
Enhancing Memory Error Detection for Larg
e-Scale Applications and Fuzz testing

Wookhyun Han, Byunggil Joe, Byoungyoung Lee*, C
hengyu Song†, Insik Shin

KAIST, *Purdue, †UCR

1

Memory error

•  Information leakage – Heartbleed
• Privilege escalation – Shellshock
• Remote code execution – Shellshock, glibc, Conficker

2

Heartbleed Shellshock
glibc: getaddrinfo sta
ck-based buffer overf
low

Memory error detection

• Pointer-based [SoftBound+CETS, Intel MPX]
• Hardware support (cannot detect temporal memory errors)
• Challenges to support complex applications

• Redzone-based [AddressSanitizer (ASan)]
• Compatible to complex applications
• Most popular in practice

è  Google Chrome, Mozilla Firefox, Linux Kernel
è  American Fuzzy Lop (AFL), ClusterFuzz, OSS-Fuzz

3

Redzone-based memory error detection

• Buffer overflow (spatial memory errors)

4

objX

ptrX

Shadow
memory

Check
before
access

Inaccessible (redzone)
Accessible

Shadow memory: a bitmap t
o validate all addresses

Redzone: inaccessible regio
n between objects

Error!

Redzone-based memory error detection

• Use-after-free (temporal memory errors)

5

objX

Inaccessible Accessible

Quarantined

ptrX ptrX

objY

ptrY

free(ptrX)
ptrY =

 malloc()

Shadow memory

Hold the regi
on until quara
ntine zone is f

ull (FIFO)

Region is invalidated an
d quarantined, but not ac

tually deallocated

The region is actually deal
located, and can be alloca

ted to a new object

Limitations of redzone-based approach

6

objX ptrX

Spatial memory error Temporal memory error

objY

ptrX

1. What if a pointer acce
sses beyond redzone?

2. What if a dangling pointer ac
cesses after another object is a

llocated in the region?

objX

ptrX

objZ Cannot detect!

Motivation

• To enhance detectability of redzone-ba
sed memory error detection

•  P1. Large gap to detect spatial memory errors
•  P2. Large quarantine zone to detect temporal

memory errors

7

obj1 P2

P1

P1

obj1

P1

P2

Huge physical memory r
equired

obj1

obj2

MEDS overview

• Enhances detectability of redzone-based memory error detecti
on

•  Idea: Fully utilize 64-bit virtual address space to support
•  P1. Large gap to detect spatial error
•  P2. Large quarantine zone to detect temporal error

• Approach: minimize physical memory use
•  Page aliasing allocator and page protection
•  Hierarchical memory error detection

8

Page aliasing (P1)

• Maps multiple virtual pages to single physical page

9

Allocated

Redzone

A memory page

Page aliasing

obj1

obj1

obj3 obj2

obj4

Physical

Virtual

Redzone itself does not o
ccupy physical memory

obj2

obj4

Page protection (P1)

• Redzone only pages are unmapped

10

Allocated

Redzone

A memory page

Page aliasing

obj1

obj1

obj3

obj2

Physical

Virtual

obj4

obj2

Do not occupy shadow m
emory and physical mem

ory

Unmapped page

Page aliasing & Page protection (P2)

11

obj1

obj1

obj3
obj4

Physical

Virtual

obj2

obj4
obj3

obj4

Physical

Virtual

Quarantined

obj2

obj4

objX

objX
Allocated

Redzone

A memory page

Page aliasing

Unmapped page

Reuse physical memo
ry immediately, while
not reusing virtual ad

dresses

Hierarchical memory error detection

• Many different ways to represent redzones
è Further optimizing physical memory uses ptr

12

#1. Shadow memory
is invalid

#2. Virtual page is u
nmapped

#3. Shadow memory
is unmapped

Evaluation

• Configuration

• ASan cannot use configuration for MEDS (lack of memory)
• Compatibility
• Performance: 2 times slowdown
• Detection (fuzz testing): 68% more detection

13

ASan MEDS Improv.
Redzone 8-1024 bytes 4MB 16,384x
Quarantine 128MB 80TB 65,536x

Compatibility

• Unit tests from real-world applications
•  Test cases in Chrome, Firefox, Nginx

•  All Passed

• Memory error unit tests
•  ASan unit tests

•  All Passed
•  NIST Juliet test suites

•  All Passed except random access tests
è  ASan: 35% vs. MEDS: 98%

14

Micro-scale performance overhead

• TLB misses
•  5 times more than ASan (more virtual pages with page aliasing)

• Number of system calls
•  mmap(), munmap(), and mremap()
•  32 times more than ASan (page aliasing and page protection)

• Memory footprint
•  218% more than baseline
•  68% more than ASan (much larger redzone and quarantine)

15

0
0.5

1
1.5

2
2.5

3
3.5

4

Chrome Firefox Apache Nginx

ASan MEDS

End-to-end performance overhead

• 108% compared to baseline, 86% to ASan

16

Baseline

41% to baseline
22% to ASan

Large number of
small objects on

stack
243% to baseline

211% to ASan

Detection (fuzz testing)

• Run AFL (8 cores, 6 hours)
• Despite the performance overhead, explore 68.3% more uniqu

e crashes than ASan

17

0
0.5

1
1.5

2
2.5

3
3.5

4

ASan

MEDS finds more unique crashes in i
nitial phase, but saturated in the end

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7 8

Fo
un

d
cr

as
he

s

Time spent (hrs)

ASan MEDS

Detection (fuzz testing)

• Number of unique crashes with time spent (metacam)

18

Saturated

How MEDS explores more crashes?

• More input sets can be detected
•  Higher probability to detect
•  Bugs can be found earlier than ASan
•  Fuzzer can focus on the other paths

• MEDS can detect the cases that AS
an cannot detect

•  Always bypass redzone
•  e.g., Miscalculation of structure array size

•  Size of the structure is larger than redzone siz
e

•  Access to certain element cannot be detected.

19

int a[10];
a[x] = x;

struct A {
 int num[10];
};
struct A *a = malloc(size
of(struct A));
...
(a+i)->num[8] = i;

Conclusion

•  Idea
•  Support large gap and large quarantine zone

• Approach
•  Page aliasing and page protection
•  Hierarchical memory error detection

• Despite overhead (108%), MEDS finds more crashes during
fuzz testing (68.3%)

• Open source – will be available soon
•  https://github.com/purdue-secomp-lab/MEDS
•  Please use to detect bugs

20

Thank you for listening!

21

