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Android Access Control Model: Effective? 
•  Lack	of	an	Oracle:	It’s	difficult	to	determine	if	a	resource	is	correctly	protected	
•  Approximate	Solution:	Compare	AC	enforcements	across	multiple	instances	of	the	same	resource	
Inconsistencies	are	potential	vulnerabilities	

ADDICTED	(Zhou	et	al.,	S&P’14)	

DroidDiff	(Aafer	et	al.,	Usenix’16)	

Kratos	(Shao	et	al.,	NDSS’16)	

	

•  Many	challenges	cannot	be	addressed	by	the	existing	work	Kratos.	
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Android Framework AC Features Diversity: 
Example: Exploitable Inconsistency 

Permission Check 
“permission.ENTERPRISE_API” 
Normal Level 

deviceManager.reboot() 

shutdownOrRebootInternal 

User Id Check	

UID  
Check 1000	

Sony Xperia XA	

powerManager.reboot() 

Permission Check 
“permission.REBOOT”  
System Level 

3rd Party App	



Android Framework AC Features Diversity: 
Example: Non-Exploitable Inconsistency 
•  Framework	developers	do	not	have	a	gold	standard	to	implement	appropriate	access	control		
•  Diverse	ways	to	achieve	the	same	protection	at	the	framework	layer	
•  If	not	taking	into	consideration,	this	diversity	can	lead	to	a	significant	number	of	false	alarms	



UID 1000	

installPackageAsUser 

	mPendingInstalls.add(..) 

System permission= 
INTERACT_ACROSS_USERS.

..	

User Restriction =  
DISALLOW_INSTALL_APPS	

installPackageForMDM 

User Restriction =  
 DISALLOW_INSTALL_APPS	

3rd Party App	

UID 1000	

System permission = INSTALL_PACKAGE	

Android Framework AC Features Diversity: 
Example: Non-Exploitable Inconsistency 
•  Framework	developers	do	not	have	a	gold	standard	to	implement	appropriate	access	control		
•  Diverse	ways	to	achieve	the	same	protection	at	the	framework	layer	
•  If	not	taking	into	consideration,	this	diversity	can	lead	to	a	significant	number	of	false	alarms	

Samsung S7 Edge	



installPackageAsUser	:		{permission	=INSTALL_PACKAGE,	 UID=1000,		permission	=	INTERACT.._USERS}	

How do existing works handle this case:  
•  Unions	all	security	checks	from	entry	point	to	sink,	regardless	of	their	program	structure.			
•  Only	considers	a	number	of		explicit	checks	(e.g.,	permissions,	UID	checks)	

UID 1000	

installPackageAsUser 

System permission= 
INTERACT_ACROSS_USERS.

..	

User Restriction =  
DISALLOW_INSTALL_APPS	

installPackageForMDM 

User Restriction =  
 DISALLOW_INSTALL_APPS	

UID 1000	

System permission = INSTALL_PACKAGE	

	mPendingInstalls.add(..) 

installPackageForMDM	:				{UID=1000}	



AceDroid Solution 
• Conduct	Access	Control	Normalization	to	detect	Exploitable	Inconsistencies:	

•  Normalizes	various	security	checks	to	canonical	values	following	the	program	semantics	
•  Handles	different	program	structures	such	as	if-else,	loops,	etc.	
•  Allows	precise	comparison	across	different	implementation	



AceDroid Solution 
• Access	Control	Normalization	technique:	
•  Both	installPackageAsUser	and	installPackageForMDM	have	the	following	concise	canonical	value:	

		
	

UID 1000	

installPackageAsUser 

sink 

System permission = 
INTERACT_ACROSS_USERS.

..	

User Restriction =   
DISALLOW_INSTALL_APPS	

installPackageForMDM 

User Restriction =  
 DISALLOW_INSTALL_APPS	

UID 1000	

System permission = INSTALL_PACKAGE	

	mPendingInstalls.add(..) 

