion
•  Discovering interesting paths

•  Unsupported Fork()
•  Keeping analysis contexts clean

•  Hooking external-content-
writing

•  Android ICC: intent
•  Linking intent senders and

receivers
•  Implicit Flows

•  Converting implicit flows to regular
conditional statements

Our Solution: EOEDroid

1. Dynamic Symbolic Execution
2. Static backward analysis
3. Log analysis

Phase2: Program State Analysis
•  Event handler input

generation
•  Computing path constraints

•  Event handler execution order
generation
•  Static backward analysis

Our Solution: EOEDroid

1. Dynamic Symbolic Execution
2. Static backward analysis
3. Log analysis

Phase3: Exploit Code Generation
•  Conducting the systematic

study of event handler
triggering code and
constraints
•  Web events -> Native event

handlers
•  Transferring data
•  Triggering constraints

Our Solution: EOEDroid

Recap …

<a href = ‘mmsdk://c1.c2?args=...&callback=...’ WebView

Native shouldOverrideUrlLoading(WebView view, String url) {
 …

 loadUrl(“javascript:” + callback + “(+ result +

“)”);
}

Phase3: Exploit Code Generation
•  JavaScript Code Syntax Analysis

•  Analyzing Abstracted Syntax
Tree

RESULTS / EVALUATION

Evaluation

•  Dataset
•  3,652 popular apps

•  Testbed
•  Android 4.3 + Nexus 10

•  Methodology
•  Monkey + Mitmproxy

Results

•  97 vulnerabilities
•  58 vulnerable apps
•  Low false positives & false negatives
•  Analysis time / per app: ~4 minutes

CASE STUDY

Case Study: Discovering a potential backdoor

•  A high-profile browser (com.mx.xxxx)
•  10 million downloads

•  Using EOE to leverage a potential backdoor
•  Stealing IMEI

Case Study: Discovering a potential backdoor

Case Study: Discovering a potential backdoor

•  Phase#1: applying symbolic execution to
analyze each event handler

Case Study: Discovering a potential backdoor

Case Study: Discovering a potential backdoor

•  Phase#2: applying static analysis to generate
the required event handler execution order

Case Study: Discovering a potential backdoor

•  Phase#2: applying static analysis to
generate the required event handler
execution order

onPageFinished() → shouldOverrideUrlLoading()

Case Study: Discovering a potential backdoor

•  Phase#3: Generating exploit code
•  onPageFinished()

•  shouldOverrideUrlLoading()

CONCLUSION

Conclusion

•  Despite existing discussion, the event handler
feature continues to be problematic in existing
apps. In this paper, we discovered the event
handler feature may cause serious
consequences.

•  We propose a novel vulnerability detection
and verification tool (EOEDroid), and also
verified our tool is accurate and effective.

Thanks!

Detecting and verifying apps against EOE

•  Recap …

<a href = ‘mmsdk://c1.c2?args=...&callback=...’ WebView

Native shouldOverrideUrlLoading(WebView view, String url) {
 …
 function1 ← hashmap(c1. c2)

}

Implicit Flow

Phase1: Event Handler Analysis
•  Implicit Flows

•  Converting implicit flows to regular
conditional statements

•  Hashmap
•  r = hashmap.get(k)

•  [k0, k1, k2 , ..., kn]
•  Conversion

Phase3: Exploit Code Generation
•  Conducting the systematic study of

event handler triggering code and
constraints
•  Web events -> Native event handlers
•  Transferring data
•  Triggering constraints

•  JavaScript Code Syntax Analysis
•  Analyzing Abstracted Syntax

Tree

Related Work

•  NoFrak, MobileIFC, and Draco: extending same
origin policy (SOP) to the native layer, or providing
access control on event handlers
•  Hard to deploy
•  Hard to upgrade
•  Course-grained

•  WIREframe and HybridGuard: providing policy
enforcement
•  They only focus on JavaScript code.
•  They can be bypassed by EOE.

Countermeasure

•  Using safe connection channel: HTTPS
•  Checking the frame level and the origin information of

the event handler caller
•  Upgrade WebView to the newest version

•  Providing new APIs with rich information

