
AceDroid: Normalizing Diverse Android
Access Control Checks for Inconsistency

Detection
	

Yousra	Aafer*,	Jianjun	Huang*,	Yi	Sun*,	Xiangyu	Zhang*,	Ninghui	Li*	and	Chen	Tian†		
*Purdue	University	

†Futurewei	Technologies	
	
	

JNI	

Android Access Control Model

Linux	Kernel	
Driver	
AC	

Framework	
Resource	 Resource	

API	API	 API	

Security	Check	 Security	Check	 Security	Check	

Application		
App	 App	AC	 AC	

Driver	
AC	

App	 AC	

IPC	

Framework	

Linux	Kernel	
Driver	Driver	

Application		
App	

AC	

Security	Check	 Security	Check	 Security	Check	

AC	

AC	

Resource	 Resource	

API	API	 API	

App	AC	App	 AC	

IPC	

Android Access Control Model: Effective?
•  Lack	of	an	Oracle:	It’s	difficult	to	determine	if	a	resource	is	correctly	protected	
•  Approximate	Solution:	Compare	AC	enforcements	across	multiple	instances	of	the	same	resource	
Inconsistencies	are	potential	vulnerabilities	

ADDICTED	(Zhou	et	al.,	S&P’14)	

DroidDiff	(Aafer	et	al.,	Usenix’16)	

Kratos	(Shao	et	al.,	NDSS’16)	

	

•  Many	challenges	cannot	be	addressed	by	the	existing	work	Kratos.	

AC	

AC	

Security	Check	

AC	

Security	Check	Security	Check	

Android Framework AC Features Diversity:
Example: Exploitable Inconsistency

Permission Check
“permission.ENTERPRISE_API”
Normal Level

deviceManager.reboot()

shutdownOrRebootInternal

User Id Check	

UID
Check 1000	

Sony Xperia XA	

powerManager.reboot()

Permission Check
“permission.REBOOT”
System Level

3rd Party App	

Android Framework AC Features Diversity:
Example: Non-Exploitable Inconsistency
•  Framework	developers	do	not	have	a	gold	standard	to	implement	appropriate	access	control		
•  Diverse	ways	to	achieve	the	same	protection	at	the	framework	layer	
•  If	not	taking	into	consideration,	this	diversity	can	lead	to	a	significant	number	of	false	alarms	

UID 1000	

installPackageAsUser

	mPendingInstalls.add(..)

System permission=
INTERACT_ACROSS_USERS.

..	

User Restriction =
DISALLOW_INSTALL_APPS	

installPackageForMDM

User Restriction =
 DISALLOW_INSTALL_APPS	

3rd Party App	

UID 1000	

System permission = INSTALL_PACKAGE	

Android Framework AC Features Diversity:
Example: Non-Exploitable Inconsistency
•  Framework	developers	do	not	have	a	gold	standard	to	implement	appropriate	access	control		
•  Diverse	ways	to	achieve	the	same	protection	at	the	framework	layer	
•  If	not	taking	into	consideration,	this	diversity	can	lead	to	a	significant	number	of	false	alarms	

Samsung S7 Edge	

installPackageAsUser	:		{permission	=INSTALL_PACKAGE,	 UID=1000,		permission	=	INTERACT.._USERS}	

How do existing works handle this case:
•  Unions	all	security	checks	from	entry	point	to	sink,	regardless	of	their	program	structure.			
•  Only	considers	a	number	of		explicit	checks	(e.g.,	permissions,	UID	checks)	

UID 1000	

installPackageAsUser

System permission=
INTERACT_ACROSS_USERS.

..	

User Restriction =
DISALLOW_INSTALL_APPS	

installPackageForMDM

User Restriction =
 DISALLOW_INSTALL_APPS	

UID 1000	

System permission = INSTALL_PACKAGE	

	mPendingInstalls.add(..)

installPackageForMDM	:				{UID=1000}	

AceDroid Solution
• Conduct	Access	Control	Normalization	to	detect	Exploitable	Inconsistencies:	

•  Normalizes	various	security	checks	to	canonical	values	following	the	program	semantics	
•  Handles	different	program	structures	such	as	if-else,	loops,	etc.	
•  Allows	precise	comparison	across	different	implementation	

AceDroid Solution
• Access	Control	Normalization	technique:	
•  Both	installPackageAsUser	and	installPackageForMDM	have	the	following	concise	canonical	value:	

		
	

UID 1000	

installPackageAsUser

sink

System permission =
INTERACT_ACROSS_USERS.

..	

