
Towards Generic Deobfuscation
of Windows API Calls

Vadim Kotov
Dept. of Research and Intelligence

Cylance, Inc
vkotov@cylance.com

Michael Wojnowicz
Dept. of Research and Intelligence

Cylance, Inc
mwojnowicz@cylance.com

Abstract—A common way to get insight into a malicious
program’s functionality is to look at which API functions it
calls. To complicate the reverse engineering of their programs,
malware authors deploy API obfuscation techniques, hiding them
from analysts’ eyes and anti-malware scanners. This problem
can be partially addressed by using dynamic analysis; that is,
by executing a malware sample in a controlled environment and
logging the API calls. However, malware that is aware of virtual
machines and sandboxes might terminate without showing any
signs of malicious behavior. In this paper, we introduce a static
analysis technique allowing generic deobfuscation of Windows
API calls. The technique utilizes symbolic execution and hidden
Markov models to predict API names from the arguments passed
to the API functions. Our best prediction model can correctly
identify API names with 87.60% accuracy.

I. INTRODUCTION

Malware plays by the same rules as legitimate software,
so in order to do something meaningful (read files, update
the registry, connect to a remote server, etc.) it must interact
with the operating system via the Application Programming
Interface (API). On Windows machines, the API functions
reside in dynamic link libraries (DLL). Windows executables
[1] store the addresses of the API functions they depend on
in the Import Address Table (IAT) - an array of pointers to
the functions in their corresponding DLLs. Normally these
addresses are resolved by the loader upon program execution.

When analyzing malware, it is crucial to know what API
functions it calls - this provides good insight into its capabili-
ties [2], [3]. That is why malware developers try to complicate
the analysis by obfuscating the API calls [4]. When API
calls are obfuscated, the IAT is either empty or populated
by pointers to functions unrelated to malware’s objectives,
while the true API functions are resolved on-the-fly. This is
usually done by locating a DLL in the memory and looking
up the target function in its Export Table - a data structure that

describes API functions exposed by the DLL. In other words,
obfuscated API calls assume some ad-hoc API resolution
procedure, different from the Windows loader.

Deobfuscating API calls can be tackled in two broad ways:

1) Using static analysis, which requires reverse engineering
the obfuscation scheme and writing a script that puts
back missing API names.

2) Using dynamic analysis, which assumes executing mal-
ware in the controlled environment and logging the API
calls.

Static analysis allows exploration of every possible execu-
tion branch in a program and fully understand its functionality.
Its major drawback is that it can get time consuming as
some malware families deploy lengthy and convoluted obfus-
cation routines (e.g. Dridex banking Trojan [5]). Furthermore,
even minor changes to the obfuscation schemes break the
deobfuscation scripts, forcing analysts to spend time adapting
them or re-writing them altogether. Dynamic analysis, on
the other hand, is agnostic of obfuscation, but it can only
explore one control flow path, making the analysis incomplete.
Additionally, since dynamic analysis is usually performed
inside virtual machines (VM) and sandboxes, a VM-/sandbox-
aware malware can potentially thwart it.

In this paper, we introduce a static analysis approach,
allowing generic deobfuscation of Windows API calls. Our
approach is based on an observation that malware analysts
can often “guess” some API functions by just looking at
their arguments and the context in which they are called. For
example, consider RegCreateKeyEx:

LONG WINAPI RegCreateKeyEx(
1. HKEY hKey,
2. LPCTSTR lpSubKey,
3. DWORD Reserved,
4. LPTSTR lpClass,
5. DWORD dwOptions,
6. REGSAM samDesired,
7. LPSECURITY_ATTRIBUTES lpSecurityAttributes,
8. PHKEY phkResult,
9. LPDWORD lpdwDisposition
);

Arguments 5, 6, 7 and 9 are pre-defined constants (per-
mission flags, attributes etc.) and can only take a finite and
small number of potential values (it’s also partially true for

Workshop on Binary Analysis Research (BAR) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-50-9
https://dx.doi.org/10.14722/bar.2018.23011
www.ndss-symposium.org

the argument 1, which aside from a set of pre-defined values
can take an arbitrary one). So if we see ≥ 9 arguments on the
stack and values 1, 5, 6, 7, 9 are registry related constants, we
can conclude that RegCreateKeyEx is being called even if
we don’t see the actual name. Similar arguments can be made
about CreateProcess, VirtuaAlloc, etc.

Our goal is to automate this inferential process and see
whether WinAPI functions’ names can be predicted by the
arguments passed to them upon calling. This is the kind of
problem where machine learning shows promising results,
similar in nature to image or signal recognition [6], [7].

In this work, we evaluate the feasibility of the proposed
idea. To do so, we first solve a simplified problem:
• We look only at functions with 3 or more arguments.
• We limit our dataset to standard 32-bit Windows executa-

bles and DLLs (e.g. Internet Explorer, cmd.exe, etc.).
• We focus on the 25 most used API functions.
• We ignore any adversarial techniques such as control-flow

obfuscation, or anti-disassembly tricks.
We extract API calls (function names and their arguments)

from our dataset of Windows binaries and use them to train a
machine learning pipeline which uses Hidden Markov Models
(HMM) for vectorization and Multinomial Logistic Regression
(MLR) for prediction.

To extract the dataset of API calls, we build a simplified
symbolic execution engine. We call it “simplified” because it
supports only a small subset of x86 instructions, just enough
to keep track of the arguments passed to API functions.

We conducted two experiments:
• In the first experiment, we test the feasibility of API

prediction by arguments and whether ordering of the
arguments matters. For this experiment we assume the
number of arguments of an API function being predicted
is known.

• In the second experiment, we create a more realistic
scenario where the number of arguments is unknown. We
build a refined model and test if it can (implicitly) infer
the number of arguments indented for an API call.

The results show that our models can predict API names
by the arguments with the accuracy of 73.18% in the first
experiment (when the number of arguments is known) and
87.60% in the second one (when the number of the arguments
is unknown, but the methodology is improved).

A. Source Code

The source code of the tools developed for this re-
search as well as instructions on how to use them can
be found at https://github.com/cylance/winapi-deobfuscation.
The particular tagged commit is at https://github.com/cylance/
winapi-deobfuscation/releases/tag/bar-2018.

II. RELATED WORK

One of the first works to address API obfuscation problems
was the Eureka framework [8]. This is a generic malware anal-
ysis framework and API deobfuscation is only one side of it.

Eureka’s API deobfuscation workflow includes the following
steps:

1) Building look up tables - Eureka builds up a look up
table of the API functions exported by the DLLs that are
loaded at pre-defined addresses (this assumes the ASLR1

to be disabled). For the DLLs loaded at randomized
addresses (e.g. when ASLR is enabled) it watches out
for the DLLs being loaded by the malicious program.

2) Identifying candidate API calls - it statically identifies
potential API calls by flagging call targets outside the
program’s inter-procedural control flow graph.

