Obliviate: A Data Oblivious File
System for Intel SGX

Adil Abmad
Kyungtae Kim
Muhammad lhsanulhaq Sarfaraz

Byoungyoung Lee \7
PURDUE CE

PURDUE

UNIVERSIT Yo

Clouds? The Ultimate Dream?

g

User Clouds

Clouds? The Ultimate Dream?

User Clouds

Clouds? The Ultimate Dream?

User Clouds

Clouds? The Ultimate Dream?

User Clouds

Clouds? The Ultimate Dream?

User Clouds

Clouds? The Ultimate Dream?

Thanks,

User Clouds

The real world is a bit more complicated!

The sorcery behind SGX

4)

_ _/

Program’s Address Space

The sorcery behind SGX

(")
Trusted execution region : ______ :
| |
Confidentiality and integrity- ||, Enclave |
protected | :
o ____ |
Non-

Enclave

- J

Program’s Address Space

The sorcery behind SGX

)
. . I [
Trusted execution region | |
I [
Confidentiality and integrity- ||, Enclave |

protected | ' :

| : X | Restricted by the processor
Non- r o
Enclave System
Components
- |)

Program’s Address Space

Possible SGX File Systems

————————

Disk

Possible SGX File Systems

‘Enclaves are ring-3‘ : MyS(‘)mL
. I

- - - ———/

o

Disk

Possible SGX File Systems

Rely on OS for
ring-0 ops

Disk

Possible SGX File Systems

Rely on OS for
ring-0 ops

Disk

Rely on OS for
ring-0 ops

Possible SGX File Systems

‘ Enclaves are ring-3 ‘

SN

o

-

&

_Operating System

1. open(“atxt”);

3. ..

2. read(2,0x1000, 4096);

A

Disk

Allow OS to
handle file buffer

(native)

Possible SGX File Systems

Enclaves are ring-3

Rely on OS for
ring-0 ops

Buffer the file

| (in-memory)

within the enclave

_Operating System

1. open(“atxt”);
2.
3. ...

A

read(2, 0x1000, 4096);

Allow OS to
handle file buffer

(native)

Disk

Side-channel attacks against in-memory FS

Enclave
s T 0= \
[Data.txt
[
[
| |)
[.
\ : Operating
| | System
[
|
| | J
: !
A
- _7
Page table attacks against SGX Cache attacks against SGX

[S&P14, SEC17] [DIMVA17, WOOT17, EuroSecl7]

Side-channel attacks against in-memory FS

Enclave

| Data.txt

Accessed by |
the enclave []

1

Page Table
Access Frame #
0 0x1000
0 O0x1001
0 0x1002
0 0x1003
0 Ox1004

Page table attacks against SGX
[S&P14, SEC17]

~
Operating
System

Cache attacks against SGX
[DIMVA17, WOOT17, EuroSec17]

Side-channel attacks against in-memory FS

Page Table

Enclave
s - - T == - \
[Datatxt | -~ -
1 P
Accessed by __'H:
the enclave | _ -
—’H |
| |
| |
| |
|
|
£ y

Page table attacks against SGX
[S&P14, SEC17]

Access

Frame #

0x1001

0x1002

0x1004

~N
Operating
System

Cache attacks against SGX
[DIMVA17, WOOT17, EuroSec17]

Side-channel attacks against in-memory FS

Enclave

| Data.txt

Accessed by |
the enclave []

1

Page table attacks against SGX
[S&P14, SEC17]

Page Table

Access Frame #

0 0x1001
0 0x1002

o) 0x1004

Cache

cache-set O

cache-set 1

cache-set 2

cache-set 3

~N
Operating
System

Cache attacks against SGX
[DIMVA17, WOOT17, EuroSec17]

