
MCI:	Modeling-based	Causality	Inference	in	
Audit	Logging	for	Attack	Investigation	

Yonghwi	Kwon,	F.	Wang,	W.	Wang,	K.	Lee*,	W.	Lee,	S.	Ma,	X.	
Zhang,	D.	Xu,	S.	Jha+,	G.	Ciocarlie#,	A.	Gehani#,	and	V.	Yegneswaran#	

1	

Purdue	University,	*University	of	Georgia,		
+University	of	Wisconsin-Madison,	and	#SRI	International	

•  Advanced	Persistent	Threat	(APT)	
Targeted:	Targets	specific	organizations	to	exfiltrate	
information	or	disrupt	the	systems.	
	

Cyberattacks	are	becoming	more	sophisticated	

2	

Infrastructure	
(Nuclear	plants)	

Business	
(Target®	Data	Breach)	

Government		
(OPM:	Office	of	

Personnel	Management)	

Politics	
(DNC	email	hack)	

$18	million	
40	million	customers	

18	millions	of	
employees	

2016	2015	2013	2010	

Multiple	stages	of	APTs	

3	

1.	Reconnaissance:	Learn	the	target	organization		

2.	Infiltration:	Enter	into	the	victim	via	social-engineering	
(e.g.,	phishing)	or	vulnerabilities	(e.g.,	zero-day)	

3.	Discovery	and	capture:	Stay	low	and	operate	slowly	
to	avoid	detection	while	discovering	critical	machines	
and/or	information	

4.	Exfiltration/Disruption:	Send	the	captured	secret	
information	to	attackers	or	destroy	the	systems	

Investigating	APTs	is	challenging	

4	

3.	Discovery	and	capture:	Stay	low	and	operate	slowly	
to	avoid	detection	while	discovering	critical	machines	
and/or	information.		

Low	and	slow	(Stealthy)	
Incidents	are	often	detected	after	a	few	months.	

(Whitelisted)	benign	built-in	software	
APT	attackers	often	leverage	benign	built-in	software		

(e.g.,	web-browsers	and	email	clients	that	are		
already	whitelisted)	to	avoid	detection.	

Steps	of	the	attack	

Example	APT:	Data	exfiltration	
(exerted	from	real-world	APTs)	

Secret	
Encrypted	

Secret	
Decrypted	

Secret	

1.	Phishing	email	
2.	Phishing	webpage	
3.	Compromising	systems	
4.	Obtaining	secret	data	
5.	Data	exfiltration	

1.	Phishing	email	
2.	Phishing	webpage	
3.	Compromising	systems	
4.	Obtaining	secret	data	
5.	Data	exfiltration	

FTP	
program	

8	

Weaponized	
PDF	file	

Steps	of	the	attack	

											Phishing		
					email	

														Malicious		
										website	

				Malware	
file	

													Secret	doc.	file	
							(Encrypted)	

															Secret	doc.		
file	

Obtaining	the	ideal	causal	graph		
from	the	symptom	to	the	origin	of	attack	(email)	

						FTP		
												process	

										GPG	process	
							(decryption)	

							Malware		
					process	

																Web	browser	
						process	

																	Email	client	
										process	

Subject	
(e.g.,	process)	

Legend	

Object	
(e.g.,	file/network	addr.)	

1.	Phishing	email	
2.	Phishing	webpage	
3.	Compromising	systems	
4.	Obtaining	secret	data	
5.	Data	exfiltration	

1.	Phishing	email	
2.	Phishing	webpage	
3.	Compromising	systems	
4.	Obtaining	secret	data	
5.	Data	exfiltration	

Symptom:	
File	leak	

9	

Accurately	identifying	
dependencies	is	important	

Existing	attack	investigation	technique		
Type	1:	Audit-logging	

•  Record	system	calls	(e.g.,	socket	read	and	file	write)	
and	detect	dependencies	between	them	
– Coarse-grained	assumptions:	

1.	System	calls	operate	on	the	same	file	are	related.	
2.	Within	the	same	process,	output	system	calls	are	
dependent	on	all	preceding	input	system	calls.	

7	

Coarse-grained	assumptions	cause		
false	dependencies	

				Malware	

Dependency	Explosion	in	Audit-logging	

							Email		
							Client	

			Web		
									browser	

…	 …	

…	 …	

11	

				Malware	

Dependency	Explosion	in	Audit-logging	

							Email		
							Client	

			Web		
									browser	

…	 …	

…	 …	

…	 …	

…	 …	

A	causal	graph	consisting	of	
55	processes,	41	files,	and	415	network	addresses.	
(only	5	processes,	5	files,	12	network	addresses	are	relevant)	

	
False	dependencies	cause		
Dependency	Explosion!	