3) Identifying static call addresses - for the flagged candi-
date calls it looks up the call targets in the pre-built API
tables. This method is aimed at a particular obfuscation
technique, where API functions are called directly by
their addresses in the DLLs bypassing the IAT.

4) Identifying dynamically computed call addresses - it
monitors calls to GetProcAddress2 and memory
write operations. When a memory write is encoun-
tered it checks whether GetProcAddress has been
called earlier. If GetProcAddress is found in the
control flow path, then the API name being resolved
is GetProcAddresses’s second argument.

The approach used in Eureka has a strong focus on call
targets, which leads to the following limitations: (1) the static
analysis method (Step 3) can be bypassed by obfuscating the
target address using a technique Eureka is unaware of; (2) the
dynamic analysis method (Step 4) can be bypassed by locating
the address of an API in the memory space of a DLL without
using GetProcAddress.

The authors of [9] focus on API obfuscation schemes
which encrypt the API names. In such a scheme a decryptor
first obtains the name of an API function and then uses
GetProcAddress to resolve its address. The authors de-
vised a decryptor-agnostic approach to extract the names of
imported API functions. It deploys program slicing and taint
propagation to correlate a potential decryption routine with
the call to GetProcAddress. Once the API decryptor is
identified they use a debugger as a binary instrumentation tool
to “emulate” the decryption and extract the true API function
address. This approach suffers from the same problem as the
previous one - it uses GetProcAddress as a means of
finding the API decryptor.

The approach of [10] is better in that it doesn’t rely
on GetProcAddress. The author makes the distinction
between static (or compile-time) and dynamic (or run-time)
obfuscation. In static obfuscation the API resolution procedure
is hardcoded and stays the same from execution to execu-
tion. Meanwhile, dynamic obfuscation assumes copying and
obfuscating the code from the DLLs into a newly allocated
executable memory area and then jumping into that area. The

1ASLR stands for address space layout randomization - an exploitation
mitigation which enables the system to load executables at random address
locations

2An API function resolving other API functions by their names

2

author proposes two deobfuscation methods - one for the
dynamic obfuscation and one for the static one:
• To defeat dynamic obfuscation, the author proposes using

memory access analysis that correlates memory read
operations from the executable areas of DLLs and sub-
sequent memory write operations into newly allocated
memory regions.

• A method for static obfuscation checks whether a call
target points at an address of an API function and if it
does, the obfuscated call is replaced with the address of
the API function.

The limitation of this approach and dynamic analysis meth-
ods in general is that sometimes dynamic analysis is imprac-
tical or impossible. For example, an analyst might be given
a corrupted executable image that won’t run or a malware
sample that deploys anti-VM/anti-debugging techniques.

Ours is a static analysis approach and therefore doesn’t
require execution, or a malware sample to be complete. Static
analysis is a challenging discipline as even simple obfuscation
might thwart static analyzers. Our contribution does not elimi-
nate the need for dynamic analysis, but improves the feasibility
of static analysis.

III. BACKGROUND

A. Symbolic Execution

Symbolic execution [11], [12] is a type of program exe-
cution that can operate on symbolic values. It can be seen
as an extension of concrete execution where unknown val-
ues (e.g. program’s user input) are represented by symbols.
Computation over symbolic values then is essentially building
up a formula. For example, consider the x86 instruction add
eax, 5. It can’t be executed concretely as the value of eax
is unknown. But in symbolic execution the result will be a
symbolic formula eax + 5.3

Another feature of symbolic execution is the ability to
examine all the control flow paths of a program. For each
path there is a first-order logic (FOL) formula that describes
what conditions must be satisfied for the program to take that
path (see Figure 1). These formulas then can be checked with
a satisfiability solver to see if a path is realizable or find out
what inputs are needed for best code coverage etc.

The ability to execute every path comes at a price - applying
symbolic execution to large functions and programs might get
prohibitively expensive - a problem known as path explosion.
In practice only a subset of all paths is examined based on
problem-specific criteria.

A symbolic execution engine should be able to model
memory. The most straightforward model is, perhaps, fully
symbolic memory, the simplest example of which is a key-
value storage. A good overview of memory modeling strate-
gies as well as other aspects of symbolic execution can be
found in [12].

Originally created to improve code coverage for software
testing [11], symbolic execution has applications in security,

3For simplicity we ignore side effects in this example.

True

test eax, eax

jz loc_1

loc_1

eax = 0

 T

eax != 0

cmp ebx, 5

jb loc_2

loc_2

eax != 0 & ebx < 5

 T

eax != 0 & ebx >= 5

Fig. 1: Illustration of the constraints for each control flow path.
At first, the formula is set to simply “True” as no constraints
exist yet. As the program branches, a set of constraints gets
bigger and bigger for each branch. Solving for the constraints
defines what input values will result into program taking that
path.

e.g. malware analysis assistance [13], identifying trigger be-
havior in malware [14], augmenting fuzzing techniques [15],
checking stability of patches and identifying bugs [16], etc.

In our work, however, we use a simplified version of
symbolic execution, which:
• can only execute a small subset of x86 instructions;
• does not support branching;
• does not support function calls.
These limitations were introduced for the sake of perfor-

mance efficiency and to avoid path explosion as we wanted
to generate the dataset for experimentation as fast as possible.
At this stage of the research we are less interested in code
coverage and more in generating the training dataset for our
machine learning models. Our simplified symbolic execution
engine is described in Section IV-A. In the future research
we are planning to use a full-functioning symbolic execution
engine.

B. Hidden Markov Models

Hidden Markov models (HMMs) [17], [18] are a popular
statistical model for sequential data,4 finding success in diverse
fields such as speech recognition, computational molecular

4A deep learning alternative would be Long Short Term Memory (LSTM)
neural networks; however, we stick with the simpler HMM model for the
proof of concept, especially because our dataset is still relatively small, and
plausibly within the regime where HMMs outperform LSTMs [19].

3

biology, data compression, cryptanalysis, and finance. In par-
ticular, as the field of cybersecurity begins to incorporate data
mining and machine learning methods [20]–[23], HMMs have
become increasingly popular tools in cybersecurity; for in-
stance, they have been used to detect intrusions in substations
of a power system [24], to learn user profiles of web browsing
behavior [25], and to detect anomalous programs based on
system call patterns [26].

HMMs are generalizations of mixture models (MMs). To
build intuition, consider the standard n-simplex, defined by:

∆n =

{
(t0, . . . , tn) ∈ Rn+1 |

n∑
i=0

ti = 1 and ti ≥ 0 for all i
}

(See Fig. 2a.) MMs represent an estimated probability distri-
bution as a point on the simplex. Thus, for MM’s, the vertices
represent probability distributions (the “mixture components”,
typically summarized by fitted parameters from a parametric
family, such as means µi and covariance matrices Σi from
Gaussian distributions), and the location of a point on the
simplex represents the mixture weights. HMMs are like MMs
in that the vertices represent distributions. However, whereas
MMs describe an entire dataset as a single point on the
simplex, HMMs assign mixture weights to each observation,
such that the observed sequence is modeled as traveling
through mixture weight space.

