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The real world is a bit more complicated!
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What should we do?

How to provide strong protection despite memory traces?



What should we do?

Oblivious RAM is one possible solution to this problem



Oblivious RAM

User’s goal:
Securely access data stored in the cloud
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Path ORAM

Improved variant of Oblivious RAM [Stephanov et. al, CCS12]
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Decoupling file system support
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Separation of functions facilitates development!
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Side-channel resistant ORAM implementation!
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Extending Enclave Memory

Obliviate

ORAM C(Client
(_ )

Metadata (small) inside enclave ‘ [ Position Map ]

[ Stash ]

\_ J

Encrypted ‘ ORAM Trees (large) outside enclave

ORAM Trees

FeNI=

r

\,
=
(7))
T

16



Encrypted ORAM trees outside enclave!
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Perform Asynchronous ORAM write-back!




Implementation

1. Obliviate runs using Intel SGX SDK Library

2. Graphene-SGX integration to run “heavyweight”
applications, e.g., SQLite and Lighttpd



Performance Evaluation

Evaluated filesystems:
1. Native Filesystem (Non-SGX)
2. In-memory Filesystem (SGX, based on Graphene-SGX)
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Comparable performance

for smaller file sizes
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Opensource: https://github.com/adilahmad17/Obliviate
Contact: ahmad37@purdue.edu



https://github.com/adilahmad17/Obliviate

Thanks! Merci! Shukriya!
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