INSTRIM: Lightweight Instrumentation for
Coverage-guided Fuzzing

Chin-Chia Hsu*, Che-Yu Wu*, Hsu-Chun Hsiao* and Shih-Kun Huangi
*Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
TResearch Center for IT Innovation, Academia Sinica, Taiwan
iDepartment of Computer Science, National Chiao Tung University, Taiwan

Abstract—Empowered by instrumentation, coverage-guided
fuzzing monitors the program execution path taken by an
input, and prioritizes inputs based on their contribution to
code coverage. Although instrumenting every basic block ensures
full visibility, it slows down the fuzzer and thus the speed
of vulnerability discovery. This paper shows that thanks to
common program structures (e.g., directed acyclic subgraphs
and simple loops) and compiler optimization (e.g., knowledge
of incoming edges), it is possible to accurately reconstruct
coverage information by instrumenting only a small fraction
of basic blocks. Specifically, we formulate the problem as a
path differentiation problem on the control flow graph, and
propose an efficient algorithm to select basic blocks that need
to be instrumented so that different execution paths remain
differentiable. We extend AFL to support such CFG-aware
instrumentation. Our experiment results confirm that, compared
with full instrumentation, our CFG-aware instrumentation only
needs to instrument about 20% of basic blocks while offering
1.04-1.78x speedup during fuzzing. Finally, we highlight several
technical challenges and promising research directions to further
improve instrumentation for fuzzing.

I. INTRODUCTION

Coverage-guided fuzzing has been shown to be an effective
technique for automated vulnerability discovery [1]. At a high
level, a fuzz testing tool, or fuzzer, feeds a program with
random inputs so as to find those that crash the program
or trigger exceptions. To increase the chance of finding new
crashes, a coverage-guided fuzzer favors inputs that contribute
new code coverage (such inputs are called seeds) and generates
new inputs by mutating the seeds.

Being able to measure code coverage is thus essential to the
success of coverage-guided fuzzing, and it is often achieved
through instrumentation. By inserting instrumentation code to
a program, the fuzzer can track the execution flow exercised by
an input and determine whether the input covers a new part of
the program (which has not been executed before). However,
instrumentation is expensive. Although instrumenting every

Workshop on Binary Analysis Research (BAR) 2018
18 February 2018, San Diego, CA, USA

ISBN 1-891562-50-9
https://dx.doi.org/10.14722/bar.2018.23014
www.ndss-symposium.org

basic block (referred to as InstrAll) ensures full visibility, it
slows down the fuzzer and thus the speed of vulnerability
discovery due to the extra time needed to execute the instru-
mentation code.

It is challenging to reduce instrumentation cost without sac-
rificing coverage information. AFL can optionally instrument
a random subset of basic blocks, but its impact on coverage
information requires careful evaluation. Moreover, most ex-
isting techniques to reduce instrumentation overhead [2], [8],
[6] either rely on simple heuristics or become inefficient when
being directly applied to coverage-guided fuzzing. Hence, the
core research questions we would like to investigate are: What
techniques can be applied to reduce the cost of instrumenta-
tion? What is their impact on the effectiveness of coverage-
guided fuzzing? As an initial probe to these questions, this
work first formulates the problem as the path differentiation
problem on the control flow graph (CFG). This is, given
the control flow graph of a program, we want to identify a
subset of basic blocks for instrumentation such that different
execution paths remain differentiable.

As a proof of concept, we design and implement efficient
CFG-aware instrumentation algorithms that take advantage
of common program structures (e.g., directed acyclic sub-
graphs and simple loops) and compiler optimization (e.g.,
knowledge of the incoming edges). The directed acyclic sub-
graph, which is a common pattern in CFG, allows us to reduce
the number of instrumented basic blocks but still be able to
distinguish each execution path. As for simple loops that do
not affect the subsequent control flow of the program, we can
further reduce the instrumentation cost by only retrieving the
information of whether the current execution will step into
this loop. Finally, knowing the incoming edges to a basic
block provides additional information about multiple previous
vertices by instrumenting one vertex only.

Our experiment results confirm that, compared with In-
strAll, our algorithm only needs to instrument about 20%
of basic blocks without sacrificing the accuracy of the cov-
erage information. In addition, it reduces runtime overhead
and provide 1.04-1.78x speedup during fuzzing. Finally, we
explore promising future directions to further enhance IN-
STRIM, including dynamic marking algorithms and cache-
aware instrumentation.

