
Riding out DOMsday:
Toward Detecting and Preventing
DOM Cross-Site Scripting

William Melicher
Anupam Das
Mahmood Sharif
Lujo Bauer
Limin Jia

XSS vulnerabilities account for 25% of web
vulnerabilities

Attacker

Craft exploit

User

Browser executes
attacker code

Website with
vulnerability

DOM XSS: vulnerability is inside JavaScript run on client 2

Return exploited
page

Visit page

url.com/page#"><script>ATTACK</script>

<script>ATTACK</script>

document.write('<a href="' +

 document.location + '">Link');

Current client-side defenses are still inadequate

Example: CSP is often not configured properly

Example: Web application firewall filters easily bypassable

More promising solution: Detect bugs ahead of time

State of the art: taint tracking and recognize vulnerable flows [1]

3
[1] Lekies et al. 25 million flows later - large scale detection of DOM XSS. CSS ‘13.

Our contributions

1.  Improved methodology for detecting DOM XSS

2.  Studied prevalence of DOM XSS in real world

3.  Examined whether static analysis tools help

4

var the_url = document.location.href;

var markup = 'Link';

document.write(markup);

What are vulnerable flows?

5

Sinks: document.write, innerHTML, eval, ...

Sources: document.location,
cross-origin messages, referrer, ...

var the_url = document.location.href;

var markup = 'Link';

document.write(markup);

What are vulnerable flows?

6

var the_url = document.location.href;

var markup = 'Link';

document.write(markup);

What are vulnerable flows?

7

Encoding function used

Detecting vulnerable flows using taint tracking

8

var markup = 'Link');

Sources: document.location, cross-
origin messages, referrer, ...

TTT
000000000

'<script>CODE</script>">Link'

000000000TTT0000000000

000000000

Taint tracking inside Chromium

9

document.write(markup);

document.write('<script>CODE</script>">Link');

000000000TTT000000000

Log tainted call:
●  Code location
●  Value of tainted argument
●  Taint information
●  ...

Vulnerability confirmation: at-end injection

10

document.write('Link');

url.com/path?param=test&a=b

url.com/path?param=test&a=b#INJECT

document.write('Link');

document.write('Link');

Original URL: Our confirmation URL:

Vulnerability confirmation: in-parameter injection

11

var data = getQueryParameter('link');

document.write('Link');

url.com/path?link=test&a=b

url.com/path?a=b#&link=INJECT&a=b

document.write('Link')

document.write('Link')

Original URL: Our confirmation URL:

Results

12

Our contributions

1.  Improved methodology for detecting DOM XSS

2.  Studied prevalence of DOM XSS in real world

3.  Examined whether static analysis tools help

13

DOM XSS vulnerabilities on the Internet

10k seed domains

45k web pages

285k flows URL sources
to JS/HTML sinks

55k flows after removing
blocked by encoding

5,217 unique potentially
vulnerable flows

Crawl 1-link deep subpages

Focus on a common category of exploitable flows

encodeURI, encodeURIComponent, ...

Uniqueness: domain, script URL, and script
location

14

How we confirm potentially vulnerable flows
5,217 unique potentially
vulnerable flows

715 unique confirmed
vulnerable flows

1,039 unique confirmed
vulnerable flows

At-end method In-parameter method Both methods

1,465 unique confirmed
vulnerable flows

3,219 unique confirmed
vulnerable flows

Total:

15

83% more confirmed
vulnerabilities using
new in-parameter method

How are vulnerabilities distributed across domains?

16 Domains sorted by # of bugs

Some very buggy domains

Long tail of many domains with one bug

How are vulnerabilities distributed by category?

17

Top 3 categories:
1.  Web ads/analytics
2.  News/media
3.  Entertainment C

at
eg

or
y

of
 w

eb
si

te

Number of vulnerabilities
0 1000 2000

What is causing the vulnerabilities?

●  Simple concatenation without effort to sanitize data

document.write('Link');

●  Custom HTML templating code

'Link'

●  Ad-hoc sanitization

if (markup.indexOf("<script>") != -1) ...

 18

Have things changed over time?

●  More flows per page: 92.6 vs. 48.5

●  Larger ratio of vulnerabilities per page: 0.039 vs. 0.012

●  Larger fraction of flows vulnerable: 0.04% vs. 0.03%

Trend towards more DOM XSS vulnerabilities
19

Prior work 5 years ago [1]

[1] Lekies et al. 25 million flows later - large scale detection of DOM XSS. CSS ‘13.

●  Using same methodology as past experiment

Our contributions

1.  Improved methodology for detecting DOM XSS

2.  Studied prevalence of DOM XSS in real world

3.  Examined whether static analysis tools help

20

Can static analysis tools help?

What we did:
Sampled confirmed vulnerabilities
Checked if they are found by some off-the-shelf tools

No tool found more than 10% of vulnerabilities we tested
Burp Suite found 10% and had 0% false positives, and

 found other bugs
Other tools had high FP rate (95%)

21

●  Improved measurement methodology for DOM XSS vulnerabilities
●  Gained insight into causes and distribution of vulnerabilities
●  Found that DOM XSS vulnerabilities may be increasing
●  Showed that static analysis tools likely do not find many vulnerabilities

github.com/wrmelicher/ChromiumTaintTracking

Toward Detecting and Preventing
DOM Cross-Site Scripting

William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, Limin Jia
{billy, anupamd, msharif, lbauer, liminjia}@cmu.edu

22

