AceDroid: Normalizing Diverse Android
Access Control Checks for Inconsistency
Detection

Yousra Aafer*, Jianjun Huang®*, Yi Sun*, Xiangyu Zhang®*, Ninghui Li* and Chen Tiant

*Purdue University
tFuturewei Technologies

PURDUE &V4 Huawel

Android Access Control Model

T8
Security Check Security Check Security Check

Resource Resource

ENI

Android Access Control Model: Effective?

* Lack of an Oracle: It’s difficult to determine if a resource is correctly protected

* Approximate Solution: Compare AC enforcements across multiple instances of the same resource
Inconsistencies are potential vulnerabilities

App D " App App DroidDiff (Aafer et al., Usenix’16)
. . [] [] ; L]
Application = :

prevent Furreens i : IPC

; ; H _

AP AP API

| || | m Kratos (Shao et al., NDSS'16)
Framework
Resource Resource

Linux Kernel m | Driver | ADDICTED (zhou et al., S&P’14)

 Many challenges cannot be addressed by the existing work Kratos.

Android Framework AC Features Diversity:
Example: Exploitable Inconsistency

3rd Party App

® o

deviceManager.reboot()

UIiD
Check 1600
User Id Check
Sony Xperia XA

o
9
4
&

Permission Check

“permission.ENTERPRISE_API”
Normal Level

shutdownOrRebootInternal

powerManager.reboot()

v
Permission Check
“permission.REBOOT”
Sys}gm_Level

Android Framework AC Features Diversity:
Example: Non-Exploitable Inconsistency
* Framework developers do not have a gold standard to implement appropriate access control

* Diverse ways to achieve the same protection at the framework layer

* If not taking into consideration, this diversity can lead to a significant number of false alarms

Android Framework AC Features Diversity:
Example: Non-Exploitable Inconsistency
* Framework developers do not have a gold standard to implement appropriate access control

* Diverse ways to achieve the same protection at the framework layer

* If not taking into consideration, this diversity can lead to a significant number of false alarms

3 Party App

installPackageAsUser installPackageForMDM

System permission = INSTALL _PACKAGE

2
5

. 4

e &

UID 1000 "0...* ~++"“ System permission: UlID 1000
LY :?INTERACT_ACROSS_USERS. :
v \4 %
User Restriction = User Restriction =
DISALLOW_INSTALL_APPS DISALLOW INSTALL APPS

Samsung S7 Edge mPendinglnstalls.add(..)

How do existing works handle this case:

* Unions all security checks from entry point to sink, regardless of their program structure.

* Only considers a number of explicit checks (e.g., permissions, UID checks)

installPackageAsUser :{permission =INSTALL_PACKAGE, UID=1000, permission = INTERACT.._USERS}

installPackageForMDM : {UID=1000}

installPackageAsUser installPackageForMDM

System permission = INSTALL PACKAGE

-]

L]

o .
s
&

5, J .
UID 1000 "%.,. &7 System permission= UID 1000
Y #INTERACT_ACROSS_USERS, :
% ; - :
% v \ 4
User Restriction = User Restriction =

DISALLOW_INSTALL_APPS

mPendinglnstalls.add(..)

AceDroid Solution

* Conduct Access Control Normalization to detect Exploitable Inconsistencies:

 Normalizes various security checks to canonical values following the program semantics
* Handles different program structures such as if-else, loops, etc.
* Allows precise comparison across different implementation

AceDroid Solution

* Access Control Normalization technique:

* Both installPackageAsUser and installPackageForMDM have the following concise canonical value:

installPackageAsUser installPackageForMDM

System permission = INSTALL _PACKAGE

a i 5
UID 1000 "0...* ~++““ System permission = UID 1000
LY :?INTERACT_ACROSS_USERS. :
v \4 "
User Restriction = User Restriction =
DISALLOW_INSTALL_APPS DISALLOW INSTALL APPS

mPendinglnstalls.add(..)