Our code is available at https://github.com/csienslab/instrim.

https://github.com/csienslab/instrim

Priority
Queue of
Seeds

Instrumented
program

Seed mutation

Execution log

Add the input to the seed list if it
covers a new part of the program

Summary
of code
coverage

Coverage

New coverage
Checker

or not?

Fig. 1: fuzz testing process.

II. BACKGROUND AND RELATED WORK

Coverage-guided Fuzz Testing. Fuzzing is an automated
technique to discover program vulnerabilities. Given a pro-
gram, a fuzz testing tool (or fuzzer) feeds a large number
of inputs into the program so as to find inputs that crash
the program. The input selection can be totally random [3],
mutational [7], or generational [4].

In a coverage-guided fuzzer, new inputs are created by
mutating interesting inputs (called seeds) in previous fuzz runs.
Beginning with an initial set of seeds, the fuzzer mutates the
seeds to generate new inputs, and feeds the new inputs to the
program. An input is considered interesting if its execution
flow explores a new part of the program (e.g., a new basic
block). These interesting inputs will then be added to the seed
queue. On the other hand, if an input does not contribute
new coverage, it becomes less favored in the next fuzz run.
This feedback strategy has shown to be effective in finding
real-world vulnerabilities [1]. Figure 1 illustrates a typical
workflow of coverage-guided fuzz testing.

As a coverage-guided fuzzer needs to be informed of code
coverage information in seed selection, one key component of
it is accurate and efficient detection of new code coverage.
Code coverage is an important metric indicating the percent-
age of a program being executed in software testing. Code
coverage can be quantified by basic blocks, edges, paths, etc.
When an input executes a new basic block, edge, or path, the
corresponding code coverage will increase. AFL-like fuzzers
also consider hit-count coverage, which takes into account the
execution times. To determine whether an execution path of
a given input contributes new coverage, the fuzzer needs to
perform two tasks: (1) tracking the execution path of the input,
and (2) checking the current path against the past ones. The
former can be tracked by adding instrumentation code to basic
blocks in the program, and the latter one requires keeping a
compact data structure for efficient checking.

In sum, the support of instrumentation introduces two types
of latency: one due to the execution of additional instrumented
code, the other by checking and updating the data structure
maintaining code coverage information. To avoid outweighing
fuzzing’s benefit, it is important to ensure low runtime over-
head of instrumentation. While our work focuses on reducing
the first type of latency, improvement in the first type can
also help enhance the performance of the second, because by
reducing the amount of information needed to be tracked, we
also lessen the overheads associated with the data structure.
Related Work. AFL supports an alternative method (referred
to as InstrRand) that instruments only a random subset of basic

blocks to alleviate the bitmap saturation problem. However,
because such a random strategy may omit important coverage
information of non-instrumented blocks, the fuzzer may falsely
discard useful seeds that execute new non-instrumented blocks
with a high probability, as shown in our evaluation in Table I.

Tikir and Hollingsworth [8] proposed a heuristic to selec-
tively instrument a subset of basic blocks such that the exact
execution path can still be recovered. However, their simple
heuristic often ends up selecting almost every basic block in
practice, as shown in our evaluation in Figure 4.

Ohmann et al. [6] consider binarized coverage and modeled
the problem using integer linear programming and proved it
is NP-hard. They proposed several approximation algorithms,
which still need to mark about a half of the total vertices.
Also, their static program analysis requires knowing all the
execution paths in advance.

Path profiling aims to count the execution times of each pro-
gram path. The seminal work of Ball and Larus [2] describes
an algorithm to select which edges to instrument and assign a
value to each of the instrumented edges such that each distinct
path has a unique value sum. However, given a sum, they need
to spend extra time to reconstruct the corresponding execution
path in order to compute edge coverage, which would be a
severe performance obstacle when being applied to fuzzing. In
contrast, our approach can be applied to efficiently compute
code coverage without explicitly reconstructing the path.

ITI. PROBLEM DEFINITION
A. Control Flow Graph and Vertex Marking

The control-flow graph of a program is a directed graph
that abstracts the possible execution paths of the program. In
a control-flow graph, each vertex represents a basic block and
each directed edge represents a transition between two basic
blocks. An execution path is represented by a sequence of
vertices on the graph.

