
Obliviate: A Data Oblivious File 
System for Intel SGX

Adil Ahmad
Kyungtae Kim

Muhammad Ihsanulhaq Sarfaraz
Byoungyoung Lee

1



Clouds? The Ultimate Dream?

CloudsUser

2



Clouds? The Ultimate Dream?

CloudsUser

2



Clouds? The Ultimate Dream?

CloudsUser

Hmm, 
SGX?? 

2



Clouds? The Ultimate Dream?

CloudsUser

Hmm, 
SGX?? 

2



Clouds? The Ultimate Dream?

CloudsUser

Hmm, 
SGX?? 

2



Clouds? The Ultimate Dream?

CloudsUser

Hmm, 
SGX??  Thanks, 

SGX?! ☺

2



Clouds? The Ultimate Dream?

CloudsUser

Hmm, 
SGX??  Thanks, 

SGX?! ☺

2

The real world is a bit more complicated!



The sorcery behind SGX

Program’s Address Space

3



The sorcery behind SGX

Program’s Address Space

Non-
Enclave

Enclave

3

Confidentiality and integrity-
protected

Trusted execution region



The sorcery behind SGX

Program’s Address Space

Non-
Enclave

Enclave

System
Components

Restricted by the processor

3

Confidentiality and integrity-
protected

Trusted execution region



Possible SGX File Systems

Disk 4



Possible SGX File Systems

Disk

Enclaves are ring-3

4



Possible SGX File Systems

Disk

Enclaves are ring-3

Rely on OS for 
ring-0 ops

Operating System

4



Possible SGX File Systems

Disk

Enclaves are ring-3

1. open(“a.txt”);
2. read(2, 0x1000, 4096);
3. ….

Rely on OS for 
ring-0 ops

Operating System

4



Possible SGX File Systems

Disk

Enclaves are ring-3

1. open(“a.txt”);
2. read(2, 0x1000, 4096);
3. ….

Rely on OS for 
ring-0 ops

Operating System

Allow OS to 
handle file buffer

(native)

4



Possible SGX File Systems

Disk

Enclaves are ring-3

1. open(“a.txt”);
2. read(2, 0x1000, 4096);
3. ….

Rely on OS for 
ring-0 ops

Operating System

Allow OS to 
handle file buffer

(native)

Buffer the file 
within the enclave

(in-memory)

4



Side-channel attacks against in-memory FS

Operating
System

Enclave

Page table attacks against SGX
[S&P14, SEC17]

Cache attacks against SGX
[DIMVA17, WOOT17, EuroSec17]

5

Data.txt



Side-channel attacks against in-memory FS

Access Frame #

0 0x1000

0 0x1001

0 0x1002

0 0x1003

0 0x1004

Page Table

Operating
System

Enclave

Accessed by 
the enclave

Page table attacks against SGX
[S&P14, SEC17]

Cache attacks against SGX
[DIMVA17, WOOT17, EuroSec17]

5

Data.txt



Side-channel attacks against in-memory FS

Access Frame #

0 0x1000

0 0x1001

0 0x1002

0 0x1003

0 0x1004

Page Table

Operating
System

Enclave

Accessed by 
the enclave

1 0x1000

1 0x1003

Page table attacks against SGX
[S&P14, SEC17]

Cache attacks against SGX
[DIMVA17, WOOT17, EuroSec17]

5

Data.txt



Side-channel attacks against in-memory FS

Access Frame #

0 0x1000

0 0x1001

0 0x1002

0 0x1003

0 0x1004

Page Table

Operating
System

Enclave

Accessed by 
the enclave

1 0x1000

1 0x1003

Page table attacks against SGX
[S&P14, SEC17]

cache-set 0

cache-set 1

cache-set 2

cache-set 3

Cache

Cache attacks against SGX
[DIMVA17, WOOT17, EuroSec17]

5

Data.txt



Side-channel attacks against in-memory FS

Access Frame #

0 0x1000

0 0x1001

0 0x1002

0 0x1003

0 0x1004

Page Table

Operating
System

Enclave

Accessed by 
the enclave

1 0x1000

1 0x1003

Page table attacks against SGX
[S&P14, SEC17]

cache-set 0

cache-set 1

cache-set 2

cache-set 3

Cache

cache-set 0

cache-set 3
Cache attacks against SGX

[DIMVA17, WOOT17, EuroSec17]

