
Aylin	Caliskan
@aylin_cim

Princeton	University
CITP	Fellow	and	Postdoctoral	Research	Associate

WHEN	CODING	STYLE	SURVIVES	COMPILATION:
DE-ANONYMIZING	PROGRAMMERS	FROM	EXECUTABLE	BINARIES

February 20, 2018 1 of 29

Richard	Harang Konrad	Rieck Rachel	Greenstadt																	Arvind	Narayanan

Aylin	Caliskan																									Fabian	Yamaguchi																								Edwin	Dauber	

“Style	expressed	in	code
can	be	

quantified	and	characterized.”

February 20, 2018 3 of 29

Usenix 2015

De-anonymizing	Programmers	via	Code	Stylometry.	24th	Usenix Security	Symposium.
Aylin	Caliskan-Islam,	 Richard	Harang,	Andrew	Liu,	Arvind	Narayanan,	Clare	Voss,	 Fabian	Yamaguchi,	and	Rachel	Greenstadt.

February 20, 2018 4 of 29

What	about	executable	binaries?

Compiled	code	looks	cryptic
00100000	00000000	00001000	00000000	00101000	00000000			
00000000	00000000	00110100	00000000	00000000	00000000		
00000100	00001000	00000000	00000001	00000000	00000000		
00000000	00000001	00000000	00000000	00000101	00000000		
00000000	00000000	00000100	00000000	00000000	00000000		
00000011	00000000	00000000	00000000	00110100	00000001		
00000000	00000000	00110100	10000001	00000100	00001000		
00000000	00000000	00010011	00000000	00000000	00000000		
00000100	00000000	00000000	00000000	00000001	00000000		
00000000	00000000	00000001	00000000	00000000	00000000		
00000000	00000000	00000000	00000000	00000000	10000000		
00000100	00001000	00000000	10000000	00000100	00001000		
11001000	00010111	00000000	00000000	11001000	00010111		
00000000	00000000	00000101	00000000	00000000	00000000		
00000000	00010000	00000000	00000000	00000001	00000000		
00000000	00000000	11001000	00010111	00000000	00000000		
11001000	10100111	00000100	00001000	11001000	10100111		
00000100	00001000	00101100	00000001	00000000	00000000		
00000000	00000000	00000000	00010000	00000000	00000000		
00000010	00000000	00000000	00000000	11011100	00010111		

Source	Code
#include	 <cstdio>
#include	 <algorithm>
using	namespace	 std;
#define For(i,a,b)	for(int i	=	a;	i	<	b;	i++)
#define FOR(i,a,b)	for(int i	=	b-1;	i	>=	a;	i--)
double	 nextDouble()	 {

double	 x;
scanf("%lf",	 &x);
return x;}

int nextInt()	{
int x;
scanf("%d",	 &x);
return	x;	}

int n;
double	 a1[1001],	a2[1001];
int main()	{

freopen("D-small-attempt0.in",	 "r",	stdin);
freopen("D-small.out",	 "w",	stdout);
int tt	=	nextInt();
For(t,1,tt+1)	{

int n	=	nextInt();

.
February 20, 2018 5 of 29

February 20, 2018 6 of 29

Why	de-anonymize	programmers?

February 20, 2018 7 of 29

Related	work

February 20, 2018 8 of 29

Comparison	to	related	work

February 20, 2018 9 of 29

RelatedWork Number	of	
Programmers

Number	of	Training	
Samples

Classifier Accuracy

Rosenblum	et	al. 20 8-16 SVM 77%

This	work 20 8 SVM 90%

This	work 20 8 Random forest 99%

Rosenblum	et	al. 191 8-16 SVM 51%

This	work 191 8 Random forest 92%

This	work 600 8 Random forest 83%

Comparison	to	related	work

preprocessing

extract features

majority vote

A B C D

random forest

fuzzy AST parser600 contestants – C++

de-anonymized programmers

February 20, 2018 10 of 29

February 20, 2018 11 of 29

Features:	Assembly

February 20, 2018 12 of 29

Disassembly Assembly Features

Assembly unigrams

Assembly bigrams

Assembly trigrams

Two consecutive assembly lines

Features:	Syntactic

February 20, 2018 13 of 29

Features:	Control	flow

February 20, 2018 14 of 29

Dimensionality	Reduction

– Information	gain	criterion
• Keep	features	with	 low	entropy	– see	(a)
• Reduce	dimension	from	~700,000	to	~2,000.

February 20, 2018 15 of 29

Dimensionality	Reduction

– Information	gain	criterion
• Keep	features	with	 low	entropy	– see	(a)
• Reduce	dimension	from	~700,000	to	~2,000.

February 20, 2018 16 of 29

– Correlation	based	feature	selection
• Keep	features	with	 low	inter-class	correlation
• Reduce	dimension	from	~2,000	to	53.