Side-channel attacks against in-memory FS

Enclave

the enclave

Accesséd by :_'H‘
—

Page Table

Access Frame #

0 0x1001

0x1002

0x1004

Page table attacks against SGX
[S&P14, SEC17]

cache-set 1

cache-set 2

~N
Operating
System

Cache attacks against SGX
[DIMVA17, WOOQOT17, EuroSecl17]

Case Study: Attacking SQlite

Doctor Cloud

Case Study: Attacking SQlite

Doctor attempts to access a
patient’s history

@

y S

i
Iy

Doctor Cloud

Case Study: Attacking SQlite

Doctor attempts to access a
patient’s history

% Queryl. >
I Bob’s heart history
VS

i

J’_ Query2:

Alice’s heart history
Doctor Cloud

Case Study: Attacking SQlite

Doctor attempts to access a
patient’s history

@ Queryl. >
I Bob’s heart history
VS

i

J’_ Query2:

Alice’s heart history
Doctor Cloud

SGX-protected
SQLite

Case Study: Attacking SQlite

Name Heart Lungs

condition | Condition

Doctor attem pts to access a

patient’s history

% Queryl: >
A Bob’s heart history
e

g

J’_ Query2:

Alice’s heart history
Doctor Cloud

SGX-protected
SQLite

What the attacker sees?

med.db
Heart Lung
Dam ondition ondition
Bob
Alice
Eve

What the attacker sees?

Queryl: (" N (
Bob.s heart | — T
history .

Q (Y]
< — :
(@) .
() o H
(2]
o

What the attacker sees?

Queryl: Syscall Snooping Attack
Bob’s heart

hisqu

open("med.db’; ..);
pread64(...,4096,0);

pread64(...,4096,4096);
pread64(...,4096,32768);

FWNPRE

5

Alice

Eve

What the attacker sees?

Query1: Syscall Snooping Attack Page Table Attack

Bob’s heart |
med.db open("med.db’,..);

h IS.qu N Heart Lung pread64(.-.,4095,0);

FWNPRE

pread64(...,4096,32768);

N ST || CEie pread64(...,4096,4096);
Bob

Address

Alice

Eve

Time

What the attacker sees?

ueryl: .
Q’_y_ Syscall Snooping Attack Page Table Attack
Bob’s heart s
h' med.db 1. open("med.db’)..);
'Stﬁy e | e | 2. pread6A(...,.4096,0); Queryl
N concitfon | ~ondition 3. pread64(...,4096,4096);
Bob 4. pread64(...,4096,32768);
4 O
g
]
©
. <
Alice
O
Eve O

Time

What the attacker sees?

Queryl:

Bob’s heart
hist(qy

Query2:

Alice’s heart
history

Eve

Syscall Snooping Attack

FWNPRE

open("med.db’} ..);
pread64(...,4096,0);
pread64(...,4096,4096);
pread64(...,4096,32768);

Address

Page Table Attack

Time

What the attacker sees?

Queryl: .
, Syscall Snooping Attack Page Table Attack
Bob’s heart | - — — — — — - s
i med.db \ ~ ~
hISt ry 1 1. open("med.db’)..);
& Name H:?t’,t c thlil"tg' 2. pread64(...,4096,0);
condition | “ondition | 3. pread64(...,4096,4096);
[4. pread64(...,4096,32768);
- |)
I (7,]
l o
]
[o
ﬁ [<
| 1. open("med.db’)..);
2: I 2. pread64(...,4096,0);
Query2: |ee | .. S 3. pread64(... 4096,4096);
© b .
Alice’s heart | —/ 4 pread64(...,4096,40960); R

Time

history

What the attacker sees?

Queryl: Syscall Snooping Attack Page Table Attack
Bob’s heart | — — SincinEabaE s
hiSt ry e 1. open("med.db’)..); Quer 2 X
& Name HZ?':t c L:ng 2. pread64(...,4096,0); y
condition | Fondition 3. pread64(... 4096,4096);
_'Ij 4. pread64(...,4096,32768);

Address

1. open("med.db’)..);
2. 2. pread64(...,4096,0); X
Query2: |ee | .. 3. pread64(...,4096,4096); X
. . 4, d64(...,4096,40960); >
Alice’s heart | o JELL S ‘]

Time

history

What should we do?