For HMMs to map individual observations onto the sim-
plex, they must make additional assumptions about sequence
dynamics which do not exist for models, such as MMs, which
assume each data point is independent and identically dis-
tributed. To state them, let y1:T = {y1, . . . yT } be a sequence
of observations, and s1:T = {s1, . . . sT } be a corresponding
sequence of unobserved hidden states, where each st is a
discrete K-valued random variable (i.e. each st ∈ ∆K−1).
Then the assumptions for HMM are:

1) (First order) Markovian hidden state transitions: The
tth hidden state is conditionally independent of previous
data except for the (t− 1)st hidden state.

P (st | s1:t−1, y1:t−1) = P (st | st−1)

2) Time homogeneity: The underlying “hidden” Markov
chain defined by P (st | st−1) is independent of time
t (i.e., is stationary).

3) Conditionally Independent Observations: The tth ob-
servation is conditionally independent of all variables
except for the tth hidden variable

P (yt | s1:T , y1:T) = P (yt | st)

Figure 2b provides a graphical model representation, where
edges represent dependencies. The graphical model reflects the
assumptions above: the hidden states follow first-order Markov
dynamics (edges between st and st+1), and the dependence
between observations is completely accounted for by the
unobserved hidden state process (edges between st and yt).

Given these assumptions, the model is characterized by
parameters λ = (π,A, θ):

Initial state distribution π = {πi} = P (s1 = i)

State transition matrix A = {ai,j} = P (st = j | st−1 = i)

Emission distribution θ = {θj} for P (yt | st = j, θj)

parameters

We can interpret the parameters with respect to Figure 2b. The
initial state distribution, π, describes the probability, before
any data is observed, of various values of the initial hidden
state s1 (say s1 = k) in the top left node of the Figure. The
kth emissions distribution parameter, θk, then determines the
probability of the first observation, y1, given that s1 = k.
The state transition matrix A describes the probability of
transitioning from the first latent state, s1, to each possible
latent state for s2. Following this logic through the graphical
model, we obtain the complete data likelihood of a sequence
of length T , which is (suppressing λ for simplicity):

p(s1:T , y1:T) = p(s1)p(y1 | s1)

T∏
t=2

p(st | st−1)p(yt | st) (1)

A trained HMM model allows one to evaluate the likelihood
of a sequence, P (y1:T | λ). However, this evaluation is
not immediate using (1), because the hidden state process is
unobserved. One might attempt a naive marginalization via
enumeration, i.e.

P (y1:T | λ) =
∑
s1:T

P (y1:T , s1:T | λ) (2)

However, note that this summation is over KT state sequences.
In contrast, a recursive forward algorithm uses ideas from
dynamic programming to achieve efficient O(TK2) likelihood
evaluations. This algorithm exploits the Markovian structure
of the model to simplify the number of computations of the
likelihood evaluation.

Although notationally suppressed, all probability factors in
(1) are conditioned on λ. A maximum likelihood estimate of
λ can be obtained by employing the Baum-Welch algorithm
(a special case of the well-known Expectation Maximization
(EM) algorithm). This is done by setting an initial guess for
λ, and then iterating over the following steps until a stopping
criterion is satisfied:

1) E-step: Compute E[st = k|y1:T , λ] for all t, k.5

2) M-step: Given s1:T , y1:T , find λ maximizing (1)
This procedure is guaranteed to monotonically converge to
a local maximum of the likelihood. Moreover, it can easily
be modified to handle multiple sequences (as occur in our
dataset) [17]. Simply perform the E-step for each sequence
separately, and then perform the M-step where the complete
data likelihood is adjusted into a product over multiple ob-
served sequences.

5The forward-backward algorithm, derived from dynamic programming,
makes the E-step computationally tractable.

4

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(0,0,1)

(0,1,0)

(1,0,0)

(a) A latent trajectory on a standard 2-simplex in R3.

y1

s1

y2

s2

y3

s3

yT−1

sT−1

yT

sT

. . .

. . .

(b) Graphical model representation of a HMM.

Fig. 2: Illustrations for conceptual overview of a Hidden Markov Model (HMM)

Fig. 2a allows for a geometric interpretation of Baum-
Welch. The M-step corresponds to “re-interpreting” the sim-
plex (adjusting the following: the value of the emissions
distribution parameters at each vertex, the starting point for
the trajectories, and the degree of resistance to traveling in
different directions), and the E-step corresponds to finding the
best simplex trajectory (or trajectories) to match the observed
dataset given the current simplex “interpretation” provided by
the M-step.

For our purposes, the mapping of sequences onto the
simplex produces a compact representation from which we
can derive useful features for our predictive model.

IV. THE PROPOSED APPROACH

A. Simplified Symbolic Execution Engine Overview

The simplified symbolic execution engine is a research tool
we developed to collect the training data. It is designed to
process functions as opposed to full programs. It supports
a limited number of x86 instructions that we assume to be
crucial for API call recognition and ignores the rest. The list
of supported instructions and explanations for why they were
selected are shown in Table I.

To speed up processing time and avoid path explosion, our
engine executes the longest path through the function’s control
flow graph (CFG)6 ignoring loops.

We define a function CFG G with n vertices and m edges
as a tuple (VG, EG, v0, r), where

• VG = {v0, v1, ..., vn} - is the set of vertices or nodes.
• EG ⊂ VG × VG - is the set of m edges.
• v0 ∈ VG - is the entry node - the point where the function

takes the control flow.

6A CFG is a directed graph where vertices are basic blocks of the
function and edges are control flows between them. A basic block is a
sequence of instructions not interrupted by intra-procedural control flow
transfer instructions.

TABLE I: The subset x86 instructions supported by the
simplified symbolic execution engine

Instructions Explanation
push,
pop

Windows API functions follow standard calling
convention (stdcall) [27], i.e. the arguments are
pushed to the stack in reverse order. pop must be
supported alongside push to properly model the
stack.

mov Used to transfer data between the registers and be-
tween the registers and the memory. Sometimes used
to put an address of an API function into a regis-
ter e.g. mov esi, RegOpenKeyExW / ... /
call esi.

lea Used to transfer memory addresses. E.g. lea eax,
[ebp+phkResult] puts the address of the vari-
able phkResult into eax (as opposed to its value)

xor Often used to set a register value to zero. Many
WinAPI arguments are zeros or NULL-pointers.

add,
sub,
inc, dec

Sometimes addition and subtraction (including in-
crement and decrement operations) are used in-
stead of mov. E.g. xor eax, eax / add eax,
25h / push eax .