Given a control-flow graph (CFG) of a program, the entry
vertex (the entry of the program) has an in-degree of 0 and
the exit vertex (the exit of the program) has an out-degree of
0. For ease of description, if there are multiple such vertices,
we can link all of them to an extra entry/exit vertex.

A vertex is marked if and only if the corresponding basic
block is instrumented. The problem of selecting which basic
blocks to instrument can be modeled as a vertex marking
problem on graphs.

B. Path Differentiation Problem

Based on the above graph model, we define the path
differentiation problem as follows. Our goal is to mark some
vertices on the graph such that, for each pair of paths, we are
able to distinguish them by only taking those marked vertices
into consideration. That is, a path is now represented by the
sequence of marked vertices it traverses instead of all of the
traversed vertices.

To explore trade-offs between distinguishability and perfor-
mance, we also consider the approximate path differentia-
tion problem, in which we can tolerate some different paths
to be considered identical.

Fig. 2: Two possible markings of an example CFG.

Note that even when two different execution paths lead to
the same basic block, they may be subjected to different sets
of constraints, and thus may explore different basic blocks in
subsequent execution. Hence, this work considers a general
definition that also supports path-based information, in which
an input is interesting if it produces a new execution path (or
a path that has been executed more than a threshold of times)
on the control-flow graph.

Figure 2 illustrates two different markings of a CFG.
The red nodes are marked. On the fully marked graph, the
execution path going through Vy, Vi, Vs is represented by
[Vo, V1, V3], and the execution path going through Vp, Va, V3
is represented by [Vp, Va, V3]. On the partially marked graph
on the right hand side, only V; is marked. The execution path
through V4, V1, Vs is represented by [V7], and the execution
path through V;, V5, V3 is represented by [] (an empty list). In
this case, we can still distinguish these two execution paths
by using only about % time and memory.

IV. ALGORITHM

This section describes INSTRIM and INSTRIM-APPROX,
which solve the exact and approximate path differentiation
problems, respectively.

INSTRIM takes advantage of the following properties:

+ Knowledge of the incoming edges: By using ¢ nodes,
we can know not only the visited basic blocks but also
the incoming edge of a visited block. This is a powerful
property: suppose a vertex v has n incoming edges from
vertices w1, Vg, - - - Uy, instead of instrumenting n + 1
blocks, we only need to instrument one (vertex v) block
to recover the executed edge to v.

e Common program structures: Many control flow
graphs are almost a directed acyclic graph (DAG) as
they can be converted into a DAG by removing few
back edges, and a DAG is much easier to process than
a general graph. Another common program structure is
simple loops, whose execution times does not affect
subsequent CFG. We can further reduce instrumentation
overhead for simple loops by avoid tracking the number
of its iterations.

Listing 1 describes the pseudocode of INSTRIM, which

consists of two functions:

1) Marking nodes on a subgraph (§IV-A): Given a

subgraph of the CFG, this marking function traverses it
in a topological order and determines whether to mark a
vertex in a recursive definition. This function is the heart
of our algorithms as it judiciously applies the knowledge
of the incoming edges and common program structures
to reduce marked vertices.

2) Dividing CFG into subgraphs (§IV-B): To further
reduce the time complexity of the marking function, this
function divides a given CFG into smaller subgraphs
based on the dominators of the exit vertex.

The computational complexity is O((|V|+|E|) x |V]1g [V]).!

In addition, since programs often contain simple loops

(e.g., array initialization) whose execution times do not affect
the subsequent control flow of a program, we also propose
an approximate algorithm called INSTRIM-APPROX that can
reduce the instrumentation cost inside simple loops (§IV-C).

1 def mark(G, t, s):

2 G = G.subgraph(s, t)

3 marked = {v for (u, v) in G.E.backedges}
4 G.E erases out G.E.backedges

5 # G becomes directed acyclic graph

6 T = topological_order (G)

7 for x in T:

8

9

need_marked = False
P(x) = {}
10 for u in G.E.from(x):
11 P(x) = P(x) union P(u)
12 for v in G.E.from(x):
13 if u == v: continue
14 if size(intersection (P(u), P(v))) > 0:
15 need_marked = True
16 if need_marked or x in marked:
17 marked += x
18 P(x) = {x}
19 return marked
20 | def main(G): # G := control flow graph
21 marked = {}
2 D = dominator_tree (G)
23 # D.idom(v) := immediate dominator of v
24 cur_state = G.final_state
25 while cur_state != G.init_state:
26 marked += mark(G, cur_state , D.idom(cur_state))
27 cur_state = D.idom(cur_state)
28 return marked