5

Data.txt



Case Study: Attacking SQlite

Doctor Cloud

6



Case Study: Attacking SQlite

Doctor

Doctor attempts to access a 
patient’s history

Cloud

6



Case Study: Attacking SQlite

Query1: 
Bob’s heart history

Doctor

Doctor attempts to access a 
patient’s history

Cloud

6

Query2: 
Alice’s heart history



Case Study: Attacking SQlite

Query1: 
Bob’s heart history

Doctor

SGX-protected 
SQLite

Doctor attempts to access a 
patient’s history

Cloud

6

Query2: 
Alice’s heart history



Case Study: Attacking SQlite
Name

Lungs
Condition

Heart
condition

Query1: 
Bob’s heart history

Doctor

SGX-protected 
SQLite

Doctor attempts to access a 
patient’s history

Cloud

6

Query2: 
Alice’s heart history



What the attacker sees?

med.db

Name

Bob …

Lung
Condition

…

Heart
condition

… … …

Alice …

Eve …

…

…



What the attacker sees?

med.db

Query1:
Bob’s heart 

history
Name

Bob …

Lung
Condition

…

Heart
condition

… … …

Bob …

Alice …

Eve …

…

…



What the attacker sees?

med.db

Query1:
Bob’s heart 

history 1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,32768);

Syscall Snooping Attack

Name

Bob …

Lung
Condition

…

Heart
condition

… … …

Bob …

Alice …

Eve …

…

…



What the attacker sees?

med.db

Query1:
Bob’s heart 

history 1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,32768);

Syscall Snooping Attack

Name

Bob …

Lung
Condition

…

Heart
condition

… … …

Bob …

Alice …

Eve …

…

…

Page Table Attack

Time

A
d

d
re

ss



What the attacker sees?

med.db

Query1:
Bob’s heart 

history 1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,32768);

Syscall Snooping Attack

Name

Bob …

Lung
Condition

…

Heart
condition

… … …

Bob …

Alice …

Eve …

…

…

Page Table Attack

Query1

Time

A
d

d
re

ss



What the attacker sees?

med.db

Query1:
Bob’s heart 

history 1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,32768);

Syscall Snooping Attack

Name

Bob …

Lung
Condition

…

Heart
condition

… … …

Bob …

Alice …

Eve …

…

…

Alice …

Page Table Attack

Time

A
d

d
re

ss

Query2:
Alice’s heart 

history



What the attacker sees?

med.db

Query1:
Bob’s heart 

history 1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,32768);

1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,40960);

Syscall Snooping Attack

Name

Bob …

Lung
Condition

…

Heart
condition

… … …

Bob …

Alice …

Eve …

…

…

Alice …

Page Table Attack

Time

A
d

d
re

ss

Query2:
Alice’s heart 

history



What the attacker sees?

med.db

Query1:
Bob’s heart 

history 1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,32768);

1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,40960);

Syscall Snooping Attack

Name

Bob …

Lung
Condition

…

Heart
condition

… … …

Bob …

Alice …

Eve …

…

…

Alice …

Page Table Attack

Time

A
d

d
re

ss

Query2

Query2:
Alice’s heart 

history



What the attacker sees?

med.db

Query1:
Bob’s heart 

history 1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,32768);

1. open(”med.db”, . .);
2. pread64(…,4096,0);
3. pread64(…,4096,4096);
4. pread64(…,4096,40960);

Syscall Snooping Attack

Name

Bob …

Lung
Condition

…

Heart
condition

… … …

Bob …

Alice …

Eve …

…

…

Alice …

Page Table Attack

Time

A
d

d
re

ss

Query2

Query2:
Alice’s heart 

history

Predictable access patterns in file operations leak 
sensitive information!



What should we do?

8



What should we do?

Masking individual memory side-channels is risky

8



What should we do?

Masking individual memory side-channels is risky

Memory side-channels rely on predictable access patterns

8



What should we do?

Masking individual memory side-channels is risky

Memory side-channels rely on predictable access patterns

How to provide strong protection despite memory traces?

8



What should we do?