	
(Taking	from	days	to	weeks	to	examine)	

Existing	attack	investigation	technique	
Type	2:	Taint	analysis	

•  Track	dependency	(e.g.,	data	dependency)	by	
monitoring	the	data	propagation	of	individual	
operations	(e.g.,	assignment	and	calculation)	

10	

1.  	x	=	input();	
2.  	y	=	x	+	1;	

Data-dependency		
(y	is	data	dependent	on	x)	

Significant	overhead	caused	by		
monitoring	every	instruction	

Taint	analysis	techniques	have	difficulty	handling		
Control	Dependency	

Taint-analysis	fails	to	track	dependencies	

Steps	of	the	attack	
1.	Phishing	email	
2.	Phishing	webpage	
3.	Compromising	systems	
4.	Obtaining	secret	data	
5.	Data	exfiltration	5.	Data	exfiltration	

											Phishing		
					email	

														Malicious		
										website	

				Malware	
file	

													Secret	doc.	file	
							(Encrypted)	

															Secret	doc.		
file	

						FTP		
												process	

										GPG	process	
							(decryption)	

							Malware		
					process	

																Web	browser	
						process	

																	Email	client	
										process	

Taint-analysis	fails	to	track	dependencies	

Steps	of	the	attack	
1.	Phishing	email	
2.	Phishing	webpage	
3.	Compromising	systems	
4.	Obtaining	secret	data	
5.	Data	exfiltration	5.	Data	exfiltration	

											Phishing		
					email	

														Malicious		
										website	

				Malware	
file	

													Secret	doc.	file	
							(Encrypted)	

															Secret	doc.		
file	

						FTP		
												process	

										GPG	process	
							(decryption)	

							Malware		
					process	

																Web	browser	
						process	

																	Email	client	
										process	

15	

LDX:	Lightweight	dual	execution		
for	causality	inference	[ASPLOS’16]	

•  The	original	concept	of	counter-factual	causality	

13	

Preceding	
Event	

Later	
Event	

Preceding	
Event’	

Later	
Event	

Changes	

State	Differences	

Causally		
Dependent	

Given	two	events	(e.g.,	system	calls),		
a	latter	event	is	causally	dependent	on	a	preceding	event,		
if	changes	at	the	preceding	event	lead	to	state	differences	
in	the	latter	event.		

Cause	

Effect	

LDX	is	significantly	faster	and	more	accurate	
than	state-of-the-art	taint-analysis	techniques	

14	

6.08%	 average	runtime	overhead	on	12	SPEC	CPU2006	
and	12	real-world	applications	

3	 times	more	accurate	than	state-of-the-art	taint	
analysis	techniques	(i.e.,	Taintgrind	and	Libdft)	

Requires	instrumentation	of	target	programs	

15	

Toward	practical	causality	inference		
in	the	enterprise	environment	

•  Changing	end-user	systems	is	not	allowed	
– Modifications	to	commercial	programs	are	not	
allowed.	

– Organizations	do	not	allow	modified	programs	and/or	
kernel	to	be	used.	

Instrumentation	free		
causality	inference	technique	is	required	

16	

Intuition	behind	instrumentation	free	causality	
inference:	Behavior	decomposition	

•  A	complex	system-wide	behavior	can	be	decomposed	
into	primitive	operations	

A	user	opens	a	secret	file,		

Then,	he	edits	the	new	file	containing	the	secret.		

Later,	he	encrypts	the	new	file,	 and	sends	it	to	outside.	

Open	a	file	

Primitive	Operation	

Copy	&	Paste	

Edit	a	file	

Encrypt	a	file	

Send	out	a	file	

copies	and	pastes	the	file	contents	to	a	new	file.	

17	

Intuition	behind	instrumentation	free	causality	
inference:	Behavior	decomposition	

•  Primitive	operations	can	be	used	to	compose	other	
combinational	complex	behaviors	

Open	a	file	

Primitive	Operation	

Edit	a	file	

Copy	&	Paste	

Send	out	a	file	

Encrypt	a	file	

A	user	opens	a	secret	file,		

Then,	he	edits	the	secret	file	adding	fake	data.		

Later,	he	encrypts	the	new	file,	 and	sends	it	to	outside.	

copies	and	pastes	the	file	contents	to	a	new	file.	

He	sends	out	a	few	other	files.	

Another	(longer)	story	

MCI:	Model-based	Causality	Inference		

18	

1.	Acquire	causal	models	(Offline)	
For	each	program,	it	uses	LDX	(in	offline)	to	acquire	causal	models	for	primitive	
operations	(e.g.,	opening	a	file,	copy	and	paste,	and	edit	a	file).	

Program	 Input	for	
Primitive	Op.	