Listing 1: Pseudocode of our exact algorithm INSTRIM

A. Marking Nodes on a Subgraph (Line 1-19)

We first define a useful notation. Given a vertex v on the
CFG, we define the previous marked vertex set of v, P(v), to
be the set of the last visited marked vertices among all possible
paths ending at v on the CFG. For example, considering
Figure 3a, P(V)) = ¢, P(V1) = {Vi}, P(Va) = {Va},
]P(Vg) = {Vh‘/g}, and]P)(V4) = {Vl,VQ}.

Since a feasible P(v) for each vertex v on the subgraph
corresponds to one vertex marking assignment, the problem
becomes how to compute a feasible P(v). INSTRIM defines
P(v) recursively on a directed acyclic graph (DAG). We
convert the CFG (which might contain cycles) to a DAG and
then define the base case and recursive case for computing
P(v) in a dynamic-programming-like approach as follows.

First, to convert the CFG to a DAG, we erase all back edges
(which can be identified by performing a depth-first search). To
achieve this, for each back edge, we directly mark the vertex
to which the back edge heads. Since our instrumentation can
know the incoming edge of this vertex, we will not lose any
coverage information after removing these back edges.

Then, we consider vertices in a topological order (starting
from the vertex without any incoming edge) on the DAG and

IConstructing the dominator tree costs O(|V'| 4 |E|) and marking vertices
costs O((|[V]| + |E]) x |[V]1g|V]).

()
)
O,

(b) dominator tree of (a)

(a) CFG
Fig. 3: Example of a CFG and its dominator tree

model this problem into a dynamic programming-like problem.
For those vertices without any incoming edge (the base case
of the DP problem), the condition holds because every path
ending at it is distinguishable.

For the recursive case, for each node x, we examine its
incoming vertices in a pairwise manner. If there exists a vertex
k both in P(u) and P(v), where u and v are two vertices being
able to reach z, then there are at least two paths: one from
k to u then to x, and the other from k to v then to x. To
distinguish these two paths, marking node x is enough because
by marking x, we know the incoming vertex to x. Formally,
if « is marked, P(z) = {z}. Otherwise,

]P)({I?) = Uv|edge (v, x) € graphp(v)
B. Dividing CFG into Subgraphs (Line 20-29)

To further improve the efficiency of the algorithm, INSTRIM
divides the CFG into smaller subgraphs. It is important to note
that INSTRIM will compute the same result (i.e., the same set
of marked vertices) even without dividing the CFG.

We extract the domination relationship by constructing a
dominator tree [5] of the CFG. A dominator tree of a directed
graph is a tree in which node A is the parent of node B if and
only if A immediately dominates B. Building a dominator
tree allows us to quickly check the domination relationship
between vertices and determine whether a vertex should be
marked. Since D.idom(t) (the immediate dominator of ¢ on
the CFG and also the parent of ¢ on D) must be executed
before ¢ on every possible path reaching ¢, we can “cut off” the
subgraph from D.idom(t) to ¢, and mark the two subgraphs
separately. This cut process can be done repeatedly until the
immediate dominator is the root of D, thereby reducing the
problem into smaller sub-problems for efficiency.

Consider the CFG in Figure 3a and its dominator tree in
Figure 3b. The exit vertex (V) and all its ancestors (Vj, V3)
will be excluded from the marked vertices (V7, V5). Then, the
subgraph cut by V3 and V; will contain vertices V3, Vy and
edges between them. The subgraph cut by V, and V3 will
contain vertices Vj, V1, V5, V3 and edges between them.

C. INSTRIM-APPROX: Improvement for Loops

In INSTRIM, we mark all vertices pointed by back edges. In
the presence of a loop, INSTRIM marks the vertex representing
the entry of this loop. However, when executing this loop, the
instrumented gadget in the entry will be executed repeatedly,
which may waste lots of resources especially when the loop is
simple—that is, it contains only one basic block (a self-loop)

To mitigate this problem, we modify INSTRIM and propose
INSTRIM-APPROX that adds a virtual marked vertex above
the entry of the loop. By doing this, we can still distinguish
whether the loop has been executed or not, but we trade off
the information about the execution times of the loop, as
INSTRIM-APPROX will only append the marked vertex once.
Our preliminary evaluation in Section VI shows that INSTRIM-
APPROX does not lose much accuracy (in terms of falsely
included and excluded seeds).