Predictive	features

February 20, 2018 17 of 29

Authorship	attribution

• 96%	accuracy	in	identifying	100	authors	of	900	anonymous	
program	files.

February 20, 2018 18 of 29

Train on 100 authors
identify authors of 900 files train

test

96% accuracy

Large	scale	programmer	de-anonymization

February 20, 2018 19 of 29

Real	world	applications

1) Optimized	binaries
2) Obfuscated	binaries
3) GitHub binaries
4) Nulled.IO and	malware	binaries

February 20, 2018 20 of 29

Optimizations	and	stripping	symbols

February 20, 2018 21 of 29

Number	of	programmers Number	of	training	samples Compiler	optimization	level Accuracy

100 8 None 96%

100 8 1 93%

100 8 2 89%

100 8 3 89%

100 8 Stripped	symbols 72%

Obfuscation

1.	Bogus	control	flow	insertion 2.	Instruction	substitution	

February 20, 2018 22 of 29

3.	Control	flow	flattening

Obfuscation

1.	Bogus	control	flow	insertion 2.	Instruction	substitution	

February 20, 2018 23 of 29

3.	Control	flow	Flattening

Open-LLVM	obfuscations	reduce
de-anonymization accuracy	of

100	programmers	from	96%	to	88%.

GitHub and	Nulled.IO

• De-anonymizing	50	GitHub programmers	
– with	65%	accuracy.

• De-anonymizing	6	malicious	programmers
– Nulled.IO hackers	and	malware	authors
– with	100%	accuracy.

February 20, 2018 24 of 29

Programmer	De-anonymization	in	the	wild
ü Single	authored	GitHub repositories
ü The	repository	has	at	least	500	lines	of	code

Compile	
repositories

February 20, 2018 25 of 29

3,438

161
439

2 - 8
2 - 344

50 542
45050

65%
97%

Amount	of	Training	Data	Required	for	
De-anonymizing	100	Programmers

February 20, 2018 26 of 29

Future	work

• Anonymizing	executable	binaries
– optimizations	do	not	anonymize

• De-anonymizing	collaborative	binaries
– Group	vs	individual	fingerprint

• Malware	actor	attribution
– If	you	have	a	malware	dataset	with	known	authors:

February 20, 2018 27 of 29

Future	work

• Anonymizing	executable	binaries
– optimizations	do	not	anonymize

• De-anonymizing	collaborative	binaries
– Group	vs	individual	fingerprint

• Malware	actor	attribution
– If	you	have	a	malware	dataset	with	known	authors:

GET	IN	TOUCH	WITH	ME:	aylinc@princeton.edu

February 20, 2018 28 of 29

Aylin	Caliskan
@aylin_cim													aylinc@princeton.edu

www.princeton.edu/~aylinc	 																				www.github.com/calaylin

February 20, 2018 29 of 29

Open	world:	
Classification	thresholds	for	verification

February 20, 2018 30 of 29

Reducing	Suspect	Set	Size:	Top-n	Classification

February 20, 2018 31 of 29

Reconstructing	original	features

February 20, 2018 32 of 29

• Original	vs	decompiled	features
– Average	cos	similarity:	0.35

Reconstructing	original	features

February 20, 2018 33 of 29

• Original	vs predicted	features
– Average	cos	similarity:	0.81

• Original	vs	decompiled	features
– Average	cos	similarity:	0.35

Reconstructing	original	features

February 20, 2018 34 of 29

• Original	vs predicted	features
– Average	cos	similarity:	0.81

• Original	vs	decompiled	features
– Average	cos	similarity:	0.35

This	suggests	that	original	
features	are	transformed	but	
not	entirely	lost	in	compilation.

Features

Source code Abstract Syntax Tree

February 20, 2018 35 of 29

Dataset:	Development	and	validation	sets
• Obtain	a	dataset	in	CPP	

– Ground	truth	in	authorship	
– Scraped	Google	Code	Jam	to	build	a	corpus	
– Compile	code	with	the	same	settings

• Take	two	disjoint	sets	of	100	programmers
– Develop	method	on	first	set	– controlled	setting
– Validate	method	on	second	set

• Google	Code	Jam:
– Everyone	implements	the	same	algorithmic	functionality
– Complete	task	in	a	limited	 time
– Problems	get	harder

February 20, 2018 36 of 29

Obfuscation	2:	Bogus	Flow	Insertion

February 20, 2018 37 of 29

Obfuscation	3:	Control	Flow	Flattening

February 20, 2018 38 of 29

Original	CF													Flattened	CFG

Obfuscation	3:	Control	Flow	Flattening

February 20, 2018 39 of 29

Original	CFG						Flattened	CFG

