MCI: Modeling-based Causality Inference in
Audit Logging for Attack Investigation

Yonghwi Kwon, F. Wang, W. Wang, K. Lee™, W. Lee, S. Ma, X.
Zhang, D. Xu, S. Jhat*, G. Ciocarlie*, A. Gehani# and V. Yegneswaran®

Purdue University, “University of Georgia,
*University of Wisconsin-Madison, and #SRI International

8§
PURDUE UNIVK;I‘Y OF (%nﬁ!l)
GEORGIA WISCONSIN
T

IIIIIIIIIIIIIIIIIIIIIIIIIIII

Cyberattacks are becoming more sophisticated

 Advanced Persistent Threat (APT)
{:} Targeted: Targets specific organizations to exfiltrate
information or disrupt the systems.

Infrastructure Business Government Politics
(Nuclear plants) (Target® Data Breach) (OPM: Office of (DNC email hack)

Personnel Management) E

2010

1 iy llll![“l"lll T a3
TI¥net
R L

$18 million 18 millions of

40 million customers employees
PURDUE E@ 2

Multiple stages of APTs

Vo
G 1. Reconnaissance: Learn the target organization

é 2. Infiltration: Enter into the victim via social-engineering
(e.g., phishing) or vulnerabilities (e.g., zero-day)

3. Discovery and capture: Stay low and operate slowly
A to avoid detection while discovering critical machines
and/or information

@ 4. Exfiltration/Disruption: Send the captured secret

information to attackers or destroy the systems

PURDUE \CR@ 3

Investigating APTs is challenging

3. Discovery and capture: Stay low and operate slowly
A to avoid detection while discovering critical machines
and/or information.

(Whitelisted) benign built-in software
APT attackers often leverage benign built-in software
(e.g., web-browsers and email clients that are
already whitelisted) to avoid detection.

Low and slow (Stealthy)
Incidents are often detected after a few months.

PURDUE \CR@

4

Example APT: Data exfiltration

(exerted from real-world APTs)

PROGRESSIVE

Weaponized
PDF file

4ad
.,
.

PDF

PURDUE =

Obtaining the ideal causal graph
from the symptom to the origin of attack (email)

&

Phishing
email

—h .
~ .~ Secret doc. Secret doc. file
& @
file __) (Encrypted)
Symptom: / ®

File leak

\ Email client
& FTP 2% GPG process process
process '

(decryption) Malicious
1 l website
@ Malware 3 Web browser
Steps of the attack process ~__ process
1. Phishing email (Legend ——
Subject

2. Phishing webpage
(e.g., process)
3. Compromising systems
Object

(e.g., file/network addr.)/

Accurately identifying
dependencies is important

4. Obtaining secret data

5. Data exfiltration

Existing attack investigation technique
Type 1: Audit-logging

* Record system calls (e.g., socket read and file write)
and detect dependencies between them
— Coarse-grained assumptions:
1. System calls operate on the same file are related.

2. Within the same process, output system calls are
dependent on all preceding input system calls.

Coarse-grained assumptions cause
false dependencies

PURDUE \CR@ 7

Dependency Explosion in Audit-logging

Dependency Explosion in Audit-logging

A causal graph consisting of

55 processes, 41 files, and 415 network addresses.
(only 5 processes, 5 files, 12 network addresses are relevant)

False dependencies cause
Dependency Explosion!

(Taking from days to weeks to examine)

Existing attack investigation technique
Type 2: Taint analysis

* Track dependency (e.g., data dependency) by
monitoring the data propagation of individual
operations (e.g., assignment and calculation)

--

--

--

Significant overhead caused by
monitoring every instruction

Taint analysis techniques have difficulty handling
Control Dependency

Taint-analysis fails to track dependencies

¢ Secret doc. » ! Secret doc. file

(Encrypted)

: GPG process
(decryption)

Taint-analysis fails to track dependencies

Phishing
¢ Secretdoc. , ! Secret doc. file email
file (Encrypted) l
/) Email client

m@ FTP GPG process e
process (decryption)

| \ Malicious
1 ﬁ' website

p N Malware ’ Web browser
Steps of the attack process ~~ process
1. Phishing email
2. Phishing webpage Mﬁ::'are

3. Compromising systems

4. Obtaining secret data

5. Data exfiltration -
PURDUE csﬁ@ 15

- J

LDX: Lightweight dual execution
for causality inference [aspLos’16]

* The original concept of counter-factual causality

Given two events (e.g., system calls),
a latter event is causally dependent on a preceding event,

if changes at the preceding event lead to state differences
in the /atter event.