V. IMPLEMENTATION

This section briefly describes our implementation using the

LLVM instrumentation.
Marking and labeling basic blocks. We split a function into
several basic blocks in LLVM. Each basic block is assigned a
unique ID generated by a pseudo random number generator.
After applying INSTRIM to each function, we obtain a list
of basic blocks to be marked. Our implementation assigns
two kinds of labels—node label and edge label—to each
marked basic block. The node label of a marked basic block
is equal to its ID (which was assigned at the very beginning).
For each incoming edge of a marked basic block, we also
assign a random edge label. These labels are required to
construct a reduced graph in our code coverage recording
method described next.

In INSTRIM-APPROX, we also need to insert a virtual basic

block before each loop entry, but identifying an edge entering
a loop is non-trivial. In our implementation, for each basic
block representing a loop entry, we first try to find an incoming
edge that 1) originates from outside the loop, 2) points to the
basic block, and 3) dominating this basic block (i.e., the edge
must be visited before reaching the basic block). Our marking
depends on whether such an edge is found. If such an edge is
found, we split this edge, insert a new basic block, and mark
this new basic block. If no such edge is found, we directly
mark the basic block representing the loop entry.
Recording code coverage. Similar to AFL, when execut-
ing an instrumented program, we store the node label of
the last marked basic block in the Thread Local Storage
(TLS) and record the path segment pair (LastNodeLabel,
CurrentIncomingEdgeLabel) on the coverage map.
By computing code coverage over the path segments (rather
than original CFG), we avoid the overhead of reconstructing
the original execution path. Since there may be more path
segments than the edges of original CFG and every unseen
path segment between marked basic blocks will contribute new
coverage, we may report more seeds having new coverage than
the AFL method, but the difference is small as shown in our
experiments.

VI. EVALUATION

We compare INSTRIM and INSTRIM-APPROX with InstrAll
(AFL default, instrumenting every basic block), InstrRand, and
the TH algorithm [8]. To ensure fair comparison, InstrRand
instruments X % of randomly chosen basic blocks, where X
is set to be the same percentage as in INSTRIM. We report

the detailed configurations for measuring execution time and
code coverage.

Execution time measurement. To evaluate the runtime over-
head of different algorithms, we measure their execution time
for replaying the same set of test seeds. The reason why we
replay seeds instead of running the fuzzer directly is because
different algorithms may favor different seeds with varying
execution time, which prevents meaningful comparisons.

We directly compared INSTRIM and INSTRIM-APPROX
with AFL instrumentation. Both are integrated with the AFL
bloom filter by increasing the counter at (LastNodeLabel
@ CurrentIncomingEdgeLabel). The InstrRand and
TH algorithms are left out in this experiment because the
percentage of marked basic blocks is the main factor of
overhead, and both of them perform worse than our algorithms
on this factor.

Code coverage measurement. In this set of experiments, to
focus on evaluating instrumentation, we maintain our own
data structure to measure code coverage, avoiding inaccuracy
introduced by inconsistent or approximate code coverage
measurement. Specifically, we replace the AFL bloom filter
with a set data structure to prevent collision and consider
binarized edge coverage [6] (i.e., ignoring hit counts) to ensure
comparable results. In addition, the new-coverage detection
method uses a slightly different way to label vertices in differ-
ent algorithms. In InstrAll and InstrRand, to behave like AFL
without collision, the reported label is the concatenation of the
previous and current basic block unique IDs. In INSTRIM and
INSTRIM-APPROX, we use the recording method described in
the implementation section.

Target programs. We selected five small-sized pro-
grams (libfreetype, 1libxml2, libcapstone, lame
—-silent —--preset standard, and objdump -dg)
and three medium-sized ones containing 10°—10° basic blocks
(libpypy, coreclr, and libwireshark). These pro-
grams are selected as they are commonly used in prior studies
and can be successfully executed on our environment.

Test seeds collection. We fuzzed each program over 24 hours
using AFL and collected the generated seeds. Due to high
computation overhead of our code coverage measurement, we
replayed these seeds to filter out those taking too much time
(>10s) to run.

Evaluation metrics. We consider three evaluation metrics:

o Percentage of marked vertices: the ratio between number
of marked vertices and total vertices.