What should we do?

What should we do?

Memory side-channels rely on predictable access patterns

What should we do?

How to provide strong protection despite memory traces?

What should we do?

Oblivious RAM is one possible solution to this problem

Oblivious RAM

User’s goal:
Securely access data stored in the cloud

Attacker’s goal:

Figure out what data-block is being accessed

o

User

Clouds

Path ORAM

Improved variant of Oblivious RAM [Stephanov et. al, CCS12]

- I I S S .y,

’ i \ L eT T TS Tos oo —-—---o-oa

; Position Map ‘ K ORAM Tree holds encrypted

. . A | 00 {

stores position —— : : real blocks and

of block T : ! dummy blocks
; D | 11 : i : / Legend \

. I : : @ dummy

stores acquired , ! |
] ! : . real
blocks Stash / \ NS J
N o e e e e o - \\ a4

————————————————————————

Client Server

10

OBLIVIATE!

OBLIVIATE!

Obliviate: memory charm against the OS ©

Application Enclave Filesystem Enclave
4) r N
] r—-———-=- 1

—
g

""" "

f
4
]

r
\
4
\
9
n
r

Obliviate: memory charm against the OS ©

Application Enclave Filesystem Enclave
4) r N
| - .

)
:

1
i
: | :
: [[
: I Obliviate I
i i
: I [[
| : o |
I I =
i i
: I
.i'=\ ____________ : ORAM Trees
—1 | (Init) load all
$:$ I files into

ORAM Tree(s)

,
\
4
\
9
n
r

12

Obliviate: memory charm against the OS ©

1. FS Syscall
Interceptor

Application Enclave
[N

Filesystem Enclave

ORAM Trees

ART

=
wn
r

12

Obliviate: memory charm against the OS ©

Application Enclave Filesystem Enclave
N\ —)

'ﬁ’l _____
RS ({:’\.ﬁ::?

2. Encrypted
Channel

r

\,
=
wn
r

Obliviate: memory charm against the OS ©

Application Enclave| 3. Data Oblivious h Enclave

Metadata
Handling

-_—1

Obliviate

ORAM Trees

ART

1

=
7
2

12

Obliviate: memory charm against the OS ©

Application Enclave

P

j

Filesystem Enclave

|

I . .

I Obliviate
I

4. Asynchronous
ORAM Operation

ni E o ﬂ L
ORAM Trees

? AR

\,

Yy

=
wn
r

12

Application Enclave
N

Filesystem Enclave

f

ANT®

Obliviate: memory charm against the OS ©

\,

5. Extended

Secure Region

—E

12

Application Enclaves

Decoupling file system support

—\

0

‘,“MYSQL
8 ---

Obliviate

= = =

—\

- :
LIGHTTPD)|

=4
v
r

13

Application Enclaves

Decoupling file system support

—\

0

MYSQL

-'__-

- — —

—\

- :
LIGHTTPD :

Obliviate

Pass all FS syscalls
using encrypted
channel

=4
v
x

13

Decoupling file system support

Application Enclaves Obliviate
TN r
N)
: MySQL : ! Allow Obliviate to
a8 --- I worry about securing
i file access
1 1
1 [
: [
£ |
PE——— e '
= =
- LIGHR[EQ' [
g --- Pass all FS syscalls ﬁ_
using encrypted [E—
channel .)

=4
v
x

13

Separation of functions facilitates development!

Legacy application support

Application

N
1)

r?
<

7

1
||||) B . .