Cause Preceding Changes Preceding
Event’

Event

: Causally
: Dependent

L g
Vel State Differences VEN

PURDUE gy 13

LDX is significantly faster and more accurate
than state-of-the-art taint-analysis techniques

W}:$74 average runtime overhead on 12 SPEC CPU2006
and 12 real-world applications

times more accurate than state-of-the-art taint
analysis techniques (i.e., Taintgrind and Libdft)

Requires instrumentation of target programs

PURDUE \c@ 14

Toward practical causality inference
in the enterprise environment

* Changing end-user systems is not allowed

— Modifications to commercial programs are not
allowed.

— Organizations do not allow modified programs and/or
kernel to be used.

Instrumentation free
causality inference technique is required

PURDUE \CR@ 15

Intuition behind instrumentation free causality
inference: Behavior decomposition

A complex system-wide behavior can be decomposed
into primitive operations

Primitive Operation

A user opens a secret file, copies and pastes the file contents to a new file.

Then, he edits the new file containing the secret. Copy & Paste

Later, he encrypts the new file, and sends it to outside. Edit a file

ey Encrypt a file
ey Send out a file

N
PURDUE &g 16

Intuition behind instrumentation free causality
inference: Behavior decomposition

* Primitive operations can be used to compose other
combinational complex behaviors

Another (longer) story Primitive Operation

A user opens a secret file, copies and pastes the file contents to a new file.

Then, he edits the secret file adding fake data. He sends out a few other files.

Later, he encrypts the new file, and sends it to outside. Edit a file

Encrypt a file

Send out a file

PURDUE =)o) 17

UNIVERSITY

MCI: Model-based Causality Inference

1. Acquire causal models (Offline)
For each program, it uses LDX (in offline) to acquire causal models for primitive
operations (e.g., opening a file, copy and paste, and edit a file).

=0+ = &

Program Input for LDX: Dual Exec. for
Primitive Op. Causality Inference Dependencies

‘ obtained by LDX

4

Primitive Operation:

Read file content and

send out the content 7
through a socket

File handle

Syscall name

Causal Model:
A sequence of system calls with inter-dependencies

PURDUE 4y 18

MCI: Model-based Causality Inference

2. Parse audit-logs with the causal models
MCI parses audit-logs into concrete model instances

Derived dependencies \\
from models

0 R \Ss (e R o, \C R 0 O " C

Production audit-log (system call trace): Circles represent system calls and arrows
mean the orders. No dependency information between system calls.

Use only system call
sequences to parse

PURDUE (39 19

UNIVERSITY

Challenges in

model-based causality inference

1. Language complexity to describe syscall sequences

— Complex system call subsequences of causal models requires
expressive language

* Context-free: Rr"'w" (e.g., Rrw, Rrrww, Rrrrwww, ...)

attach[...] = parse(recv(...)); // recv
for (1 =0; i< n; i++) // (read)n
read(attach[i], buf, ...);
for (1 =0; i< n; i++) // (write)n
write(fout[i], buf, ...);
e Context-sensitive: Rr"w™c"c™ (e.g., Rrrwccc, Rrrwwecce, ...
attach[...] = parse(recv(...)); // recv
for (i =0; i< n; i++) // (read)"
read(attach[i], buf, ...);
for ((j =0; j<m; j++) // (write)n
write(fout[j], compress(buf));
for (1 =0; i< n; i++) // (close)"
close(attach[i]);
for ((j =0; j<m; j++) // (close)"
close(fout[j]); PURDUE \CER@

Challenges in

model-based causality inference

1. Language complexity to describe syscall sequences

— Complex system call subsequences of causal models requires
expressive language

* Context-free: Rr"'w" (e.g., Rrw, Rrrww, Rrrrwww, ...)

attach[...] = parse(recv(...)); // recv

for (1 =0; i< n; i++) // (read)n
read(attach[i], buf, ...);

for (1 =0; i< n; i++) // (write)n
write(fout[i], buf, ...);

e Context-sensitive: Rr"w™c"c™ (e.g., Rrrwcce, Rrrwwecccg, ...)