« Difference of favored seeds: the number of favored seeds
that differ from those favored by InstrAll. An algorithm
favors a seed if considering it provides new coverage.

o Execution time of replaying seeds: the time taken by
running all test seeds.

A. Experiment Results

Figure 4 shows the number of basic blocks marked by
INSTRIM and the TH algorithm. The TH algorithm performs
poorly because the number of marked vertices is more than
a half of the total vertices for all programs. By contrast,

Marked Vertices Percentage
100

88 N Our work
B Previous work

Percentage

libwireshark
(277461)
coreclr
(568400)

lame
(10414)
libcapstone
(21462)

libxmi2
(81955)

libpypy
(506636}
objdump
(37408)

libfreetype
(total=30623)

Fig. 4: The percentage of marked vertices.

INSTRIM marks about 20% of total vertices (except for
libwireshark, but TH algorithm still marks twice as many
as INSTRIM), which is significantly lower. Note that INSTRIM
and INSTRIM-APPROX mark exactly the same vertices be-
cause they only differ in instrumentation implementation.

Table I compares INSTRIM and INSTRIM-APPROX with
InstrRand regarding the quality of their favored seeds. We use
the seeds selected by InstrAll as a baseline, since InstrAll is
similar to the methods used by AFL-like fuzzers. For each
algorithm, we calculate the percentage of seeds only favored
by it but not by InstrAll (4) and the percentage of seeds only
favored by InstrAll (—). We say an algorithm is more accurate
if its total difference is smaller. N is the number of seeds
favored by InstrAll. For InstrRand, the X% of each program
is determined by the percentage of marked basic blocks in
INSTRIM. That is, if INSTRIM selects X% of total vertices,
InstrRand will choose X% of vertices randomly. The results
show that our algorithms outperform the random selection
InstrRand. In these cases, INSTRIM reduces more than 20%
of difference. Even though INSTRIM-APPROX sacrifices some
accuracy, it still performs better than InstrRand.

To measure execution time, we combined our algorithms
with the AFL bloom filter and replayed all test seeds five times.
Table II shows the average execution time per seed and the
speedup comparing to AFL (with 100% instrumentation ratio).
The speedup is more significant on medium-sized programs
than small-sized ones. Additional measurements are required
to determine the root cause of the difference. One possibility
is that as the execution time consists of many parts such as
executing code, I/O latency, and system calls, in medium-
sized programs, the part of executing code is bigger and thus
has more instrumentation overhead that can be reduced by
our algorithms. Another possibility is that the medium-sized
programs in our experiment were shared libraries, and thus
AFL needs to perform an extra function call to retrieve the
TLS address, which incurs instrumentation overhead.

TABLE I: The percentage of seed difference.

libfreetype libxmlI2 libcapstone lame objdump libpypy coreclr libwireshark
N 775 1197 561 83 882 1107 461 10041
X% 27% 26% 14% 27% 26% 21% 17% 40%

- + - + - + - + - + - + - + - +
InstrRand 35% 35% | 33% 39% | 64% 14% | 30% 60% | 45% 19% | 17% 35% | 20% 8% | 23% 5%
INSTRIM 2% 18% | 1% 15% | 0% 7% 1% 20% | 1% 18% | 3% 20% | 6% 5% | 4% 4%
INSTRIM-APPROX | 4% 32% | 4% 25% | 0% 7% 1% 66% | 1% 19% | 4% 25% | 6% 7% | 6% 9%

TABLE II: The execution time of different methods.

AFL INSTRIM INSTRIM-APPROX

time (us) | time speedup | time speedup
libfreetype 114 95 1.20 92 1.23
libxml2 48 42 1.14 41 1.17
libcapstone 26 25 1.06 25 1.06
lame 832 801 1.04 756 1.10
objdump 451 432 1.04 417 1.08
libpypy 5682 3444 1.65 3184 1.78
coreclr 6531 4760 1.37 4602 141
libwireshark | 513 402 1.27 391 1.31

VII. DISCUSSION AND FUTURE DIRECTIONS

There is still much room for improvement in the de-
sign space of lightweight instrumentation for coverage-guided
fuzzing. We discuss tradeoffs between speed and accuracy, and
highlight promising research directions.