LDX:	Dual	Exec.	for	
Causality	Inference	

openFILE	 readFILE	 sendSOC	 close	FILE	

Causal	Model:		
A	sequence	of	system	calls	with	inter-dependencies	

Primitive	Operation:	
Read	file	content	and		
send	out	the	content	
through	a	socket	

Dependencies	
obtained	by	LDX	

File	handle	Syscall	name	

MCI:	Model-based	Causality	Inference		

19	

2.	Parse	audit-logs	with	the	causal	models	
MCI	parses	audit-logs	into	concrete	model	instances		

Production	audit-log	(system	call	trace):	Circles	represent	system	calls	and	arrows	
mean	the	orders.	No	dependency	information	between	system	calls.	

… OF	 OF	 CF	 RF	 RF	 SS	 OF	 RF	 SS	 CF	 OA	 CA	 RS	 OF	 WF	 CF	 OS	 CS	 …OF	 RF	 SS	 CF	 OF	 RF	 SS	 CF	RS	 OF	 WF	 CF	 RS	 OF	 WF	 CF	

openFILE	 readFILE	 sendSOC	 closeFILE	 recvSOC	 openFILE	 writeFILE	 closeFILE	

Dep.	

Derived	dependencies	
from	models	

Causal	models:	Causal	model	1	(Red)	and	Causal	model	2	(Blue)	

Use	only	system	call	
sequences	to	parse	

1.	Language	complexity	to	describe	syscall	sequences	
–  Complex	system	call	subsequences	of	causal	models	requires	
expressive	language	
•  Context-free:	Rrnwn	(e.g.,	Rrw,	Rrrww,	Rrrrwww,	…)	
	
	

•  Context-sensitive:	Rrnwmcncm	(e.g.,	Rrrwccc,	Rrrwwcccc,	…)	

20	

Challenges	in		
model-based	causality	inference	

attach[...]	=	parse(recv(...));								//	recv	
for	(i	=	0;	i	<	n;	i++)																//	(read)n	
		read(attach[i],	buf,	...);	
for	(i	=	0;	i	<	n;	i++)																//	(write)n	
		write(fout[i],	buf,	...);	

attach[...]	=	parse(recv(...));						//	recv	
for	(i	=	0;	i	<	n;	i++)														//	(read)n	
		read(attach[i],	buf,	...);	
for	(j	=	0;	j	<	m;	j++)														//	(write)m	
		write(fout[j],		compress(buf));	
for	(i	=	0;	i	<	n;	i++)														//	(close)n	
		close(attach[i]);	
for	(j	=	0;	j	<	m;	j++)														//	(close)m	
		close(fout[j]);	
	

1.	Language	complexity	to	describe	syscall	sequences	
–  Complex	system	call	subsequences	of	causal	models	requires	
expressive	language	
•  Context-free:	Rrnwn	(e.g.,	Rrw,	Rrrww,	Rrrrwww,	…)	
	
	

•  Context-sensitive:	Rrnwmcncm	(e.g.,	Rrrwccc,	Rrrwwcccc,	…)	

21	

Challenges	in		
model-based	causality	inference	

attach[...]	=	parse(recv(...));								//	recv	
for	(i	=	0;	i	<	n;	i++)																//	(read)n	
		read(attach[i],	buf,	...);	
for	(i	=	0;	i	<	n;	i++)																//	(write)n	
		write(fout[i],	buf,	...);	

attach[...]	=	parse(recv(...));						//	recv	
for	(i	=	0;	i	<	n;	i++)														//	(read)n	
		read(attach[i],	buf,	...);	
for	(j	=	0;	j	<	m;	j++)														//	(write)m	
		write(fout[j],		compress(buf));	
for	(i	=	0;	i	<	n;	i++)														//	(close)n	
		close(attach[i]);	
for	(j	=	0;	j	<	m;	j++)														//	(close)m	
		close(fout[j]);	
	

More	expressive	languages	lead	to	higher	costs	in	parsing	

2.	Ambiguity	in	parsing	
–  Some	system	calls	in	audit-logs	can	be	parsed	to	multiple	
causal	model	instances.	

22	

Challenges	in		
model-based	causality	inference	

RF1	 WF2	
R:	read,	
W:	write	

Production	audit-log	

… R1	 W2	 W3	 R4	 R4	 W4	 W5	 R6	 W6	
…R1	 W2	R1	 W3	R1	 W4	R1	 W5	R1	 W6	

Causal	model	

Different	causalities	are	derived	from	different	model	instances,		
causing	incorrect	causality	

23	

Overcoming	challenges	by		
leveraging	dependencies	in	audit-logs	

RF1	 WF1	

Production	audit-log	

System	calls	on	the	same	file	(F1):	
Explicit	Dependency	

… …

Problem	
Treating	an	audit-log	as	a	plain	sequence	of	system	calls	without	
dependencies	

