
Saluki: Finding Taint-style Vulnerabilities with
Static Property Checking

Ivan Gotovchits
Carnegie Mellon University

ivg@cmu.edu

Rijnard van Tonder
Carnegie Mellon University

rvt@cmu.edu

David Brumley
Carnegie Mellon University

dbrumley@cmu.edu

Abstract—We present Saluki, a new tool for checking taint-
style (data dependence) security properties in binary code. Saluki
provides a domain specific language for expressing taint-based
policies. Saluki can find vulnerabilities in real programs for a
number of CWE types, including those for command injection,
weak PRNG seeds, and missing sanitization checks such as SQL
escape routines or checks on buffer lengths. Saluki includes
two new ideas in binary program analysis. First, Saluki uses
µflux, a new static analysis technique for path-sensitive, context-
sensitive recovery of data dependence facts in binaries. Second,
Saluki introduces a sound logic system for reasoning over data
dependence facts. We develop a domain-specific language on top
of our logic system to express security properties as formal
specifications. Saluki includes a decidable solver procedure to
prove (based on the underlying logic) whether a set of data
dependence facts satisfy a security property. Our evaluation
shows that Saluki is capable of finding vulnerabilities in COTS
x86, x86-64, and ARM software, including 0-days

I. INTRODUCTION

Vendors continue to ship vulnerable programs to consumers.
While source-code analysis holds promise for finding vulnerabil-
ities, vendors often do not ship source code. As a result, we need
techniques and tools for finding vulnerabilities in binary off-the-
shelf software. Data dependency security properties, commonly
called “taint vulnerabilities” [16, 25, 39, 40], are a crucial class
of vulnerabilities. The Common Weakness Enumeration (CWE)
database lists dozens of vulnerability types that boil down to
tracing data dependencies and assuring tainted terms are either
appropriately sanitized or not passed to critical functions.

Researchers have proposed a variety of dynamic techniques
such as taint analysis to potentially detect such vulnerabilities.
One set of techniques focuses on dynamic analysis that monitors
execution flow, e.g., [8, 9, 11, 23, 31, 33, 36]. However,
dynamic analysis requires runtime support and can achieve low
coverage, both of which can result in missed vulnerabilities.
On the other end of the spectrum is a static analysis, which
promises to reason about entire functions or whole programs
at once by abstracting program state [4]. As a result, static
analysis tends to miss fewer problems, but can suffer high

false positives if not done with care. Recent researchers have
focused on symbolic execution, which blurs the line by using
a mix of dynamic information to consider individual program
paths [3, 13, 36, 37]. Symbolic execution, however, is still
typically OS aware, requires significant runtime support, and
relies heavily on extensive decision procedures to answer
queries.

In this paper we present Saluki, a taint-style tool for
statically checking security properties. At a high level, we
define a property to be a predicate that holds over a set of one
or more unique path executions. For example, one well-known
security property is that an unsanitized read(x) should not
flow into a system(cmd) call. In normal operation, Saluki
first generates path- and context-sensitive data dependence
relations on values that depend on x. Second, Saluki checks
that a program, along with the data dependence facts, adheres
to a security policy, e.g., whether system(cmd) depends
on x. The security policy language is expressive enough to
include CWE vulnerabilities such as SQL injection, command
injection, and program-specific data flow security properties,
and can also find vulnerabilities such as Heartbleed. Saluki
works as follows:

Data dependency generation. We propose µflux for gen-
erating data dependency facts in a path- and context-
sensitive manner binary programs.
Policy specification. The user provides a security pol-
icy, for example “read(x) should not flow into a
system(cmd) call”. We have developed a policy language
that abstracts out binary specific details such as calling
conventions, registers, etc. from the policy itself.
A logic engine for checking security properties over ex-
plicit data dependence facts and implicit control dependence
along paths.

A key idea in Saluki is µflux, which “executes” parts of a
program to find data dependencies. µflux can start executing
at any program instruction within an emulator. The emulator
catches all reads and writes to registers and memory before they
happen. The first time a program term is used, µflux initializes
it via a seed value policy, such as choosing a random value or
a constant. µflux then follows execution, registering definitions
and uses of each program term (e.g., register and memory
location) in a database. Like a fuzzer, µflux can re-execute
paths with new seed values, with the advantage that µflux can
start at any instruction.