• r ⊆ VG - the set of return nodes, i.e. nodes from which
the function returns or nodes with tail jumps7.

A path through a function is a sequence of connected
vertices starting at v0 and ending at any vi ∈ r. Let P =
{p0, p1, ..., p|r|}, be the set of all the function’s paths, then
the longest path pj is such that |pj | ≥ |pk|,∀pk ∈ P , j 6= k.

Searching the longest path can be computationally expen-
sive for functions whose CFG has a large number of edges. So
if |EG| > 100 we approximate the longest path by performing
a random walk from v0 to any vi ∈ r 30 times and picking
the longest path out of 30.

Once the longest path is identified the symbolic execution
engines follows its basic blocks executing supported instruc-

7Tail jump is a compiler optimization where if a function f1 calls a function
f2 right before returning (i.e. call f2 / ret), the call is replaced with a
jump to f2. And then f2 returns the control back to the caller.

5

tions. Upon reaching a call instruction it does one of the
two things:

1) If the call address is not an API function (i.e. it’s a call
to another function in the program) - it ignores the call.

2) If the call address is an API function or a function
jumping to an API function (i.e. Delphi-style API call)
- it reads at most 12 arguments from the stack (12 is
the maximum possible number of arguments in the set
of supported API calls); then it looks up the number of
arguments it takes in the pre-constructed API database;
and, finally, removes this many arguments from the stack
(to keep the stack in consistent state).

In both cases it sets the eax register (where the returned
value is supposed to be) to the dummy symbolic value “ret”.

The symbolic execution engine is based on radare2 [28] and
uses its intermediate language called ESIL (Evaluable Strings
Intermediate Language).

B. Simulating Memory

Our simulated memory is a key-value storage, where keys
represent memory addresses written to or read from and values
represent the data. Both memory addresses and data can be
either symbolic or concrete.

Keys are strings of the format size:addr where
• size indicates the size of a memory operation. On a

32-bit x86 system it can be 1,2,4 bytes.
• addr is a string representation of the memory address.
Here’s an example of memory write operation:

mov [ebp-0xC], 0x1000 → mem["4:ebp-0xC"] = 0x1000

Where mem is the key value storage.
Memory read operations are simulated in a similar manner

- we construct the key and fetch the value stored at that key.
Sometimes the value of a particular address is unknown. In
this case we emit a new symbolic value:
• arg xh, if the memory address is a function argument,

i.e it is represented as ebp+x. E.g. a symbolic value for
the memory address ebp+0x8 is arg 8h.

• var xh, if the memory address is a local variable, i.e. it
is represented as ebp-x. E.g. a symbolic value for the
memory address ebp-0xC is var Ch.

• mi, where i ∈ 0, 1, 2, ... is a counter that increments each
time a new value is emitted for any other address.

Examples:

mov esi, [ebp-0x8] → mem["4:ebp+0x8"] = arg_8h

mov cx, WORD [0x1068EEC] → mem["2:0x1068EEC"] = m0

This way of simulating memory is not precise, because,
for example, different symbolic values may point to the same
memory. But we conjecture that in practice it shouldn’t have
a strong effect on the efficacy of the prediction model.

C. Data Collection

Algorithm 1 describes our data collection process. It calls
a few subroutines which we will not define as rigorously as

Algorithm 1. These subroutines are fairly simple and depend
heavily on third party tools and libraries:

• EXTRACT FUNCTIONS(exe) - extracts functions from an
executable exe using radare2. Each function is repre-
sented as a pair (address, opcodes), where address is a
function’s virtual address and opcode is the sequence of
instructions the function consists of.

• GET CFG(f) - builds the CFG of a function f using the
recursive traversal algorithm [29]. We use the NetworkX
[30] Python library to represent the function CFG.

• GET NUMBER OF EDGES(CFG) - returns the number
of edges in a function’s CFG.

• FIND LONGEST PATH(CFG) - finds the longest path
through the function’s CFG using NetworkX’s method
all simple paths. all simple paths takes start and
end vertices as arguments.

• GET PATH RANDOM WALK(CFG) - performs random
walk through the CFG 30 times and returns the longest
path.

• GET OP TYPE(opcode) - returns the radare2 type of an
opcode. E.g. type of the opcode mov ebp, esp is
”mov”.

• SYM EXECUTE(opcode) - executes the current opcode
symbolically and updates the internal state of the sym-
bolic execution engine.

• GET CALL TARGET(opcode) - extracts the address of a
call. E.g. for the call call 0x01001C78 it returns
0x01001C78.

• IS API CALL(address) - looks up an address in the IAT
of the executable

• LOOK UP NUMBER OF ARGUMENTS(api name) -
looks up the number of arguments an API function
requires in a pre-constructed table.

• GET ARGUMENTS FROM STACK(nargs) - reads at most
12 arguments from the stack and removes nargs values,
where nargs - is the actual number of arguments an API
function takes and 3 ≤ nargs ≤ 12.

• PUT IN DATABASE(api name, arguments, nargs) -
puts the API name and its arguments from the stack, as
well as the real number of arguments into the database.

We applied Algorithm 1 to a data set of 2,185 32-bit
PE files. The PE files are standard 32-bit Windows exe-
cutables and DLLs that are typically found on a vanilla
Windows 7 SP1 in C:\Program Files, C:\Windows and
C:\Windows\system32. The only exception is a set Python
2.7 binaries. We skipped some of the files due to the large
size which radare2 couldn’t process efficiently at the time of
the research.

From those binaries we extracted 63,195 calls with 2,748
unique API names. We used the top 25 API functions with
the most data points (see Appendix A for the full list of API
names). Still the data was too biased with some API calls
having thousands of entries and some just a few hundreds. To
balance the dataset we sampled at most 400 calls from each
group. The final dataset consists of N=9,451 samples of API

6

Algorithm 1 Data Collection
Input: exe - 32-bit Windows executable
functions← EXTRACT FUNCTIONS(exe)
for all f ∈ functions do

CFGf ← GET CFG(f)
nedges ← GET NUMBER OF EDGES(CFGf)
if nedges < 100 then

path← FIND LONGEST PATH(CFGf)
else

path← GET PATH RANDOM WALK(CFGf)
end if
for all opcode ∈ path do

mnem← GET OP TYPE(opcode)
if mnem <> ”call” then

if mnem ∈ supported mnemonics then
SYM EXECUTE(opcode)

end if
else

call target← GET CALL TARGET(opcode)
if IS API CALL(call target) then

name← LOOK UP IMPORT TABLE(call target)
narg ← LOOK UP NUMBER OF ARGUMENTS(name)
arguments← GET ARGUMENTS FROM STACK(nargs)
PUT IN DATABASE(name, arguments)

end if
UPDATE EAX()

end if
end for

end for

calls and arguments read from the stack with each of the 25
API calls representing somewhere between 2.69% and 4.91%
of the dataset.