Observation	
Certain	dependencies	can	be	extracted	by	preprocessing	audit-logs	
to	reduce	language	complexity	and	ambiguity		

24	

Segmented	Parsing	by		
leveraging	explicit	dependencies	

•  Causal	models	have	explicit	and	implicit	dependencies	

RS1	 WS2	

•  Idea:	Identify	corresponding	explicit	dependencies	and	parse	
segments	to	derive	implicit	dependencies	from	causal	models	

RF1	 WF1	

Corresponding	explicit	dependency	

Causal	model	

Explicit	dependencies	
(System	calls	on	the	same	file)	

Implicit	dependencies	
(Memory	operation)	

… R1	 R2	 W3	 W3	 R3	 W4	 W2	 W3	 W4	 …

Boundary	 Boundary	

Production	audit-log	

Explicit	dep.	

Derived	implicit	dependency	

R2	 W2	

RS1	 WS2	

RS1	 WS2	

25	

Practical	instrumentation	free	causality	
inference:	Scalable	to	real-world	workloads	

•  A	week	long	system-wide	experiments	
–  Large	size	programs:	Web	browser	(Firefox),	web	servers	
(Apache	and	nginx),	P2P	program	(Torrent),	…	

•  3	months	of	Purdue	web	server	workload	and		
2	months	of	NASA	web	server	workload	
–  9	million	requests	(4.2	million	unique	requests)	

0.8%	FP	and	0.6%	FN	
(ground-truth	is	obtained	by	LDX)	

2.5%	FP	and	0.15%	FN	

A	graph	generated	by	state-of-art	audit-logging	based	technique	
(19	files,	33	network	addrs.,	8	processes	+	@)	

APT	attack	constructed	by	professionals	
Phishing	email	+	Backdoored	FTP	+	Data	exfiltration	

26	

Process	

Legend	

Network	addr.	

File	

sendmail	

x.x.x.x:53935	

x.x.x.x:113	

sendmail	

sendmail	

sendmail	

									/var/mail/…/94368.5221	

pine	 firefox	

							/home/…/proftpd	

bash	

y.y.y.y:80	

proftpd	

								/home/…/doc	

…	
…	

…	

…	

…	 …	
…	…	

Unix	socket	
/tmp/.X11-unix	

~/Download/…	 …	 …	

…	

…	

…	

…	 …	 …	

…	 z.z.z.z:31337	

…	

…	

…	

…	

…	
…	

…	

…	

…	

…	

…	

…	

…	

…	

…	 …	 …	 …	

…	

…	 …	 …	 …	

…	

…	

A	graph	generated	by	MCI	
(3	files,	4	network	addrs.,	8	processes)	

APT	attack	constructed	by	professionals	
Phishing	email	+	Backdoored	FTP	+	Data	exfiltration	

27	

Process	

Legend	

Network	addr.	

File	

sendmail	

x.x.x.x:53935	

x.x.x.x:113	

sendmail	

sendmail	

sendmail	

									/var/mail/…/94368.5221	

pine	 firefox	

							/home/…/proftpd	

bash	 y.y.y.y:80	

proftpd	

								/home/…/doc	

z.z.z.z:31337	

Concise	and	precise	causal	graph	including		
all	and	only	attack	relevant	subjects	and	objects	

Conclusion	

1.	MCI	directly	works	on	production	audit-logs	without		
					requiring	any	change	on	end-user	systems	(e.g.,		
					instrumentation	and	modified	kernels)	
2.	MCI	is	scalable	to	cope	with	large	scale	log	from	long-	
					running	applications	(e.g.,	A	week	long	experiment	with		
					Firefox)	
3.	MCI	precisely	infers	causality	with	negligible	FP	(<	2.5%)		
					and	FN	(<	1%)	

28	

Yonghwi	Kwon,	Purdue	University	
Research	Interests:	Systems	security	via	program	analysis	
Web:	http://yongkwon.info,	Email:	yongkwon@purdue.edu	

29	

Accurate	Causality	Inference:		
More	accurate	than	BEEP		

(state-of-the-art	audit-logging	tech.	based	on	execution	partition)	

•  Graph	by	MCI	is	accurate	and	concise		
–  Randomly	select	100	system	objects	(e.g.,	files/network	addresses)	and	

build	causal	graphs	

0%	 2%	 4%	 6%	 8%	 10%	 12%	 14%	 16%	 18%	 20%	

BEEP	

MCI	
FN	 FP	

0	 10	 20	 30	 40	 50	 60	 70	 80	

System	subjects	

System	objects	

Edges	

MCI	 BEEP	

Accurate	

Concise	