More expressive languages lead to higher costs in parsing

| L FUKDUE <ﬁ@@ 21

Challenges in

model-based causality inference

2. Ambiguity in parsing

— Some system calls in audit-logs can be parsed to multiple
causal model instances.

R: read,
W: write

Causal model Production audit-log

Different causalities are derived from different model instances,
causing incorrect causality

PURDUE \CR@ 22

Overcoming challenges by

leveraging dependencies in audit-logs

Problem
Treating an audit-log as a plain sequence of system calls without

dependencies

Observation
Certain dependencies can be extracted by preprocessing audit-logs

to reduce language complexity and ambiguity

System calls on the same file (F1):
Explicit Dependency

Production audit-log

PURDUE \CR@ 23

Segmented Parsing by
leveraging explicit dependencies

Causal models have explicit and implicit dependencies

Explicit dependencies
(System calls on the same file)

Idea: Identify corresponding explicit dependencies and parse
segments to derive implicit dependencies from causal models

Corresponding explicit dependency <

Poacd

Derived implicit dependency

Boundary: Boundary

Froduction audit-log
PURDUE Gy 24

Practical instrumentation free causality
inference: Scalable to real-world workloads

* A week long system-wide experiments

— Large size programs: Web browser (Firefox), web servers
(Apache and nginx), P2P program (Torrent), ...

0.8% FP and 0.6% FN
(ground-truth is obtained by LDX)

e 3 months of Purdue web server workload and
2 months of NASA web server workload

— 9 million requests (4.2 million unique requests)

2.5% FP and 0.15% FN

PURDUE \CR@

25

APT attack constructed by professionals
Phishing email + Backdoored FTP + Data exfiltration

A graph generated by state-of-art audit-logging based technique
(19 files, 33 network addrs., 8 processes + @)

bash
X.X.X.X:53935 (
X.X.X.X:113 W
l > yly /tmp/.X11-unix
sendmail Unix socket
4
sendmail
i 000 .v g ; .
sendmail g L > firefox
}]
sendmail e =
\‘ | i
~/Download/... z.2.2.2:31337
—— Legend —— @proﬁpd —
Process \
Network addr. M /var/mail/.../94368.5221 @/home/.../proftpd ¢ /home/.../doc
File
PURDUE g 26

APT attack constructed by professionals
Phishing email + Backdoored FTP + Data exfiltration

A graph generated by MCI
(3 files, 4 network addrs., 8 processes)

X XXX 53935
X.X.X.X:113

bash yyyy 80
sendma|l
b1
sendma|l ()
2.2.2.2: 31337

sendma|I p|ne flrefox
@proftpd
sendma|l
\‘ |/var/ma|I/ ./94368.5221 @/home/ ./proftpd ¢ /home/ ./doc

Concise and precise causal graph including
all and only attack relevant subjects and objects

Conclusion

1. MCl directly works on production audit-logs without
requiring any change on end-user systems (e.g.,
instrumentation and modified kernels)

2. MCl is scalable to cope with large scale log from long-
running applications (e.g., A week long experiment with
Firefox)

3. MCI precisely infers causality with negligible FP (< 2.5%)
and FN (< 1%)
Yonghwi Kwon, Purdue University
Research Interests: Systems security via program analysis
Web: http://yongkwon.info, Email: yongkwon@purdue.edu

Accurate Causality Inference:
More accurate than BEEP
(state-of-the-art audit-logging tech. based on execution partition)

* Graph by MCl is accurate and concise

— Randomly select 100 system objects (e.g., files/network addresses) and
build causal graphs

WFN WFP

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

System objects |

System subjects ——

MClI B BEEP O 10 20 30 40 50 60 70 80

PURDUE Gy 29