Dynamic marking algorithms. So far we only consider
static information and static instrumentation. By taking into
account the run-time execution information, we can estimate
the execution frequency of each basic block, and design a
weighted version of INSTRIM that aims to minimize the
delay introduced by instrumentation. Another possibility is to
dynamically adjust the marked vertices as the fuzzer collects
more information during exploration.

Cache-aware instrumentation. Our main future work is to
study cache-aware instrumentation, as frequent cache-miss
will significantly slowdown fuzzing. One aspect of cache-
aware instrumentation is optimizing bitmap access pattern via
better labeling algorithms, such that a bigger bitmap can be
used to alleviate the saturation problem.

In general, a (block or edge) labeling algorithm for
coverage-guided fuzzing should satisfy three requirements:
fast to compute, uniqueness (to avoid collision), high locality
(to avoid cache miss). For example, LLVM SanitizerCoverage
(which is used by libfuzzer and LLVM Trace PC mode)
sequentially assigns node labels in a simple traversal order and
keeps edge hit-counts in a large array indexed by the labels.
Such a simple assignment algorithm already exhibits good
locality during program execution, such that array access con-
tributes little overhead despite the relatively huge array size.
This also avoids inaccuracy introduced by bitmap collision.
To probe the influence of cache-aware label assignment on
instrumentation speed, we allocate a big bitmap with 2M slots
and directly assign an exclusive slot to each CFG edge. We
write an LLVM pass to assign a sequential number for each
edge in LLVM’s natural traversing order. Our result shows
that such cache-aware assignment using 2M slots is as fast as

random assignment using 65536 slots.

We are currently studying how to enhance INSTRIM with

cache-aware label assignment. Specifically, because INSTRIM
represents a path segment by the tuple of the previous marked
basic block and the incoming edge to the current marked basic
block, the main technical challenge is how to optimally assign
both block and edge IDs so as to ensure fast computation,
space efficiency, and cache awareness. In fact, integrating
INSTRIM and cache-aware assignment is non-trivial, because
partial instrumentation creates a large number of path segments
that need to be uniquely labeled. To achieve this, we are
exploring label assignment algorithms that allow labels to be
densely packed within a minimal range, and also reducing the
number of path segments, for example, by marking redundant
vertices in our marking algorithms.
Path-segment coverage vs. edge coverage. To compute
coverage information without needing to reconstruct execu-
tion paths, INSTRIM approximates edge coverage using path-
segment coverage. Our preliminary experiment suggests these
two coverage metrics lead to similar outcomes in coverage-
guided fuzzing. An open research problem is whether it is
possible to obtain exact edge coverage information without
reconstructing execution paths under partial instrumentation.

In addition, though our approximate algorithm can reduce
the unnecessary overhead caused by simple loops, it remains
unclear how to reasonably approximate the coverage informa-
tion of the inner loops inside nested loops.

VIII. CONCLUSIONS

This paper explores lightweight instrumentation for
coverage-guided fuzzing. We formulate the problem as the
path differentiation problem on the control-flow graph, es-
tablishing an algorithmic foundation on which we can apply
graph theory techniques. Our evaluation results show that the
proposed algorithms are promising in accelerating fuzzing by
marking fewer blocks and keeping more useful seeds. While
prior work in fuzzing often focuses on seed selection and
scheduling, we hope this paper can encourage discussion and
innovation in instrumentation techniques tailored for coverage-
guided fuzzing, thereby helping unleash the full potential of
fuzzing-based automated vulnerability discovery.

ACKNOWLEDGMENT

This work was supported in part by Taiwan Information Se-
curity Center (TWISC), Academia Sinica, and the Ministry of
Science and Technology of Taiwan under grants MOST 106-
3114-E-001-001 and 107-2636-E-002-005-, and by Institute
for Information Industry under grant 106-EC-17-D-11-1502.

REFERENCES

[1] “american fuzzy lop,” http://lcamtuf.coredump.cx/afl, 2015.

[2] T. Ball and J. R. Larus, “Efficient Path Profiling,” in IEEE/ACM Interna-
tional Symposium on Microarchitecture, 1996.

[3] W. Dorman, “CERT Basic Fuzzing Framework,” https://www.cert.org/
vulnerability-analysis/tools/bff.cfm, 2010.

[4] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” SIGPLAN Not., vol. 43, no. 6, pp. 206-215, Jun. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1379022.1375607

[5] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” pp. 121-141, 1979.