Categorization of Android Access Control

* We model each access control check as a pair consisting of app and user aspects
* App aspect: aims to check if the app that tries to access the resource has the needed credentials
* User aspect: determines if the user of the app that tries to access the resource has a certain role

* Each aspect is a vector of multiple orthogonal dimensions:

public void reboot (...) {
enforceCallingPermission ("android.permission.REBOOT") ;
shutdownOrReboot Internal(..);

App privilege: Permissions, UID, PID , Package properties (signature..)
Privileged?

—

Normalization of Permissions: SYSTEM > DANGEROUS > NORMAL

Private
Sink

Categorization of Android Access Control

* We model each access control check as a pair consisting of app and user aspects
* App aspect: aims to check if the app that tries to access the resource has the needed credentials
* User aspect: determines if the user of the app that tries to access the resource has a certain role

* Each aspect is a vector of multiple orthogonal dimensions:

* Our Normalization handles various program structures

Multiple permissions are enforced:

public boolean requestRouteToHostAddress(...) {

Privileged? enforceCallingPermission ("permission.CHANGE_NETWORK_STATE") ;
/ enforceCallingPermission ("permission.CONNECTIVTY_INTERNAL");
addRouteToAddress (...);

Private

Sink

“Permission.CHANGE_NETWORK_STATE” = NORMAL LEveL ~ Normalized Value =

“Permission.CONNECTIVITY_INTERNAL”= SYSTEM LEVEL Max(normal, system)
B => SYSTEM

Categorization of Android Access Control

* We model each access control check as a pair consisting of app and user aspects
* App aspect: aims to check if the app that tries to access the resource has the needed credentials
* User aspect: determines if the user of the app that tries to access the resource has a certain role

* Each aspect is a vector of multiple orthogonal dimensions:

* Our Normalization handles various program structures

Either permission is enforced:

public boolean getSubscriberId(...) {

try{
enforceCallingPermission ("READ_PRIVILEGED_PHONE_STATE");
}catch (SecurityException) {
enforceCallingPermission ("READ_PHONE_STATE");

}

Privileged?

—

Private .
Sink return mPhone.getSubscriberId() ;

“READ_PRIVILEGED_PHONE_STATE” = SYSTEM LEVEL Normalized Value =

“ ”_ Min(normal, system)
READ_PHONE_STATE”"= NORMAL LEVEL —> NORMAL

Categorization of Android Access Control

* We model each access control check as a pair consisting of app and user aspects
* App aspect: aims to check if the app that tries to access the resource has the needed credentials
* User aspect: determines if the user of the app that tries to access the resource has a certain role

* Each aspect is a vector of multiple orthogonal dimensions:

Privileged?
queOWMr? . public void clearApplicationUserData (String packageName, ..) {
‘ Prs“i/:lte pkgUid = pm.getPackageUid (packageName, ..);
if (Binder.getCallingUid () == pkgUid)
Foreground? pm.clearApplicationUserData(..);

Categorization of Android Access Control

* We model each access control check as a pair consisting of app and user aspects
* App aspect: aims to check if the app that tries to access the resource has the needed credentials
* User aspect: determines if the user of the app that tries to access the resource has a certain role

e Each aspect is a vector of multiple orthogonal dimensions:

Privileged?

Privileged?

-~

Resource Owner? .
N Private
Sink

Foreground?

Resource Owner?

Current User?

Has Restriction?

System Design: Modeling Security Checks

* Modeling security checks for a given API:

public NetworkPolicy[] getNetworkPolicies(..) {
enforceCallingOrSelfPermission ("MANAGE_NETWORK_POLICY");
if (checkPermission ("READ_PRIVILEGED_PHONE_STATE")
== PERMISSION_GRANTED | |
checkPermission ("READ_PHONE_STATE")
== PERMISSION_GRANTED)
return policies;

getNetworkPolicies

Privilege = Max[System, Normal] = [System]

Privilege = [MANAGE_NETWORK_POLICY]

checkPermission(MANAGE_NETWORK_POLICY) _ [System]

