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Many security incidents originate from the Web
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Web-driven malware infections
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Web-driven malware infections
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Malware infections can have huge consequences!
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Forensic investigation to find root causes
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Forensic investigation to find root causes
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Is it possible to reconstruct exactly 
where the attack came from?
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Challenges to web attack reconstruction

● Existing logs are sparse, short-lived, and provide only limited information
● Semantic gap between network traces and browsing events
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Need more detailed and persistent 
web audit logs!

Network 
Traces



Requirements for Web log recording systems

● Always on 
○ attacks are unpredictable and ephemeral

● Efficient 
○ recording overhead must not decrease browser usability

● No functional interference
○ same browser architecture and functions  

● Transparent to the user
○ no user action needed to enable logging

● Limited storage overhead
○ audit logs need to be preserved for long periods of time
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ChromePic [NDSS 2017]

● Take webshot at every user interaction
○ Synchronous screenshots
○ Synchronous “deep” DOM snapshots

● Features
○ Efficient, transparent, always on recording
○ Forensic rigor (synchronous logs)
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ChromePic’s main limitation
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time

Missing info about  what happens between user actions
● how was the attack constructed?
● malicious JS code execution?



● Detailed logging of navigation events
● Continuous recording of DOM changes
● Record details of how JS code changes the DOM
● Dependences between events and JS callbacks
● Abstract detailed logs into easier-to-interpret graphs

JSgraph Overview
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JSgraph System

● Extends Chromium’s DevTools
○ Add custom Inspector Agent
○ Add Inspector Instrumentation hooks

● Continuously track DOM changes
○ didInsertDOMNode, willRemoveDOMNode
○ didModifyDOMAttribute
○ createdChildFrame, …

● Log JS APIs, script executions, and callbacks
○ compiledScript → script ID + source code
○ runScriptBegin/End
○ callFunctionBegin/End → log callback function details

■ Where was the function defined?
■ What event triggered the callback, …

○ window.open(), location.replace()
○ XMLHttpRequests (open, send, ...), ... 13
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Code Instrumentation and Example Logs
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Custom Inspector Instrumentaiton Hook Log Trace
...

...



Abstracting audit logs 
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Example attack reconstruction

● Social Engineering Malware Download

● 1st Step: identify suspicious download events
○ Forensic analyst lists all download events
○ Narrows the investigation to a set of possible

target machines
○ Identifies time window of interest
○ Selects interesting file download logs as pivot point 

for analysis
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All details about file download events captured in JSgraph’s audit logs!



Backward Tracking

● Walk back in time

● Reconstruct sequence of audit logs

● Only consider logs for events with
direct path to pivot point
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Backward Tracking
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Backward Tracking
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Forward Tracking
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Measuring Performance Overhead

● Use Chromium’s TRACE_EVENT infrastructure
○ TRACE_EVENT0 → measures the time spent within a function
○ TRACE_EVENT_BEGIN0 / _END0 → measure execution time between two code points
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Measuring Performance Overhead
○ Page load 

■ t(loadEventFired) - t(didStartProvisionalLoad)
○ DOM construction 

■ t(navigation to new page) - t(first node inserted) 
■ excludes JS execution time

○ JS execution 
■ ∑ t(run compiled script end) - t(run compiled script begin)
■ ∑ t(call function end) - t(call function begin)

○ Overall
■ t(navigation to next page) - t(didStartProvisionalLoad) 
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Relative performance overhead: 50th- and 95th-percentile



Storage Overhead

● Linux top 10 experiments
○ 50 min of active browsing = 37MB compressed logs
○ = 0.74 MB/min

● Extrapolation to enterprise network
○ Assuming 8 hours of browsing / day
○ 262 work days / year
○ < 91GB of storage per user / year
○ < 91TB to keep web audit logs produced by 

   1,000 users for one entire year 
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Conclusion

● JSgraph records audit logs to enable detailed reconstruction of 
web security incidents

● JSgraph is not limited to recording state of web pages only at the time of user 
actions (unlike ChromePic)

● Recording of critical browser-internal events, e.g., JS ←→ DOM interactions

● Post-processing module to abstract audit logs into easier-to-interpret graphs

● Acceptable performance and storage overhead
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Thank you!

25

https://github.com/perdisci/JSgraph

https://github.com/perdisci/JSgraph