Masking individual memory side-channels is risky

Memory side-channels rely on predictable access patterns

How to provide strong protection despite memory traces?

8

Oblivious RAM is one possible solution to this problem



Oblivious RAM

User Clouds

B

D E

C

F

A

User’s goal: 
Securely access data stored in the cloud

Attacker’s goal: 
Figure out what data-block is being accessed

9



Path ORAM

Improved variant of Oblivious RAM [Stephanov et. al, CCS12]

d

d C

A B d D

Server

A 00

B 01

C 10

D 11

Position Map

Client

Stash

stores position 
of block

stores acquired 
blocks

holds encrypted 
real blocks and 
dummy blocks

ORAM Tree

0 1

0 01 1 d dummy

A real

Legend

10



11



11



OBLIVIATE!

11



OBLIVIATE!

11



Obliviate: memory charm against the OS ☺

Obliviate

Filesystem EnclaveApplication Enclave

Disk

12



Obliviate: memory charm against the OS ☺

Obliviate

Filesystem EnclaveApplication Enclave

Disk

12

(Init) load all 
files into 

ORAM Tree(s)

ORAM Trees

C

A B D



Obliviate: memory charm against the OS ☺

Trusted Proxy

1. FS Syscall 
Interceptor

Obliviate

Filesystem EnclaveApplication Enclave

Disk

12

ORAM Trees

C

A B D



Obliviate: memory charm against the OS ☺

Trusted Proxy

Obliviate

2. Encrypted 
Channel

Filesystem EnclaveApplication Enclave

Disk

12

ORAM Trees

C

A B D



Obliviate: memory charm against the OS ☺

Trusted Proxy

Obliviate

Filesystem EnclaveApplication Enclave

Disk

12

ORAM Trees

C

A B D

3. Data Oblivious 
Metadata 
Handling



Obliviate: memory charm against the OS ☺

Trusted Proxy

Obliviate

Filesystem EnclaveApplication Enclave

Disk

12

ORAM Trees

C

A B D

4. Asynchronous 
ORAM Operation



Obliviate: memory charm against the OS ☺

Trusted Proxy

Obliviate

Filesystem EnclaveApplication Enclave

Disk
5. Extended 

Secure Region
12

ORAM Trees

C

A B D



Decoupling file system support 

Disk

Application Enclaves Obliviate

13



Decoupling file system support 

Disk

Application Enclaves Obliviate

Pass all FS syscalls 
using encrypted 

channel

13



Decoupling file system support 

Allow Obliviate to 
worry about securing 

file access

Disk

Application Enclaves Obliviate

Pass all FS syscalls 
using encrypted 

channel

13



Decoupling file system support 

Allow Obliviate to 
worry about securing 

file access

Disk

Application Enclaves Obliviate

Pass all FS syscalls 
using encrypted 

channel

13

Separation of functions facilitates development!



Legacy application support
Application

14



Legacy application support

Intercept FS syscalls and encrypt

Trusted Proxy

Application

14



Legacy application support

Intercept FS syscalls and encrypt

Trusted Proxy

Exit-less message queue
(SCONE [OSDI16], ELEOS 

[EuroSys17])

Application

Oblivate

Disk 14



Legacy application support

Intercept FS syscalls and encrypt

Trusted Proxy

Exit-less message queue
(SCONE [OSDI16], ELEOS 

[EuroSys17])

Application

Oblivate

Disk 14

No changes from the app developer!



Securing ORAM

Obliviate

Disk
15

Application



Securing ORAM

Obliviate

Disk

Position Map

Stash

ORAM client

15

Need to store 
metadata in enclaveApplication



Securing ORAM

Obliviate

Disk

Position Map

Stash

ORAM client

Obliviate’s enclave is 
not side-channel 

free

15

Application



Securing ORAM

Position Map

Obliviate

Disk

Position Map

Stash

ORAM client

15

Application



Securing ORAM

Position Map

Load from index

Obliviate

Disk

Position Map

Stash

ORAM client

15

Application



Securing ORAM

Position Map

Access Frame #

0 0x1000

0 0x1001

0 0x1002

0 0x1003

Page Table

cache-set 0

cache-set 1

cache-set 2

cache-set 3

Last-Level Cache

1 0x1003

Obliviate

Disk

Position Map

Stash

ORAM client

15

Application



Securing ORAM

Position Map

Use Conditional Move
(CMOV)