User Restriction =
DISALLOW_INSTALL_APPS	

installPackageForMDM

User Restriction =
 DISALLOW_INSTALL_APPS	

UID 1000	

System permission = INSTALL_PACKAGE	

	mPendingInstalls.add(..)

App:=	[System]	and	User	:=	[Restriction	=	DISALLOW_INSTALL_APPS]	

Categorization of Android Access Control
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		

•  Each	aspect	is	a	vector	of	multiple	orthogonal	dimensions:	

Privileged?	

Private	
Sink	

App	privilege:	Permissions	

Normalization	of	Permissions:	SYSTEM	>	DANGEROUS	>	NORMAL	

,	UID	,	PID	,	Package	properties	(signature..)	

Categorization of Android Access Control
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		

•  Each	aspect	is	a	vector	of	multiple	orthogonal	dimensions:	
•  Our	Normalization	handles	various	program	structures	

Multiple	permissions	are	enforced:	

“Permission.CHANGE_NETWORK_STATE”	=	NORMAL	LEVEL	
“Permission.CONNECTIVITY_INTERNAL”=	SYSTEM	LEVEL	

Normalized	Value	=		
Max(normal,	system)	
=>	SYSTEM	

Privileged?	

Private	
Sink	

Categorization of Android Access Control
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		

•  Each	aspect	is	a	vector	of	multiple	orthogonal	dimensions:	
•  Our	Normalization	handles	various	program	structures	

Either	permission	is	enforced:	

“READ_PRIVILEGED_PHONE_STATE”	=	SYSTEM	LEVEL	
“READ_PHONE_STATE”=	NORMAL	LEVEL	

Normalized	Value	=		
Min(normal,	system)	
=>	NORMAL	

Privileged?	

Private	
Sink	

Categorization of Android Access Control
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		

•  Each	aspect	is	a	vector	of	multiple	orthogonal	dimensions:	

Privileged?	

Private	
Sink	

Resource	Owner?	

Foreground?	

Categorization of Android Access Control
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		

•  Each	aspect	is	a	vector	of	multiple	orthogonal	dimensions:	

Privileged?	

Private	
Sink	

Resource	Owner?	

Foreground?	

Privileged?	

Has	Restriction?	

Current	User?	

Resource	Owner?	

System Design: Modeling Security Checks
•  Modeling	security	checks	for	a	given	API:		

getNetworkPolicies	

Privilege	=	[READ_PHONE_STATE]	

checkPermission(MANAGE_NETWORK_POLICY)	

checkPermission(READ_PRIVILEGED_PHONE_STATE)	 checkPermission(READ_PHONE_STATE)	

Return	policies	

Privilege	=	[READ_PRIVILEGED_PHONE_STATE]	
	=	[Normal]	=	[System]	

Privilege	=	Min(System,	Normal)		 =	[Normal]	

Privilege	=	[MANAGE_NETWORK_POLICY]	
	=	[System]	

Privilege	=	Max[System,	Normal]	 	=	[System]	

System Design
•  In-Image	Analysis:	compares	access	control	to	a	same	resource	to	discover	inconsistencies	
•  Cross-Image	Analysis:	identifies	inconsistencies	along	similar	APIs	across	two	Android	
images		

	

Entry Point :
Security Checks

Convergence
Analysis

Entry Point:
Call Graph

Inconsistencies
Detection

In-Image
Analysis

Rom 1

Preprocessing
System Services
& Entry Points

Collection

Call Graph
Construction

Security Checks
Modeling

Entry Points
Analysis

Inconsistences

Rom 2 Entry Points
Analysis

Entry Point :
Security Checks

Inconsistencies
Detection

Cross-Image Analysis

Evaluation: Inconsistencies Landscape: in-image
In-Image	(TP/	Reported	Inconsistencies)	

•  On	Average,	we	achieve	63%	increase	over	Krato’s	TP.		
•  Customized	ROMs	exhibit	a	higher	number	of	inconsistencies.	

•  Inconsistencies	are	prevalent:	
•  Across	different	vendors	
•  Even	within	the	same	vendor.		

Cross-Image	(TP	/	Reported	Inconsistencies)	

Evaluation: Inconsistencies Landscape: cross-image

Evaluation: Inconsistencies Landscape

•  On	average,	we	can	reduce	the	false	alarms	from	229	to	13	instances.		

Number	of	inconsistencies	if	no	Normalization	is	performed	

Findings: Confirmed Attacks
•  27	confirmed	attacks.		
•  2	ranked	as	critical	by	LG. 		

Q&A
	

Thank	you!	
	