D. Argument Representation

Collected arguments can be one of the following types:
1) Integer - 0x1000, 0x80000002 etc.
2) Symbolic value - eax,m1, etc.
3) Symbolic expression - edx+ ebx− 1, 32 + ecx, etc
There are two problems. First, the dataset is of mixed

type. Symbolic values and expressions are essentially strings,
whereas the remaining arguments are integers. Mixed types
complicate the modeling process.8 Second, the vocabulary
(i.e., the space of possible argument values) is too large. The
set of symbolic values and the set of symbolic expressions
are both infinite and the set of integers [in 32-bit x86 CPU]
has impractically large cardinality of 232. The problem here is
that a model will be insufficiently powered to learn about the
distribution of arguments if the number of arguments is too
large relative to the number of samples.9

To solve these problems, we map the three argument types
into finite sets (with binning, as described below, for the
integers). This allows us to model arguments with a single

8In particular, in this case, the emissions distributions of the HMMs would
need to accommodate mixed types. This would push the HMM out of the
regime of standard HMMs and into the territory of hierarchical or mixture
models, for which there may not be a closed form maximum likelihood
solution for the E-step of Baum-Welch.

9In particular, in our case, the emissions distributions of the HMM are
categorical with true multinomial parameter p and estimator p̂. The variance
of p̂ grows monotonically with the size of the vocabulary, such that datasets
with large vocabulary relative to sample size can be overfit and perform poorly
in prediction mode.

categorical distribution of moderate size. The mapping is
performed as follows:

Integer arguments can be split into three groups:

1) Arbitrary values, e.g. size of a memory allocation, or
size of a buffer to read into.

2) Predefined values, e.g. permission constants, flags, enu-
merations etc.

3) Pointers, i.e. addresses in the memory

We conjecture that arbitrary values are not that important
for API prediction. What might be important is their scale.
So, an arbitrary integer is encoded as the length of its string
representation in hexadecimal (ignoring ’0x’ prefix). E.g.
0x1000 becomes 4, 0x12 becomes 2, etc.

Predefined values on the other hand are crucial for pre-
diction. For example, a system-defined registry key handle
can be 0x80000001 (HKEY LOCAL USER), 0x80000002
(HKEY LOCAL MACHINE) etc., which makes it very likely
that a function with one of those values as a first argument is
related to the registry. Therefore we do not abstract predefined
values and leave them as is.

Finally, all the pointers are replaced by the string ”ptr” as a
pointer can take any arbitrary value and depends on a compiler
and compilation options.

Symbolic values are mapped onto the set of strings
{reg, var,mem, ret, ∗}, where:

• reg - corresponds to any register; since compilers can
use some registers interchangeably we ignore the actual
register names and sizes.

• var - corresponds to a function argument or a local
variable. We make no distinction between arguments and
local variables as any argument may or may not be put
into a local variable before being passed to the callee.

• mem - is any symbolic memory value.
• ret - is any value that has been returned by a function.
• ∗ - is a dummy value we use when the number of

arguments is greater than the number of values on the
stack. Since our symbolic execution engine supports only
a small subset instructions, it is sometimes possible that
the stack is in an inconsistent state.

Symbolic expressions can be any combination of symbolic
values and supported operations between them, therefore the
set of all potential values is infinite. Furthermore, it is very
difficult to define a meaningful order relation on such set. So
any symbolic expression is represented as the string ”expr”.

The vocabulary size from training (i.e. distinct arguments
in our representation scheme) was W = 679. Some samples
of API calls and their arguments are shown in Table II.

E. Vectorization

We conceptualize the arguments of an API call as a se-
quence, i.e. the ordering of the arguments matters. To capture
this sequence information, our approach applies what we call
a Sequential (HMM) vectorization to the dataset:

7

TABLE II: Samples of API calls for 3 API call functions.

API Call Function Argument Sequence
RegOpenKeyEx var, var, 0x146, 1, 1
RegOpenKeyEx mem, 4, 0x170, var, 1
GetLocaleInfo mem, 4, 1, 1
GetLocaleInfo ret, 3, 2, 2
SendDlgItemMessage var, var, ret, expr, var, var, var, 1
SendDlgItemMessage mem, 0x411004, expr, 2, expr, 1, 1, expr

1) Train one or more relevant HMMs.10 (What constitutes
a “relevant” HMM depends on the experiment; see the
Experiment sections for more detail.)

2) Feed a given argument sequence through the trained
HMM(s) in order to represent it as a latent trajectory
on the simplex.

3) Derive feature vectors from those latent trajectories.
Many strategies could be used, in principle, for converting

latent trajectories into features. For this proof of concept, each
API call’s argument sequence is vectorized into K+3 features,
where K is the number of hidden states for the HMM. The
features are
• K hidden state features: The log of the hidden state

distribution at the terminal argument, i.e. the K-valued
vector logP (sT | y1:T , λ)

• 3 likelihood features: The log likelihood of the sequence,
logP (y1:T | λ), the mean log likelihood of an observation
in the sequence, 1

T logP (y1:T | λ), and the log likelihood
of the final observation, logP (yT | λ).

Roughly, the hidden state features summarize the history of the
argument sequence from the perspective of the final argument,
and the the likelihood features summarize how unusual the
sequence is relative to the relevant (training) population.

F. Prediction

A predictive model, or classifier, is trained to learn a
mapping between the feature vectors onto API function names.
Many classifiers could be used in principle; for this proof of
concept, a multinomial logistic regression (MLR) is applied for
simplicity. The MLR produces, for each sample i = 1, . . . , N
represented as a feature vector Xi, a probability distribution
over candidate API calls. If the candidate API calls are con-
sidered as a random variable M and represented by indicators
m = 1, . . . , 25, then the MLR model returns:

pi,m = P (Mi = m | Xi)

For the ith sample, the predicted API call M̂i is determined
as the API call with the largest score

M̂i = argmax
m

pi,m

To evaluate predictive performance, the dataset is randomly
partitioned into a training set (7,869 samples, or 80% of the
dataset) and a test set (1,968 samples, or 20% of the dataset).

10We fit HMMs efficiently using the Baum-Welch algorithm available in
the pyhsmm Python package [31]. The package calls a forward-backward
algorithm implementation which is written in C.

V. EXPERIMENT 1

For Experiment 1, we investigate the performance of the
generic API call deobfuscator in an artificially constrained set-
ting, where we treat each API call as having a known number
of arguments. (In Experiment 2, we relax this constraint.) The
experiment has two primary goals: (1) to investigate how well
one can predict the unknown identity of the API call using our
vectorization and prediction scheme;11 and (2) to investigate
the extent to which the ordering of the arguments is important
for these predictions.