Access Frame #

0 0x1000

0 0x1001

0 0x1002

0 0x1003

Page Table

cache-set 0

cache-set 1

cache-set 2

cache-set 3

Last-Level Cache

1 0x1003

Obliviate

Disk

Position Map

Stash

ORAM client

15

Application



Securing ORAM

Position Map

Use Conditional Move
(CMOV)

Access Frame #

0 0x1000

0 0x1001

0 0x1002

0 0x1003

Page Table

cache-set 0

cache-set 1

cache-set 2

cache-set 3

Last-Level Cache
cache-set 0

cache-set 1

cache-set 2

1 0x1003

1 0x1000

1 0x1001

1 0x1002

Obliviate

Disk

Position Map

Stash

ORAM client

15

Application



Securing ORAM

Position Map

Use Conditional Move
(CMOV)

Access Frame #

0 0x1000

0 0x1001

0 0x1002

0 0x1003

Page Table

cache-set 0

cache-set 1

cache-set 2

cache-set 3

Last-Level Cache
cache-set 0

cache-set 1

cache-set 2

1 0x1003

1 0x1000

1 0x1001

1 0x1002

Obliviate

Disk

Position Map

Stash

ORAM client

15

The attacker cannot 
distinguish CMOV from MOV

Application



Securing ORAM

Position Map

Use Conditional Move
(CMOV)

Access Frame #

0 0x1000

0 0x1001

0 0x1002

0 0x1003

Page Table

cache-set 0

cache-set 1

cache-set 2

cache-set 3

Last-Level Cache
cache-set 0

cache-set 1

cache-set 2

1 0x1003

1 0x1000

1 0x1001

1 0x1002

Obliviate

Disk

Position Map

Stash

ORAM client

15

The attacker cannot 
distinguish CMOV from MOV

Application

Side-channel resistant ORAM implementation!



Extending Enclave Memory

16

Obliviate

Disk



Extending Enclave Memory

16

EPC

Physical Memory

Program

Obliviate

Disk

Large enclaves degrade 
performance



Extending Enclave Memory

Metadata (small) inside enclave

ORAM Trees (large) outside enclave

16

EPC

Physical Memory

Program

Obliviate

Disk

Encrypted 
ORAM Trees

C

A B D

Position Map

Stash

ORAM Client

Large enclaves degrade 
performance



Extending Enclave Memory

Metadata (small) inside enclave

ORAM Trees (large) outside enclave

16

EPC

Physical Memory

Program

Obliviate

Disk

Encrypted 
ORAM Trees

C

A B D

Position Map

Stash

ORAM Client

Large enclaves degrade 
performance

Encrypted ORAM trees outside enclave!



Leveraging asynchronicity

Communication
Thread

Operation
Thread

Obliviate

17

Disk

Encrypted 
ORAM Trees

C

A B D

Application



Leveraging asynchronicity

Communication
Thread

Operation
Thread

Obliviate

17

Disk

Encrypted 
ORAM Trees

C

A B D

Application

(a) read(1, 0x18289, 4096) 



Leveraging asynchronicity

Communication
Thread

Operation
Thread

Obliviate

17

Disk

Encrypted 
ORAM Trees

C

A B D

(b) Read(A)

Application

(a) read(1, 0x18289, 4096) 



Leveraging asynchronicity

Communication
Thread

Operation
Thread

Obliviate

17

(c) Reply to the request

Disk

Encrypted 
ORAM Trees

C

A B D

(c) Write-back(A)(b) Read(A)

Application

(a) read(1, 0x18289, 4096) 



Leveraging asynchronicity

Communication
Thread

Operation
Thread

Obliviate

17

(c) Reply to the request

Disk

Encrypted 
ORAM Trees

C

A B D

(c) Write-back(A)(b) Read(A)

Application

(a) read(1, 0x18289, 4096) 

Perform Asynchronous ORAM write-back!