[6] P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and B. Liblit,
“Optimizing Customized Program Coverage,” in [EEE/ACM International
Conference on Automated Software Engineering (ASE). 1EEE, 2016.

[7]1 A. Rebert, S. K. Cha, T. Avgerinos, J. M. Foote, D. Warren, G. Grieco,
and D. Brumley, “Optimizing Seed Selection For Fuzzing,” in USENIX
Security Symposium, 2014.

[8] M. M. Tikir and J. K. Hollingsworth, “Efficient Instrumentation
for Code Coverage Testing,” SIGSOFT Software Engineering Notes,
vol. 27, no. 4, pp. 86-96, Jul. 2002. [Online]. Available: http:
//doi.acm.org/10.1145/566171.566186

IX. APPENDIX
A. Code coverage detection in AFL

In order to quickly determine whether an input contributes
new coverage, the AFL fuzzer [|] maintains a compact bitmap
(a counting Bloom filter with 65,536 single-byte slots by
default) that can fit in the L1 cache. AFL uses such a
small bitmap to avoid cache miss, as frequent cache-miss
would slowdown fuzzing significantly. However, due to the
small-sized bitmap, collisions may occur frequently, therefore
falsely excluding interesting inputs. For example, a 1ibpypy
execution trace on average has more than 30000 edges, and
with a half saturated bitmap, AFL will suffer from a 0.5 false
positive rate when checking the existence of one edge. In
addition, such big programs (libpypy, dotnet core) often have
around 100K-1M CFG edges.

Note that AFL adopts edge-based code coverage rather than
path-based, as the number of possible paths is much more
than the number of possible edges and thus the path-based
definition could worsen the bitmap saturation problem. For
each edge on an execution path, AFL hashes it to a slot on
the bitmap and increments the slot. An input is considered
interesting if it triggers change in the most significant bit of a
slot. Hence, reducing the number of instrumented basic blocks
(like INSTRIM does) can also alleviate the bitmap saturation
problem because a path can be represented by fewer blocks,
thereby reducing collisions that quickly overflow the counters.

To mitigate the bitmap saturation problem, AFL pro-
vides an instrumentation option (AFL_INST_RATIO) of
afl-clang-fast to control the ratio of instrumented basic
blocks. An interesting future direction is to examine the impact
of bitmap saturation on AFL, especially on its ability to find
new paths. Since a new path may consist of several new edges,
the probability of missing one new path could be much lower
than it of missing one new edge.

B. Thread Local Storage

AFL assigns each basic block on the CFG a random block
label in [0, M AP_SIZFE) at compile time, where the default

MAP_SIZE is 65536, and represents an edge from block A to
B using an edge label (A.label >> 1) © B.label.

While executing a program, AFL stores the label of the
previous basic block in Thread Local Storage (TLS) instead
of stack. Because TLS is a global variable, this allows AFL to
differentiate indirect control-flow transfers across function bor-
ders. However, accessing TLS is slower than accessing stack
variables: it is about 2x slower than accessing stack variables
in our experiment. It would be interesting to further explore
the impact of using stack or TLS on AFL’s performance.

The AFL experimental Trace PC Mode avoids the need of
keeping the previous block information by removing critical
edges (whose source and destination blocks have multiple
outgoing and incoming edges, respectively) on the CFG. An
alternative to removing critical edges is directly labeling edges
instead of blocks. Although this approach can be effortlessly
implemented under 100% instrumentation, it becomes trickier
under partial instrumentation (such as INSTRIM) because it is
unclear where edge labels should be restored and processed
on the partially instrumented graph.

http://lcamtuf.coredump.cx/afl
https://www.cert.org/vulnerability-analysis/tools/bff.cfm
https://www.cert.org/vulnerability-analysis/tools/bff.cfm
http://doi.acm.org/10.1145/1379022.1375607
http://doi.acm.org/10.1145/566171.566186
http://doi.acm.org/10.1145/566171.566186

	Introduction
	Background and Related Work
	Problem Definition
	Control Flow Graph and Vertex Marking
	Path Differentiation Problem

	Algorithm
	Marking Nodes on a Subgraph (Line 1-19)
	Dividing CFG into Subgraphs (Line 20-29)
	InsTrim-Approx: Improvement for Loops

	Implementation
	Evaluation
	Experiment Results

	Discussion and Future Directions
	Conclusions
	References
	Appendix
	Code coverage detection in AFL
	Thread Local Storage