Legacy application support

Application

4

~
J

v
Trusted Proxy

\
8 R _§ R _§ &8 § § R B |

||||‘-1---
wg

Intercept FS syscalls and encrypt

14

Legacy application support

Application

N
Y

I
‘ |
!
i | MySQL. i ‘ Intercept FS syscalls and encrypt
: e ! D :
| Trusted Proxy |
- e) : Oblivate
Exit-less message queue | |f . . -
(SCONE [0SDI16], ELEOS i
[EuroSys17]) :
< > |
!
Y, I
\

No changes from the app developer!

=

Application

—\

AMySQRL :

Securing ORAM

Obliviate

____________I)

=4
w0
r

15

Securing ORAM

Obliviate
(—— Need to store

Application i (ORAM Client\ metadata in enclave
S : [Position Map] i
\ | : |
;\MySQL ! | | stash |||
= AN J |
£y |
=== ————————

T:\I\:HH

O
a.
=

Application

—\

p.\MySQmL:
& ===

Securing ORAM

Obliviate

I

ORAM client :
(. I
[Position Map] :

Obliviate’s enclave is
[s] not side-channel
s free

T:\I\:HH

O
a.
=

15

Securing ORAM

Position Map

Securing ORAM

Position Map

‘ Load from index ‘

—

15

Securing ORAM

Last-Level Cache

cache-set 0

cache-set 1

cache-set 2

Position Map

Page Table

Access Frame #
0 0x1000
0 0x1001
0 0x1002

%

15

Securing ORAM

Last-Level Cache

cache-set 0

cache-set 1

cache-set 2

Page Table

0 0x1000
0 0x1001
0 0x1002

=%

Use Conditional Move
(CMOQOV)

Position Map

15

Securing ORAM

Last-Level Cache

\
\
\\\

\\\

\

Use Conditional Move
(CMOQOV)

Position Map

15

Securing ORAM

Last-Level Cache —
Use Conditional Move

AN (CMOV)
N
W

 Position Map

LU TERN
Vo N\
\\
\"1 |‘\
S A

/
Al 2
/

The attacker cannot
distinguish CMOV from MOV

15

Side-channel resistant ORAM implementation!

Extending Enclave Memory

Obliviate

HH%H

7
\,
9
(7))
T

Extending Enclave Memory

Obliviate Large enclaves degrade
o __) performance

EPC '

|

l

|

l

|

l

|

l

' L]

a_ ________ | Physical Memory

HH%H

7
\,
9
(7))
T

16

Extending Enclave Memory

Obliviate

ORAM C(Client
(_)

Metadata (small) inside enclave ‘ [Position Map]

[Stash]

_ J

Encrypted ‘ ORAM Trees (large) outside enclave

ORAM Trees

FeNI=

r

\,
=
(7))
T

16

Encrypted ORAM trees outside enclave!

Leveraging asynchronicity

Application

Obliviate

Communication
Thread

Operation
Thread

Encrypted
ORAM Trees

=4
w0
x

Leveraging asynchronicity

Application

Obliviate

f

{ Communication\ :
: W |\ (a) read(1, 0x18289, 4096) Thread | |
IMySQL I ' Operation A :
g ---- ! Thread I
- £ J
Encrypted
ORAM Trees
\

=
7
L8

Leveraging asynchronicity

Application Obliviate

I ________
(L) L]
' | Communication

-----)| -

' | |

m | (@) read(1, 0x18289, 4096) | Tih“"‘ad)

MySQL : > |(Operation) :
_____ - | Thread

. G_ A_ — _/_:

‘ (b) Read(A) LEncrypted
RAM Trees

=
7
L8

Leveraging asynchronicity

Application Obliviate
|I——————~—- A
g
' | Communication

_____ ~
|
‘ Thread

|

|

m :‘ (a) read(1, 0x18289, 4096) | \ i y |
] N |

|

|

|

(

|

l

| MySQL : e [Operation

A T - ! Thread

= (c) Reply to the request ‘ B—a——

‘ (b) Read(A) LEncrvp (c) Write-back(A) ‘

RAM es

=
7
L8

Perform Asynchronous ORAM write-back!