µflux emulation has two path selection modes: deterministic
mode, which evaluates branches based on the emulator state,

Workshop on Binary Analysis Research (BAR) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-50-9
https://dx.doi.org/10.14722/bar.2018.23019
www.ndss-symposium.org

and non-deterministic emulation that follows all program paths
regardless of the branch condition. Note we do not claim
executing from any address in an emulator is novel (e.g., similar
concepts are proposed in [20, 38]), but instead customizing on-
the-fly software-based execution to identify path- and context-
sensitive data dependencies. Compared to static analysis, µflux
allows us to side-step issues such as variable recovery, alias
analysis, and even object-oriented code identification during
binary analysis, and yet still collects high-fidelity facts about
data dependencies. Compared to dynamic analysis, µflux does
not require runtime support, and can start in arbitrary program
locations to produce path- and context-sensitive information.
Given the above new ideas, we ask three research questions:

1. Can we express real security policies over real programs
in Saluki that finds real bugs? We show a variety of CWE’s
(Common Weakness Enumerations) can be formally modeled
in Saluki, and that these specifications find real bugs in binary
programs. In particular, our experiments use Saluki to (1)
find known vulnerabilities (e.g., Heartbleed) and (2) find 6
new zero-day vulnerabilities in COTS SOHO router software,
including 1 in Lighttpd, a high performance webserver used
in thousands of SOHO products and over 400K internet-facing
sites (including xkcd.com).1

2. Is the proposed µflux path- and context-sensitive data
dependency approach scalable to complete programs? For
example, related approaches like micro execution [20] were
only demonstrated on individual functions, and flood execution
[38] on portions of malware samples. More generally, path- and
context-sensitive enumeration in static analysis is sometimes
expensive. We find µflux hits a sweet spot by combining
ideas from micro execution and flood execution. Like dynamic
analysis, we can collect path- and context-sensitive information.
However, µflux does not need OS or runtime support (e.g., we
analyze ARM binaries on x86 machines), is not limited to start
at the beginning of a program path, or restricted to paths with
a known input like dynamic analysis. µflux is similar to static
analysis in that it achieves high coverage, but at the same time
side-steps issues such as developing alias analysis, variable
recovery, and type recovery in order to get meaningful results.

3. Can we develop an decision procedure checking security
policies written in our language and logic over data depen-
dencies? We develop a decision procedure for policies over
data dependency facts, and show that it scales to programs of
moderate size and per-path data-flow facts. Since Saluki uses a
constructive proof system to verify properties over a program
model, we get information not just on whether the policy is
violated, but on how it is violated (e.g., an example program
path that violates the policy). Our formalization of the program
model finds particular application in COTS binaries, but is also
sufficiently general to model higher-level languages.

Our overall contributions are the Saluki tools and techniques,
including:

1) A new approach for collecting path- and context-sensitive
data dependency information called µflux.

2) A verification framework comprising (a) a sound logic
system, (b) a security policy language, and (c) a solver
decision procedure. The framework enables efficient, de-

1http://trends.builtwith.com/web-server

cidable detection of common taint-style (data dependence)
vulnerability patterns.

3) An experimental evaluation where we use Saluki for
vulnerability discovery. We demonstrate vulnerability
specifications, discovering 6 zero-day vulnerabilities in five
different vendor SOHO router products across 5 different
CWEs. We also use Saluki to find known vulnerabilities
in the Linux kernel, OpenSSL (Heartbleed), Pidgin, and
C++ compiled binaries.

4) An open source implementation. Saluki currently
supports the ARM, x86, and x86-64 architectures,
and can parse ELF, PE, and in general any exe-
cutable format that IDA Pro can parse.2 It is avail-
able at https://github.com/BinaryAnalysisPlatform/bap-
plugins/tree/master/saluki.

II. MODELING AND CHECKING SECURITY PROPERTIES

In this section we give an operations-based overview of
Saluki, including the types of vulnerabilities we target. In the
following sections we cover the formal semantics.

A. Saluki Operation

Users check security policies in two steps. First, the user
specifies their security policy in the Saluki policy language.
Saluki security policies describe security taint-style path
properties. Policies have two parts: (a) identify Program patterns
of interest, e.g., API calls like recv and system, and (b) the
data dependency relationships to check between locations of
interest. Our design has three goals:

1) Extract out data dependencies with high fidelity, low false
positives, and over many paths. This goal is necessary be-
cause we want data dependencies to be real dependencies
(i.e., “must” not “may” dependencies), and to reason about
as much as the program as possible. Dynamic analysis
gives high fidelity (e.g., we know concrete values for
registers), has no false positives (every data dependency in
the trace is a true dependency), but is over only one path.
Static analysis for proving programs are bug-free (i.e., safe)
can reason over an entire routine or program, but often
have high false positives (e.g., many data dependencies
extracted are not true dependencies), especially at the
binary level. Saluki extracts out all data dependency flows
(up to an execution depth) by “executing” snippets of code,
and extracting out all dependencies along the executed
snippet. As such, it is a type of path and context sensitive
analysis over many paths, and has similar fidelity to
dynamic analysis since each execution is a witness for a
data dependency.

