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The real world is a bit more complicated!
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Oblivious RAM is one possible solution to this problem
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Separation of functions facilitates development!
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Implementation

1. Obliviate runs using Intel SGX SDK Library

2. Graphene-SGX integration to run “heavyweight”
applications, e.g. , SQLite and Lighttpd
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Performance Evaluation

Evaluated filesystems:

1. Native Filesystem (Non-SGX)

2. In-memory Filesystem (SGX, based on Graphene-SGX)

3. Obliviate (SGX, based on Intel SGX SDK)
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Opensource: https://github.com/adilahmad17/Obliviate
Contact: ahmad37@purdue.edu

https://github.com/adilahmad17/Obliviate


Thanks! Merci! Shukriya!
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