
JSgraph
Enabling Reconstruction of Web Attacks via Efficient
Tracking of Live In-Browser JavaScript Executions

Bo Li, Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci

Dept. of Computer Science - University of Georgia

Many security incidents originate from the Web

2

Web-driven malware infections

3

Web-driven malware infections

4[Rafique et al] It’s Free for a Reason: Exploring the Ecosystem of Free Live Streaming Services. NDSS 2016

Malware infections can have huge consequences!

5

Forensic investigation to find root causes

6

Forensic
Investigator

Forensic investigation to find root causes

7

Is it possible to reconstruct exactly
where the attack came from?

Forensic
Investigator

Challenges to web attack reconstruction

● Existing logs are sparse, short-lived, and provide only limited information
● Semantic gap between network traces and browsing events

8

Need more detailed and persistent
web audit logs!

Network
Traces

Requirements for Web log recording systems

● Always on
○ attacks are unpredictable and ephemeral

● Efficient
○ recording overhead must not decrease browser usability

● No functional interference
○ same browser architecture and functions

● Transparent to the user
○ no user action needed to enable logging

● Limited storage overhead
○ audit logs need to be preserved for long periods of time

9

ChromePic [NDSS 2017]

● Take webshot at every user interaction
○ Synchronous screenshots
○ Synchronous “deep” DOM snapshots

● Features
○ Efficient, transparent, always on recording
○ Forensic rigor (synchronous logs)

10

time

ChromePic’s main limitation

11

time

Missing info about what happens between user actions
● how was the attack constructed?
● malicious JS code execution?

● Detailed logging of navigation events
● Continuous recording of DOM changes
● Record details of how JS code changes the DOM
● Dependences between events and JS callbacks
● Abstract detailed logs into easier-to-interpret graphs

JSgraph Overview

12

JSgraph System

● Extends Chromium’s DevTools
○ Add custom Inspector Agent
○ Add Inspector Instrumentation hooks

● Continuously track DOM changes
○ didInsertDOMNode, willRemoveDOMNode
○ didModifyDOMAttribute
○ createdChildFrame, …

● Log JS APIs, script executions, and callbacks
○ compiledScript → script ID + source code
○ runScriptBegin/End
○ callFunctionBegin/End → log callback function details

■ Where was the function defined?
■ What event triggered the callback, …

○ window.open(), location.replace()
○ XMLHttpRequests (open, send, ...), ... 13

DevTools Forensics Agent

Raw
Audit Logs

Graph
Abstraction

Code Instrumentation and Example Logs

14

Custom Inspector Instrumentaiton Hook Log Trace
...

...

Abstracting audit logs

15

Example attack reconstruction

● Social Engineering Malware Download

● 1st Step: identify suspicious download events
○ Forensic analyst lists all download events
○ Narrows the investigation to a set of possible

target machines
○ Identifies time window of interest
○ Selects interesting file download logs as pivot point

for analysis

16
All details about file download events captured in JSgraph’s audit logs!

Backward Tracking

● Walk back in time

● Reconstruct sequence of audit logs

● Only consider logs for events with
direct path to pivot point

17

audit logs

pivot

time

Backward Tracking

18

Backward Tracking

19

Forward Tracking

20

partial backward tracking

pivot

Measuring Performance Overhead

● Use Chromium’s TRACE_EVENT infrastructure
○ TRACE_EVENT0 → measures the time spent within a function
○ TRACE_EVENT_BEGIN0 / _END0 → measure execution time between two code points

21

Measuring Performance Overhead
○ Page load

■ t(loadEventFired) - t(didStartProvisionalLoad)
○ DOM construction

■ t(navigation to new page) - t(first node inserted)
■ excludes JS execution time

○ JS execution
■ ∑ t(run compiled script end) - t(run compiled script begin)
■ ∑ t(call function end) - t(call function begin)

○ Overall
■ t(navigation to next page) - t(didStartProvisionalLoad)

22

baseline
(total time)

absolute
overhead

relative
overhead

Relative performance overhead: 50th- and 95th-percentile

Storage Overhead

● Linux top 10 experiments
○ 50 min of active browsing = 37MB compressed logs
○ = 0.74 MB/min

● Extrapolation to enterprise network
○ Assuming 8 hours of browsing / day
○ 262 work days / year
○ < 91GB of storage per user / year
○ < 91TB to keep web audit logs produced by

 1,000 users for one entire year

23

Compressed
Logs

Conclusion

● JSgraph records audit logs to enable detailed reconstruction of
web security incidents

● JSgraph is not limited to recording state of web pages only at the time of user
actions (unlike ChromePic)

● Recording of critical browser-internal events, e.g., JS ←→ DOM interactions

● Post-processing module to abstract audit logs into easier-to-interpret graphs

● Acceptable performance and storage overhead
24

Thank you!

25

https://github.com/perdisci/JSgraph

https://github.com/perdisci/JSgraph