2) Reason about security policies over all extracted data
dependency flows at once. In particular, we do not want
the explosion of reasoning over each path separately, as
many paths share similar dependencies. In Saluki we use a
custom logic to reason over all extracted data dependencies
in a sound manner.

3) Do not litter the policy language with low-level details
like calling conventions, memory cells, etc. when possible.

2Saluki does not require IDA Pro (e.g., it works without IDA on ELF files),
but benefits from it when present by using it as a plugin for parsing executable
container formats and for advanced symbol recovery.

2

https://github.com/BinaryAnalysisPlatform/bap-plugins/tree/master/saluki
https://github.com/BinaryAnalysisPlatform/bap-plugins/tree/master/saluki

BINARIES SEED TAINT

SOLVER

µFLUX & TAINT
PROPAGATION

SALUKI

BAP

IR ANNOTATE IR

IR TAINTED
D() FACTS

SPEC REPORTS

Fig. 1: Saluki Architecture

Saluki uses a lightweight policy langauge with a gear
towards pattern matching and abstracting out low-level
details from the policy itself. The policy abstracts low-
level details such as whether read puts the results on the
stack (x86), or a register (as in ARM).

Put together, the overall Saluki architecture is shown in
Figure 1 (Appendix E). When run, Saluki:

a) Loads in the specification.
b) Parses the binary into an intermediate representation (IR)

suitable for analysis.
c) Runs µflux to collect data flow facts about executions

from every specified source.
d) Runs a solver over the policies, program, and collected

facts. The solver determines whether the property holds
or not. The solver implements a novel logic system and
algorithm built around the the specification DSL.

e) Saluki outputs example paths where the property does not
hold. The actual output is not a full path, but instead a
condensed form of the tainted instructions and a flow ID
(outputting a full path is possible, but likely very large).

A Running Example: The Saluki policy language is designed
to check explicit taint-style data dependency properties that
have implicit control dependencies. We observe that many
Common Weakness Enumeration (CWE) specifications fall into
this category, including CWE-89 (SQL Injection), CWE-337
(Predictable Seed in PRNG), and others.

For concreteness, we use CWE-78: Command Injection
Attacks (Rank 2 in the CWE database) to explain our spec-
ification language and as a running example in the rest of
the paper. Command injection vulnerabilities arise when input
flows from an input source to a sink function that executes
code. For example, consider a specification that says system
should never use data from recv. The Saluki specification is:�
prop recv_to_system ::=
recv(_,*buf,_,_), system(*cmd) |- never
s.t. cmd/buf� �
Listing 1: Network input should not reach system

The specification in Listing 1 defines a security property,
which specifies two common APIs used for command injection.

Within a property the user specifies locations of interest
using a pattern. Patterns can match (a) with program terms that
load, store, use or define values or (b) with program terms that
perform control flow, such as conditional branches or function
calls. For usability, we let users specify taint start points of

API calls using a C-like syntax with positional arguments. At
a low level Saluki parses header files, identifies functions starts
and calculates argument expressions (e.g., registers or stack
offsets) based on the detected ABI and calling convention.
Saluki patterns are extensible: a user can create their own
patterns and upload their own header files without changing
Saluki.

In Listing 1, the user has specified two APIs of interest:
recv, which takes four arguments, one of which is a pointer to
a variable called buf, and system, which takes one pointer
argument called cmd. We use the same notation for variable
names, and that the ‘*’ (asterisk) denotes a pointer. For
usability, we allow users to write ‘_’ (underscore) for locations
not of interest.

Property bodies consist of sequents of the form
p1, ... , pn |- q1, ... , qm where pj | j ∈ 1, ... , n and
qi | i ∈ 1, ... ,m are patterns denoting premises and
conclusions, respectively. The user refines sequents to
include data dependencies of the form qi/pj, read qi is
data-dependent on pj. Note that we may also specify data
dependence between premises alone, as in Listing 1. In the
above case the rule introduces a flow constraint cmd/buf,
meaning the entire rule represents only the pairs of calls
to recv and system where buf flows into cmd. never
corresponds to a logic construct that forms a positive assertion
in the specification. Note that specifications must be supplied
as positive assertions to detect violations, as the downstream
proof system is constructive.