A. Methodology

For this experiment, we treat each API call as an i.i.d
sample from a single population that includes all possible API
functions. Thus, we train a single HMM on the set of 7,869
API call samples that has no knowledge of the API function
name. For this experiment, we arbitrarily preset K=10. We then
use the Sequential (HMM) vectorization strategy, described in
Section IV-E, to extract K+3 = 13 features from each of these
samples based on its argument sequence. Afterwards, we train
a classifier, described in Section IV-F, to map feature vectors
to API function names. Predictions are made by applying the
trained HMM vectorizer to the test set of 1,968 samples, and
then running the resulting vectors through the trained classifier.
We take the API function with the highest score to be the
predicted API function for that particular call. We investigate
the quality of this prediction.

A subsidiary purpose of this experiment is to address the
question: how do we know that the sequence of arguments
matters? Might it be enough to represent the arguments as
a bag of words, whereby we consider the presence/absence
of possible arguments but not their order? To address this
question, we apply an alternate vectorization strategy, which
we refer to as the Bag of Words (SVD) vectorization strategy.
Here, we use one-hot encoding to create a (N ×W) binary
matrix such that the (i, j)th entry is set to 1 if the ith sample
contains argument j, and 0 otherwise. We then run a singular
value decomposition (SVD) on this matrix, rotate it onto its
right singular vectors, and use the K+3 dominant components
to represent the dataset. This strategy provides the best rank
K + 3 approximation to the original dataset, and allows for a
comparison between the Sequential (HMM) and Bag of Words
(SVD) vectorization schemes where the number of features is
held constant.

B. Results

The generic API call deobfuscator achieved 75.50% accu-
racy in predicting the correct API call from a bank of 25 can-
didates when using our preferred argument sequence (HMM)
vectorization strategy and a multinomial logistic regression

11Note that, in reality, if we knew the number of arguments for an
obfuscated API call, it would make the prediction task substantially easier. For
example, if we knew that the obfuscated API call had 4 arguments, then we
could immediately eliminate any candidate API functions that take a different
number of arguments (e.g. RegOpenKeyEx and SendDlgItemMessage
in Table II). However, we do not directly utilize this information here, as it
would impede upon the primary goal of this experiment.

8

classifier. For comparison, random guessing would produce
only 4.0% accuracy, and random guessing by selecting the
most common API call in the training set would produce only
4.9% accuracy.

Predictive performance drops from 75.50% under the se-
quential (HMM) vectorization strategy to 51.30% under the
bag of words (SVD) vectorization strategy. As a result, the
sequential (HMM) vectorization strategy causes the confusion
matrix to concentrate its probably mass more tightly on the
diagonal. (See Figure 3).12 Thus, the sequence (or ordering)
of arguments appears to provide information valuable for
predicting the API function name.

C. Discussion

The major shortcoming of this experiment is that the number
of arguments for each API call is treated as known. In practice,
when we encounter an API function call whose name we
would like to predict, we don’t know how many arguments
on the stack are intended for this call. The stack contains
an arbitrary number of values, some of which remain from
previous non-API calls, and some of which are pushed in
advance for the subsequent calls (API or non-API).

VI. EXPERIMENT 2
For Experiment 2, we investigate the performance of the

generic API call deobfuscator in a more realistic setting,
where, due to obfuscation, we do not know the number of
arguments that correspond to a given obfuscated API call.
Here, the model must evaluate numerous possible argument
lengths based on the contents of the stack, thereby implicitly
inferring the number of arguments. Although this setting is
more challenging, we also exploit it to our advantage. In par-
ticular, as we consider popping different numbers of arguments
from the stack, different subsets of API function names should
become viable candidates. This contrasts with Experiment 1
which implicitly ignored the known correspondence between
API function names and argument number (e.g. RegOpenKey
takes 5 arguments, but GetLocaleInfo takes 4 arguments)
by fitting a single HMM to the entire corpus.

A. Methodology

We imagine incrementally popping arguments from the
stack to construct an argument sequence of increasing length
`, and then evaluating the fit of that argument sequence against
all API functions which are known to take ` arguments. We
then determine which API call is most likely, across all `,
thereby also indirectly discovering the true `∗.

To do this, we train M = 25 separate HMMs, where each
HMM is trained on all samples for a particular API function.
13 For an arbitrary mth HMM model, we vectorize using the

12Figure 3 also suggests that when the predictive model is wrong, the model
tends to confuse the true API call with only a very small number of other calls.
Indeed, a follow up analysis revealed that the generic API call deobfuscator
included the correct API call in its top prediction 75.50% of the time, top 2
predictions 89.26% of the time, and top 3 predictions 92.38% of the time.

13Note that we are now treating each API call sample as an i.i.d sample
from the population of some particular API function, rather than from a
population of all API function, as in Experiment 1.

number of arguments `m appropriate for the corresponding
API name.14 In this way, we obtain M ∗ (K + 3) = 325
features for each sample. As in Experiment 1, we arbitrarily
fix the number of latent states for each HMM to K = 10.

B. Results

Fig. 4 shows the performance of the generic deobfuscator
on a hold-out test set of obfuscation API calls, as a function of
the number of predictions allotted to the model. The generic
API call deobfuscator selected the true API call 87.60% of the
time15 when it was allowed a single prediction and 95.63%,
97.36%, 98.27%, and 98.68% of the time when it was allowed
2, 3, 4, and 5 predictions, respectively. In contrast, a baserate
model, which guesses according to which API calls were most
commonly observed during training, made correct predictions
3.25%, 6.71%, 10.27%, 13.83%, and 17.59% of the time with
those same prediction allotments.

C. Discussion

Although Experiment 2 handles relatively tougher con-
straints (the unknown number of arguments for an obfuscated
API call) than Experiment 1, it actually yields substantially
better predictive performance. This is because the methodol-
ogy of Experiment 2 is more refined, exploiting the linkage
between API function names and argument lengths to achieve
a more informative vectorization.

VII. FUTURE WORK

Now that we have evidence that our idea works in principle,
we can start improving upon each subcomponent of our
research: (1) the symbolic execution engine; (2) the data set;
(3) the API prediction models.

Improvements to the symbolic execution engine:
• Extract additional contextual information about the API

calls, such as sequences of API calls, data flow between
the API calls, etc. This will provide additional infor-
mation to the prediction model and potentially improve
accuracy.

• Support full x86 instruction set and test whether this
improves the accuracy of prediction as well as cover all
control flow paths with API calls.

Improvements to the data set
• Use a larger dataset of Windows executables, include

popular programs and utilities other than those coming
with Windows. Include malicious programs in the dataset.
The malicious dataset must be as diverse as possible i.e.
using various types of malicious functionality: code in-
jection, command and control communication, encryption
etc.

• Perform exploratory data analysis on malware dataset and
prepare a list of API functions most likely to be seen

14If the candidate API call requires more arguments than can possibly be
extracted from the stack, we set all the features to a default “unlikely” value
of -200.00. Recall that all features are probabilities on a log scale, and so this
unlikely value corresponds to a probability of 1.38× 10−87.