Privilege = Min(System, Normal) = [Normal]

checkPermission(READ_PRIVILEGED PHONE_STATE) checkPermission(READ_PHONE_STATE)

Privilege = [READ_PRIVILEG
= [System]

PHONE_STATE] Privilege = [READ_PHONE_STATE]

= [Normal]

Return policies

System Design

* In-Image Analysis: compares access control to a same resource to discover inconsistencies

* Cross-Image Analysis: identifies inconsistencies along similar APIs across two Android
images

M o . T ‘" oy T T T e I
| Entry I"omts I : In-Image |
: Analysis : | Analysis :
I System Services I : I
i Preprocessing & Entry Points : | :
Collection I

: : I Entry Point: C(ilvelr gence :
I | : Call Graph nalysis I
I I I
I Call Graph I : I
| Construction I |
I I I
I I :
I I) .

: : | Entq Point : IncI())nts1s‘E[§n01es :
| Security Checks | : Security Checks clection |
I Modeling [[
I I I
. S

Inconsistences

I
“Eniey Pomts sencis ||
: A ly b0 | | Entry Point : Incgnfls?ncws |
| nalysis Security Checks ctection :
I
I
I

Evaluation: Inconsistencies Landscape: in-image

In-Image (TP/ Reported Inconsistencies)

Image Nexus | Nexus | Nexus Samsung Samsung Samsung LG G3 | LG G4 | HTC M8 | HTC M8 | Sony Xperia | Sony Xperia
5.0.2 6.0 6.0.1 | S6 Edge 6.0.1 | Tab S 8.4 6.0.1 | S7 Edge 7.0 | 5.0.2 6.0 5.0.2 6.0 XA 6.0 XZ 7.0
Nexus 5.0.2 21/32
Nexus 6.0 15/29
Nexus 6.0.1 12/26
S6 Edge 6.0.1 36/64
Tab S 8.4 (6.0.1) 30/53
S7 Edge 7.0 39/68
LG G35.0.2 23/41
LG G4 6.0 28/41
HTC M8 5.0.2 30/47
HTC M8 6.0 29/46
Xperia XA 6.0 32/48
Xperia XZ 7.0 34/54
Image AceDroid Simkratos TP
Inc* | TP # Inc* | TP %t
) . Nexus 5.0.2 32 21 (65.6 %) | 53 13 (24.5 %)|| 62
* On Average, we achieve 63% increase over Krato’s TP. Nexus 6.0 29 |15 E 517 07; 7|7 <(14.9 %>) (14
_ o _ _ . . Nexus 6.0.1 |26 12 (462 %) | 45 7(15.6 %) || 71
e Customized ROMs exhibit a higher number of inconsistencies. S6Edge 60.1 [64 |36 (578 %) |98 |26 (265 %)| 42
Tab S 8.4 6.0.1 | 53 30 (56.6 %) | 92 21 (22.8 %)|| 43
S7 Edge 7.0 68 39 (57 %) 103 18 (17.5 %)|| 56
LG G35.0.2 41 23 (57 %) 71 16 (22.1 %)|| 44
LG G4 6.0 41 28 (63.3 %) | 71 17 (23.6 %)) 43
HTC M8 5.0.2 |47 30 (63.8 %) |71 18 (25.4 %)} 67
HTC M8 6.0 46 29 (63 %) |68 18 (26.5 %)|| 61
Xperia XA 6.0 | 48 32 (66 %) |69 18 (1 26.1 %)) 72
Xperia XZ 7.0 | 54 34 (62 %) 75 20 (26.7 %)) 70