Implementation

1. Obliviate runs using Intel SGX SDK Library

2. Graphene-SGX integration to run “heavyweight”
applications, e.g. , SQLite and Lighttpd

18



Performance Evaluation

Evaluated filesystems:

1. Native Filesystem (Non-SGX)

2. In-memory Filesystem (SGX, based on Graphene-SGX)

3. Obliviate (SGX, based on Intel SGX SDK)

19



Iozone Benchmarks

a) Sequential Reads (Bytes/sec) b) Sequential Writes (Bytes/sec)

1

10

100

1000

10000

100000

1000000

10000000

2M 128M 512M 1G

Native FS In-memory FS Obliviate

1

10

100

1000

10000

100000

1000000

10000000

2M 128M 512M 1G

Native FS In-memory FS Obliviate

20



Iozone Benchmarks

a) Sequential Reads (Bytes/sec) b) Sequential Writes (Bytes/sec)

1

10

100

1000

10000

100000

1000000

10000000

2M 128M 512M 1G

Native FS In-memory FS Obliviate

1

10

100

1000

10000

100000

1000000

10000000

2M 128M 512M 1G

Native FS In-memory FS Obliviate

2-3x overhead over 
the in-memory FS

20



Iozone Benchmarks

a) Sequential Reads (Bytes/sec) b) Sequential Writes (Bytes/sec)

In-memory FS exerts a 
lot of pressure on EPC

1

10

100

1000

10000

100000

1000000

10000000

2M 128M 512M 1G

Native FS In-memory FS Obliviate

1

10

100

1000

10000

100000

1000000

10000000

2M 128M 512M 1G

Native FS In-memory FS Obliviate

2-3x overhead over 
the in-memory FS

20



Iozone Benchmarks

a) Sequential Reads (Bytes/sec) b) Sequential Writes (Bytes/sec)

Comparable performance 
for smaller file sizes

In-memory FS exerts a 
lot of pressure on EPC

1

10

100

1000

10000

100000

1000000

10000000

2M 128M 512M 1G

Native FS In-memory FS Obliviate

1

10

100

1000

10000

100000

1000000

10000000

2M 128M 512M 1G

Native FS In-memory FS Obliviate

2-3x overhead over 
the in-memory FS

20



Macro-Benchmarks

a) SQLite Response Times (milli-sec) b) Lighttpd Throughput (Req/s)

100

1000

10000

1K 16K 128K 1M

In-memory FS Obliviate

0

500

1000

1500

2000

2500

INSERT SELECT

In-memory FS Obliviate

21



Macro-Benchmarks

a) SQLite Response Times (milli-sec) b) Lighttpd Throughput (Req/s)

~2x overhead over 
in-memory FS

100

1000

10000

1K 16K 128K 1M

In-memory FS Obliviate

0

500

1000

1500

2000

2500

INSERT SELECT

In-memory FS Obliviate

21



Conclusion

22



Conclusion

1. All existing SGX filesystems are vulnerable to side-channels

22



Conclusion

1. All existing SGX filesystems are vulnerable to side-channels

2. File system operations can leak sensitive information about program 
execution.

22



Conclusion

1. All existing SGX filesystems are vulnerable to side-channels

2. File system operations can leak sensitive information about program 
execution.

3. Obliviate provides theoretically-strong defense against side-
channels.

22



Conclusion

1. All existing SGX filesystems are vulnerable to side-channels

2. File system operations can leak sensitive information about program 
execution.

3. Obliviate provides theoretically-strong defense against side-
channels.

22

Opensource: https://github.com/adilahmad17/Obliviate
Contact: ahmad37@purdue.edu

https://github.com/adilahmad17/Obliviate


Thanks! Merci! Shukriya!

23



Extra Slides

24



Securing file system

25



Securing file system

c

a b d

25



Securing file system

c

a b d

Single ORAM 
Tree protects 

file offset

25



Securing file system

c

a b d

c

a b d

c

a b d

c

a b d

c

a b d

c

a b d

c

a b d

Hierarchical 
ORAM Trees 

can protect files

Single ORAM 
Tree protects 

file offset

25



Securing file system

c

a b d

c

a b d

c

a b d

c

a b d

c

a b d

c

a b d

c

a b d

Hierarchical 
ORAM Trees 

can protect files

Single ORAM 
Tree protects 

file offset

Protect both file and file offset!

25