15Accuracy using only the K latent state marginal features was 85.16%,
and using only the 3 likelihood features was 84.09%.

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Predicted

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Tr
ue

38 6 46 0 14 1 3 0 0 0 16 0 0 0 0 0 0 2 0 15 12 0 0 0 36

0 1.1e+02 6 0 0 0 2 4 0 0 2 0 0 0 0 0 6 41 0 0 2 0 0 0 8

21 18 90 1 2 0 4 4 0 0 8 0 1 0 0 0 3 6 3 3 1 0 0 0 13

0 23 0 69 5 17 8 0 10 0 0 0 1 23 1 1 1 26 0 1 0 0 0 2 0

11 0 0 0 1.4e+02 20 2 7 0 1 3 7 0 0 4 0 0 0 0 8 0 0 0 2 0

0 3 0 0 6 68 4 3 6 9 1 0 0 8 8 0 2 9 1 11 0 2 6 22 0

0 25 0 13 3 4 34 3 2 0 0 0 1 3 0 3 0 3 0 9 0 0 0 5 0

0 15 1 1 23 0 7 68 1 0 9 0 0 0 0 3 0 3 0 1 3 1 4 0 0

2 6 4 0 2 22 5 13 66 0 2 10 5 22 5 1 1 7 0 0 1 1 0 4 3

0 2 0 0 12 10 3 1 7 50 0 2 2 7 21 0 0 5 12 3 0 6 7 14 0

2 2 5 2 16 0 3 5 0 0 1.2e+02 0 1 0 0 0 0 0 0 1 14 0 0 0 0

4 0 0 0 6 0 1 0 0 6 35 1.1e+02 0 0 0 0 0 0 2 0 4 0 0 0 0

0 1 1 6 4 2 3 0 0 3 2 1 1e+02 7 3 0 0 6 1 1 0 0 0 3 0

0 4 0 8 0 23 1 0 10 0 0 0 0 1.4e+02 0 0 0 0 0 0 0 9 2 0 0

0 2 2 0 1 44 1 1 15 4 0 0 3 10 97 0 0 5 4 2 0 0 2 0 0

0 3 0 17 0 0 2 1 0 0 0 0 1 2 0 1.5e+02 0 1 4 1 0 6 1 0 0

2 34 8 3 2 0 6 5 0 0 7 0 0 0 0 0 12 45 0 1 1 0 0 0 10

0 42 1 20 0 0 3 5 0 0 6 0 0 0 0 2 16 73 0 0 2 0 0 0 6

0 1 0 2 2 2 9 7 0 9 0 5 3 0 3 7 0 1 1.2e+02 0 0 1 0 6 0

21 7 13 0 0 0 0 0 0 0 1 0 0 0 0 2 0 6 0 32 1 0 0 0 25

4 4 6 0 7 0 4 2 0 0 36 0 0 0 0 0 0 9 0 0 92 0 0 0 2

0 11 0 12 0 9 1 1 0 10 0 1 1 14 1 21 3 11 7 1 0 63 3 0 0

0 3 0 0 0 1 3 0 0 2 0 0 0 20 1 0 0 3 0 0 0 4 1.4e+02 0 0

0 0 0 1 0 8 3 0 1 4 0 1 1 9 0 0 0 0 2 0 0 0 0 1.5e+02 0

41 12 35 0 4 0 2 2 0 1 12 0 0 0 0 0 2 2 0 14 2 0 0 0 42

0

25

50

75

100

125

(a) Bag of words (SVD) vectorization

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Predicted

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Tr
ue

37 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 0 0 4 0 1 0 1 36

0 49 0 1 0 0 0 0 0 0 0 0 31 1 2 0 1 0 0 0 0 0 3 0 0

1 0 56 0 0 0 0 0 14 1 1 0 8 1 3 0 0 1 0 1 0 0 1 2 0

0 0 2 65 0 0 0 0 0 4 0 0 0 1 0 3 0 0 1 0 0 3 0 0 0

0 0 0 0 67 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 9 0 3 0 58 2 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 6 27 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 8

3 0 1 3 0 0 0 47 0 0 0 0 3 0 0 0 0 0 1 0 1 0 3 0 1

0 0 0 0 0 2 0 0 62 0 0 0 3 0 2 0 0 0 0 2 0 0 0 0 0

0 8 0 0 0 0 0 0 0 61 0 0 1 0 6 0 1 0 4 0 0 3 0 0 0

2 0 0 0 15 0 0 0 0 0 62 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 18 50 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 0 1 0 0 0 0 0 0 0 0 59 0 2 0 0 0 1 0 0 0 2 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 74 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 2 1 72 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 83 0 0 0 0 0 2 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 28 35 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 14 62 1 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 20 0 0 0 0 0 2 0 1 53 0 0 0 0 0 0

8 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 2 0 38 0 0 1 2 3

3 0 0 0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 65 0 0 0 0

0 0 1 2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 78 5 0 0

0 0 1 0 0 0 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 64 2 0

0 0 4 2 0 0 0 0 0 0 0 0 6 0 0 0 1 0 0 0 0 0 0 69 0

24 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 41

0

15

30

45

60

75

(b) Sequential (HMM) vectorization

Fig. 3: Confusion matrices for API call classifier under different vectorization strategies. The (i, j)th entry of the confusion
matrix reports the number of times that the model predicted the ith API call and the jth API call was the true call. A model
is more accurate if it looks closer to a diagonal matrix (i.e. has higher counts – looks more red – on the diagonal and lower
counts – looks more beige – on the off diagonal).

1 2 3 4 5
Number of predictions

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
of

 in
clu

di
ng

 tr
ue

 A
PI

 c
al

l

Predictive performance of generic API deobfuscator

Generic deobfuscator
Baserate

Fig. 4: Predictive performance of generic API call deobfusca-
tor.

in malware. Correlate API functions used with types of
malicious behavior. Incorporate native APIs into the study
as malware is known to use those too.

Improvements to predictions model:
• Exploit Bayesian HMM’s with additional hierarchical

structure. For instance, apply hierarchical emissions dis-
tributions, which nests particular argument tokens within
their broader categorizations (e.g. 0x146 and 0x170 are
both flags, and so observing one should increase the
probability of the other). Also, the 25 separate HMM’s
should be viewed as perturbations of a global HMM, so

the learned emissions distribution for one API function
should influence the estimated emissions distribution for
the other API calls.

• Optimize model parameters (e.g. K, the number of hid-
den states in the HMM, as well as parameters in the
current classifier or alternative classifiers – regularized
MLR, SVM, etc.)

• Seek richer vectorization strategies. With HMM vector-
ization, we discard the latent state trajectories except for
the terminal point; the rest of the trajectory implicitly
enters into consideration via the likelihoods, but may
provide additional information as well. Alternatively, we
might explore alternate tools for vectorizing sequences,
e.g. LSTM.