Evaluation: Inconsistencies Landscape: cross-image

Cross-Image (TP / Reported Inconsistencies

Image Nexus | Nexus | Nexus Samsung Samsung Samsung LG G3 | LG G4 | HTC M8 | HTC M8 | Sony Xperia | Sony Xperia
50.2 6.0 6.0.1 | S6 Edge 6.0.1 | Tab S 8.4 6.0.1 | S7 Edge 7.0 | 5.0.2 6.0 5.0.2 6.0 XA 6.0 XZ 70
Nexus 5.0.2 13/17 | 17/19 38/47 35/45 39/51 7/9 28/36 9/12 24/32 26/35 26/34
Nexus 6.0 6/9 27/37 24/35 34/38 20/26 15/19 22/28 11/15 13/18 36/53
Nexus 6.0.1 21/28 18/26 32/40 24/28 21/28 24/31 15/22 19/27 19/26
S6 Edge 6.0.1 12/16 26/33 40/51 35/48 37/49 26/40 28/43 36/52
Tab S 8.4 (6.0.1) 29/35 34/48 31/46 34/47 22/37 23/39 31/46
S7 Edge 7.0 43/51 35/52 37/49 26/40 28/43 36/52
LG G3 5.0.2 19/26 13/17 31/41 28/39 33/43
LG G4 6.0 28/37 26/32 23/32 28/36
HTC M8 5.0.2 23/33 21/31 35/46
HTC M8 6.0 26/41 24/32
Xperia XA 6.0 16/21
Xperia XZ 7.0

* Inconsistencies are prevalent:
e Across different vendors
 Even within the same vendor.

Evaluation: Inconsistencies Landscape

Image Nexus | Nexus | Nexus Samsung Samsung Samsung LG G3 | LG G4 | HTC M8 | HTC M8 | Sony Xperia | Sony Xperia
5.0.2 6.0 6.0.1 | S6 Edge 6.0.1 | Tab S 8.4 6.0.1 | S7 Edge 7.0 | 5.0.2 6.0 5.0.2 6.0 XA 6.0 XZ 7.0
Nexus 5.0.2 39/51
Nexus 6.0 101
Nexus 6.0.1 133 55
S6 Edge 6.0.1 546 446 410
Tab S 8.4 (6.0.1) |_503 422 379 212
S7 Edge 7.0 562 457 498 289 314
LG G35.0.2 115 96 188 338 305 468
LG G4 6.0 209 198 222 403 378 313 215
HTC M8 5.0.2 68 183 198 331 298 325 233 401
HTC M8 6.0 186 87 119 268 243 366 274 333 264
Xperia XA 6.0 183 89 123 284 252 369 274 340 271 312
Xperia XZ 7.0 246 186 221 410 389 491 305 238 294 213 247

Number of inconsistencies if no Normalization is performed

On average, we can reduce the false alarms from 229 to 13 instances.

Findings: Confirmed Attacks

e 27 confirmed attacks. . TABLE V. CONF.IRMED ATTACKS — .
Security Impact | Description | Victim Device(s)
* 2ranked as critical by LG. Privilege Escalation Eavesdropping on input events LG G4 6.0
such as screen taps
Privilege Escalation Intercepting and injecting input events LG G4 6.0
such as screen taps
Privilege Escalation . Senfjlng SM.S Nessages S6 Edge 6.0.1
including premium messages
DoS Denying receiving of SMS S6 Edge (6.0.1)
© messages HTC M8 6.0
.. . . . S6 Edge (6.0.1)
Privilege Escalation Enabling Bluetooth Quietly LG G4 6.0
Privilege Escalation Persist Bluetooth Settings LG G4
S6 Edge 6.0.1

Privilege Escalation | Bypassing and Forging User Restrictions S7 Edge (7.0)

Injecting Hard Key Events

Privilege Escalation such as Volume Up, Power Off, Screen Off

Sony Xperia 6.0

Privilege Escalation | Rebooting the phone into Recovery Mode Sony Xperia 6.0

Privilege Escalation Phone Shutdown Sony Xperia XA 6.0

Privilege Escalation Turning Radio On / Off LG G3 5.0.2
DoS Unmounting SD Card persistently HTC M8 6.0
DoS Turning-Off Wifi persistently HTC M8 6.0
DoS Turning-Off Bluetooth persistently LG G3 5.0.2

Privilege Escalation Manipulating Network Firewall Rules Xperia XA 6.0

Q&A

Thank you!

