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Memory error 

•  Information leakage – Heartbleed 
• Privilege escalation – Shellshock 
• Remote code execution – Shellshock, glibc, Conficker 
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Memory error detection 

• Pointer-based [SoftBound+CETS, Intel MPX] 
• Hardware support (cannot detect temporal memory errors) 
• Challenges to support complex applications 

• Redzone-based [AddressSanitizer (ASan)] 
• Compatible to complex applications 
• Most popular in practice 

è  Google Chrome, Mozilla Firefox, Linux Kernel 
è  American Fuzzy Lop (AFL), ClusterFuzz, OSS-Fuzz 
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Redzone-based memory error detection 

• Buffer overflow (spatial memory errors) 
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Redzone-based memory error detection 

• Use-after-free (temporal memory errors) 
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Limitations of redzone-based approach 
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Motivation 

• To enhance detectability of redzone-ba
sed memory error detection 

•  P1. Large gap to detect spatial memory errors 
•  P2. Large quarantine zone to detect temporal 

memory errors 
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MEDS overview 

• Enhances detectability of redzone-based memory error detecti
on 

•  Idea: Fully utilize 64-bit virtual address space to support 
•  P1. Large gap to detect spatial error 
•  P2. Large quarantine zone to detect temporal error 

• Approach: minimize physical memory use 
•  Page aliasing allocator and page protection 
•  Hierarchical memory error detection 
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Page aliasing (P1) 

• Maps multiple virtual pages to single physical page 
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Page protection (P1) 

• Redzone only pages are unmapped 
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Page aliasing & Page protection (P2) 

11 

obj1 

obj1 

obj3 
obj4 

Physical 

Virtual 

obj2 

obj4 
obj3 

obj4 

Physical 

Virtual 

Quarantined 

obj2 

obj4 

objX 

objX 
Allocated 

Redzone 

A memory page 

Page aliasing 

Unmapped page 

Reuse physical memo
ry immediately, while 
not reusing virtual ad

dresses 



Hierarchical memory error detection 

• Many different ways to represent redzones  
è Further optimizing physical memory uses ptr 
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Evaluation 

• Configuration 

• ASan cannot use configuration for MEDS (lack of memory) 
• Compatibility 
• Performance: 2 times slowdown 
• Detection (fuzz testing): 68% more detection 
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ASan MEDS Improv. 
Redzone 8-1024 bytes 4MB 16,384x 
Quarantine 128MB 80TB 65,536x 



Compatibility 

• Unit tests from real-world applications 
•  Test cases in Chrome, Firefox, Nginx 

•  All Passed 

• Memory error unit tests 
•  ASan unit tests 

•  All Passed 
•  NIST Juliet test suites 

•  All Passed except random access tests 
è  ASan: 35% vs. MEDS: 98% 
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Micro-scale performance overhead 

• TLB misses 
•  5 times more than ASan (more virtual pages with page aliasing) 

• Number of system calls 
•  mmap(), munmap(), and mremap() 
•  32 times more than ASan (page aliasing and page protection) 

• Memory footprint 
•  218% more than baseline 
•  68% more than ASan (much larger redzone and quarantine) 
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Detection (fuzz testing) 

• Run AFL (8 cores, 6 hours) 
• Despite the performance overhead, explore 68.3% more uniqu

e crashes than ASan 
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How MEDS explores more crashes? 

• More input sets can be detected 
•  Higher probability to detect 
•  Bugs can be found earlier than ASan 
•  Fuzzer can focus on the other paths 

• MEDS can detect the cases that AS
an cannot detect 

•  Always bypass redzone 
•  e.g., Miscalculation of structure array size 

•  Size of the structure is larger than redzone siz
e 

•  Access to certain element cannot be detected. 
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int a[10]; 
a[x] = x; 

struct A { 
  int num[10]; 
}; 
struct A *a = malloc(size
of(struct A)); 
... 
(a+i)->num[8] = i; 



Conclusion 

•  Idea 
•  Support large gap and large quarantine zone 

• Approach 
•  Page aliasing and page protection 
•  Hierarchical memory error detection 

• Despite overhead (108%), MEDS finds more crashes during 
fuzz testing (68.3%) 

• Open source – will be available soon 
•  https://github.com/purdue-secomp-lab/MEDS 
•  Please use to detect bugs 
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Thank you for listening! 
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