VIII. CONCLUSION

Our proof of concept research suggest that (1) it is possible
to predict the name of an API function from the argu-
ments passed to it by the program and (2) machine learning,
specifically HMM, is instrumental in the API prediction. The
results suggest future research directions. For example, we
learned that some API calls are so similar that they might be
mixed up by the prediction models. Using hierarchical HMMs
and incorporating more contextual information (such as API
sequences) might improve the accuracy.

REFERENCES

[1] M. D. Network, “Pe format.” https://msdn.microsoft.com/en-us/library/
windows/desktop/ms680547(v=vs.85).aspx. Accessed: 2017-11-28.

[2] P. Arntz, “Analyzing malware by api calls.” https://blog.malwarebytes.
com/threat-analysis/2017/10/analyzing-malware-by-api-calls/, October
2017. MalwareBytes Labs; Accessed: 2017-12-06.

10

[3] P. Arntz, “Static identification of program behavior using
sequences of api calls.” https://insights.sei.cmu.edu/sei blog/2016/04/
static-identification-of-program-behavior-using-sequences-of-api-calls.
html, April 2016. SEI Blog, CMU; Accessed: 2017-12-06.

[4] M. Suenaga, “A museum of api obfuscation on win32.”
https://www.symantec.com/content/dam/symantec/docs/security-center/
white-papers/security-response-museum-API-win32-09-en.pdf.
Symantec Coporation, Accessed: 2017-11-28.

[5] M. Su, “Dridex in the wild.” https://www.virusbulletin.com/virusbulletin/
2015/07/dridex-wild, July 2005. Virus Bulletin; Accessed: 2017-12-05.

[6] L. R. Rabiner, “Readings in speech recognition,” ch. A Tutorial on Hid-
den Markov Models and Selected Applications in Speech Recognition,
pp. 267–296, San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1990.

[7] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, An Overview
of Machine Learning, pp. 3–23. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1983.

[8] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, Eureka: A
Framework for Enabling Static Malware Analysis, pp. 481–500. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008.

[9] Q. Xi, T. Zhou, Q. Wang, and Y. Zeng, “An api deobfuscation method
combining dynamic and static techniques,” in Proceedings 2013 Inter-
national Conference on Mechatronic Sciences, Electric Engineering and
Computer (MEC), pp. 2133–2138, Dec 2013.

[10] S. Choi, “Api deobfuscator: Resolving obfuscated api functions in mod-
ern packers.” https://www.youtube.com/watch?v=O4usD-11tTU, 2015.
YouTube channel of Black Hat conference; Accessed: 2017-12-05.

[11] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, pp. 385–394, July 1976.

[12] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” CoRR, vol. abs/1610.00502,
2016.

[13] R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu, Assisting
Malware Analysis with Symbolic Execution: A Case Study, pp. 171–
188. Cham: Springer International Publishing, 2017.

[14] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin,
Automatically Identifying Trigger-based Behavior in Malware, pp. 65–
88. Boston, MA: Springer US, 2008.

[15] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.,” in NDSS, vol. 16, pp. 1–
16, 2016.

[16] D. A. Ramos and D. Engler, “Under-constrained symbolic execution:
Correctness checking for real code,” in 24th USENIX Security Sympo-
sium (USENIX Security 15), (Washington, D.C.), pp. 49–64, USENIX
Association, 2015.

[17] L. Rabiner and B. Juang, “An introduction to hidden markov models,”
ieee assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[18] M. J. Beal, Variational algorithms for approximate Bayesian inference.
University of London London, 2003.

[19] M. Panzner and P. Cimiano, “Comparing hidden markov models and
long short term memory neural networks for learning action represen-
tations,” in International Workshop on Machine Learning, Optimization
and Big Data, pp. 94–105, Springer, 2016.

[20] S. Dua and X. Du, Data mining and machine learning in cybersecurity.
CRC press, 2016.

[21] M. Wojnowicz, G. Chisholm, B. Wallace, M. Wolff, X. Zhao, and
J. Luan, “Suspend: Determining software suspiciousness by non-
stationary time series modeling of entropy signals,” Expert Systems with
Applications, vol. 71, pp. 301–318, 2017.

[22] P. Silva, S. Akhavan-Masouleh, and L. Li, “Improving Malware Detec-
tion Accuracy by Extracting Icon Information,” arXiv.org, Dec. 2017.

[23] M. Wojnowicz, B. Cruz, X. Zhao, B. Wallace, M. Wolff, J. Luan, and
C. Crable, “influence sketching: Finding influential samples in large-
scale regressions,” in Big Data (Big Data), 2016 IEEE International
Conference on, pp. 3601–3612, IEEE, 2016.

[24] C.-W. Ten, J. Hong, and C.-C. Liu, “Anomaly detection for cybersecurity
of the substations,” IEEE Transactions on Smart Grid, vol. 2, no. 4,
pp. 865–873, 2011.

[25] M. Abramson, “Learning temporal user profiles of web browsing
behavior,” in 6th ASE International Conference on Social Computing
(SocialCom?14), 2014.

[26] W. Wang, X. Guan, X. Zhang, and L. Yang, “Profiling program behavior
for anomaly intrusion detection based on the transition and frequency

property of computer audit data,” computers & security, vol. 25, no. 7,
pp. 539–550, 2006.

[27] M. D. Network, “Developing dlls.” https://msdn.microsoft.com/en-us/
library/office/bb687850.aspx. Accessed: 2017-10-16.

[28] R. Team, “Radare2 github repository.” https://github.com/radare/radare2,
2017.

[29] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of executable
code revisited,” in Ninth Working Conference on Reverse Engineering,
2002. Proceedings., pp. 45–54, 2002.

[30] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings
of the 7th Python in Science Conference (SciPy2008), (Pasadena, CA
USA), pp. 11–15, Aug. 2008.

[31] M. J. Johnson and A. S. Willsky, “Bayesian nonparametric hidden
semi-markov models,” Journal of Machine Learning Research, vol. 14,
pp. 673–701, February 2013.

APPENDIX A
LIST OF API NAMES

1) CheckDlgButton
2) CoCreateInstance
3) CompareString
4) CreateFile
5) CreateWindowEx
6) DeviceIoControl
7) FormatMessage
8) GetLocaleInfo
9) HeapAlloc

10) LoadString
11) MessageBox
12) MultiByteToWideChar
13) PostMessage
14) ReadFile
15) RegCreateKeyEx
16) RegOpenKeyEx
17) RegQueryValueEx
18) RegSetValueEx
19) SendDlgItemMessage
20) SendMessage
21) SetDlgItemText
22) SetTimer
23) SetWindowPos
24) WideCharToMultiByte
25) WriteFile

11