Implementation

1. Obliviate runs using Intel SGX SDK Library

2. Graphene-SGX integration to run “heavyweight”
applications, e.g., SQLite and Lighttpd

Performance Evaluation

Evaluated filesystems:
1. Native Filesystem (Non-SGX)
2. In-memory Filesystem (SGX, based on Graphene-SGX)

19

lozone Benchmarks

10000000

10000000
1000000
1000000
100000
100000

10000
10000

1
000 1000

100 100

10 10

S - 1

2M 128M 512M 1G 2M 128M 512M 1G

M Native FS M In-memory FS m Obliviate W Native FS ® In-memory FS m Obliviate

a) Sequential Reads (Bytes/sec) b) Sequential Writes (Bytes/sec)

20

lozone Benchmarks

2-3x overhead over
10000000 the in'memory FS

1000000

100000

10000

1000

100

10

2M 128M 512M 1G 128M 512M 1G

M Native FS M In-memory FS m Obliviate W Native FS ® In-memory FS m Obliviate

a) Sequential Reads (Bytes/sec) b) Sequential Writes (Bytes/sec)

20

lozone Benchmarks

In-memory FS exerts a

2-3x overhead over lot of pressure on EPC

10000000 the in'memory FS

1000000

100000

10000

1000

100

10

2M 128M 512M 1G 128M 512M 1G

M Native FS M In-memory FS m Obliviate W Native FS ® In-memory FS m Obliviate

a) Sequential Reads (Bytes/sec) b) Sequential Writes (Bytes/sec)

20

Comparable performance

for smaller file sizes

lozone Benchmarks

10000000

-y

1000000 , ~

~

100000 \
10000
1000

100

10

1 __8 8

2M

128M

a) Sequential Reads (Bytes/sec)

B Native FS M In-memory FS

2-3x overhead over
the in-memory FS

In-memory FS exerts a
lot of pressure on EPC

512M 1G

Obliviate

2M

128M

M Native FS M In-memory FS

512M 1G

Obliviate

b) Sequential Writes (Bytes/sec)

20

Macro-Benchmarks

2500 10000

2000
1500
1000
1000
: ||||| |||||
0 _____&______ ____&_____ — IIIII
128K 1M

INSERT SELECT

B In-memory FS m Obliviate B In-memory FS m Obliviate

a) SQLite Response Times (milli-sec) b) Lighttpd Throughput (Req/s)

21

Macro-Benchmarks

~2x overhead over
in-memory FS

10000

looo I I I
1M

2500

2000

1500

1000

500

INSERT SELECT 128K

B In-memory FS m Obliviate B In-memory FS m Obliviate

a) SQLite Response Times (milli-sec) b) Lighttpd Throughput (Req/s)

21

Conclusion

Conclusion

1. All existing SGX filesystems are vulnerable to side-channels

Conclusion

1. All existing SGX filesystems are vulnerable to side-channels

2. File system operations can leak sensitive information about program
execution.

Conclusion

All existing SGX filesystems are vulnerable to side-channels

File system operations can leak sensitive information about program
execution.

Obliviate provides theoretically-strong defense against side-
channels.

Conclusion

1. All existing SGX filesystems are vulnerable to side-channels

2. File system operations can leak sensitive information about program
execution.

3. Obliviate provides theoretically-strong defense against side-
channels.

Opensource: https://github.com/adilahmad17/Obliviate
Contact: ahmad37@purdue.edu

https://github.com/adilahmad17/Obliviate

Thanks! Merci! Shukriya!

Extra Slides

Securing file system

Securing file system

25

Securing file system

Single ORAM
Tree protects
file offset

25

Securing file system

Hierarchical
ORAM Trees
can protect files

Single ORAM
Tree protects
file offset

Securing file system

Single ORAM
Tree protects
file offset

G BEB [Hewoer | ‘\{‘ad‘.j

- -7 ORAM Trees > e
/ can protect files / ______