App:=	[System]	and	User	:=	[Restriction	=	DISALLOW_INSTALL_APPS]	



Categorization of Android Access Control 
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		

•  Each	aspect	is	a	vector	of	multiple	orthogonal	dimensions:	

Privileged?	

Private	
Sink	

App	privilege:	Permissions	

Normalization	of	Permissions:	SYSTEM	>	DANGEROUS	>	NORMAL	

,	UID	,	PID	,	Package	properties	(signature..)	



Categorization of Android Access Control 
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		

•  Each	aspect	is	a	vector	of	multiple	orthogonal	dimensions:	
•  Our	Normalization	handles	various	program	structures	

Multiple	permissions	are	enforced:	

“Permission.CHANGE_NETWORK_STATE”	=	NORMAL	LEVEL	
“Permission.CONNECTIVITY_INTERNAL”=	SYSTEM	LEVEL	

Normalized	Value	=		
Max(normal,	system)	
=>	SYSTEM	

Privileged?	

Private	
Sink	



Categorization of Android Access Control 
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		

•  Each	aspect	is	a	vector	of	multiple	orthogonal	dimensions:	
•  Our	Normalization	handles	various	program	structures	

Either	permission	is	enforced:	

“READ_PRIVILEGED_PHONE_STATE”	=	SYSTEM	LEVEL	
“READ_PHONE_STATE”=	NORMAL	LEVEL	

Normalized	Value	=		
Min(normal,	system)	
=>	NORMAL	

Privileged?	

Private	
Sink	



Categorization of Android Access Control 
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		

•  Each	aspect	is	a	vector	of	multiple	orthogonal	dimensions:	
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Foreground?	



Categorization of Android Access Control 
• We	model	each	access	control	check	as	a	pair	consisting	of	app	and	user	aspects	

•  App	aspect:	aims	to	check	if	the	app	that	tries	to	access	the	resource	has	the	needed	credentials		
•  User	aspect:	determines	if	the	user	of	the	app	that	tries	to	access	the	resource	has	a	certain	role		
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System Design: Modeling Security Checks 
•  Modeling	security	checks	for	a	given	API:		

getNetworkPolicies	

Privilege	=	[READ_PHONE_STATE]	

checkPermission(MANAGE_NETWORK_POLICY)	

checkPermission(READ_PRIVILEGED_PHONE_STATE)	 checkPermission(READ_PHONE_STATE)	

Return	policies	

Privilege	=	[READ_PRIVILEGED_PHONE_STATE]	
	=	[Normal]	=	[System]	

Privilege	=	Min(System,	Normal)		 =	[Normal]	

Privilege	=	[MANAGE_NETWORK_POLICY]	
	=	[System]	

Privilege	=	Max[System,	Normal]	 	=	[System]	



System Design 
•  In-Image	Analysis:	compares	access	control	to	a	same	resource	to	discover	inconsistencies	
•  Cross-Image	Analysis:	identifies	inconsistencies	along	similar	APIs	across	two	Android	
images		
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Evaluation: Inconsistencies Landscape: in-image 
In-Image	(TP/	Reported	Inconsistencies)	

•  On	Average,	we	achieve	63%	increase	over	Krato’s	TP.		
•  Customized	ROMs	exhibit	a	higher	number	of	inconsistencies.	



•  Inconsistencies	are	prevalent:	
•  Across	different	vendors	
•  Even	within	the	same	vendor.		

Cross-Image	(TP	/	Reported	Inconsistencies)	

Evaluation: Inconsistencies Landscape: cross-image 



Evaluation: Inconsistencies Landscape 

•  On	average,	we	can	reduce	the	false	alarms	from	229	to	13	instances.		

Number	of	inconsistencies	if	no	Normalization	is	performed	



Findings: Confirmed Attacks 
•  27	confirmed	attacks.		
•  2	ranked	as	critical	by	LG. 		
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