Binary Processing: Saluki takes as input a specification and
binary to check. Saluki first lifts instructions to an intermediate
representation (IR) using BAP [1, 10], an open-source plugin-
based binary analysis framework. The IR provides a precise
semantic for each instruction, along with meta-information such
as linking particular addresses to symbol names and function
starts (e.g., as determined by Byteweight [7] or IDA Pro), as
well as matching up terms from usability features such as
annotating program locations with respect to a known header
file. The annotations are represented in the IR as a synthetic
arg term. We call each syntactic IR element a term. Each term
has a unique label, which can ultimately be tied back to the
instruction that generated it. Note that a single instruction may
correspond to several IR terms, and therefore several labels
may map back to the same instruction.

Taint Seeding: Saluki analyzes the specification for vari-
ables used in constraints. Each constraint variable is linked to
a program location, which is then marked in the IR as a taint
seed. In our running example, cmd is a constraint variable used
in recv, causing Saluki to identify the proper memory location
corresponding to the cmd argument in all terms named recv.
As is customary, Saluki uses unique identifiers to identify each
taint seed.

µflux: Saluki then uses µflux to collect data dependency
facts. µflux is implemented as a custom interpreter that
executes the IR of the binary. This design decision allows
us to implement Saluki on every platform supported by BAP,
including ARM, x86, or x86-64. The Saluki µflux interpreter
looks for taint seeds, and starts executing with respect to a seed
policy. By default, Saluki uses a random seed policy, where each
initial reference of a variable is assigned a value uniformly at

3

random. Saluki also takes in a parameter on whether to execute
branches based on (1) the running interpreter state, which we
call deterministic branch evaluation, or (2) “flood” execution,
which follows both sides of the branch regardless of evaluation,
which we call non-deterministic branch evaluation. By default,
Saluki uses a non-deterministic branch evaluation.

During execution the interpreter (1) propagates taint as
needed according to specified taint semantics (see Appendix A),
and (2) generates def-use facts of the form D(l′, R′, l, R) for
tainted terms, meaning the IR variable R′ at location l′ depends
upon the value R defined at location l. Note that although
we generate these facts using µflux, the underlying logic
representation is general enough to handle facts generated from
other analysis techniques. µflux keeps a separate execution state
on each path, generating path and context-sensitive dependency
facts. µflux executes through instructions, including calls,
returns, and other statement types often problematic for static
analysis. µflux stops executing on a path when any of the
following conditions are met: (a) Saluki hits a pre-defined
maximum number of instructions to execute, similar to bounded
model checking (the default is 10 million basic blocks of
instructions), (b) Saluki hits a call to a function that is not
modeled (e.g., library functions that are dynamically linked at
runtime and not in the binary itself), or (c) Saluki hits a jump
with an indirect target.

The Saluki Solver: Saluki takes in the program IR, the data
flow facts, and a security policy, and tries to prove all properties
specified in the policy. The properties have the form p` p′ s. t. c.
The patterns in p and p′ specify locations of interest subject to
data flow constraints c. Saluki’s goal is to prove the property, or
find counterexamples where the property does not hold. When
Saluki µflux is run using deterministic branch execution, Saluki
is fully path- and context- sensitive. When Saluki µflux runs
in non-deterministic mode, Saluki merges taint information on
a per-path basis, making it context- and flow-sensitive.

Since properties are of the form p→ p′, Saluki tries to prove
a counter-example ¬(p→ p′) ⇔ p ∧ ¬p′. A counter-example
is a set of program terms and generated data dependencies
that serve as a witness that the policy is violated. As a result,
Saluki is constructive: it doesn’t just say there is a violation,
but gives the specific path and data dependencies used to show
the property can be violated. Note a design-interplay between
the logic system and specification. Saluki internally reasons
about negation, but in a constructive sense. The Saluki DSL,
however, does not allow a user to specify negation, as it would
increase the computational complexity of the overall logic
system (possibly increasing the complexity class).

B. Vulnerability Specifications

Taint Vulnerabilities: The CWE-78 specification is a simple
yet representative of a general class of CWE specifications of
flows from sources to sinks, including:

CWE-89 SQL Injection SQL injection vulnerabilities com-
monly arise when user input is used as part of SQL
statement. For example, suppose that an API offered two
primitives: a = sqlcreate(s), which creates a query
handle a for a string s, and a b=sqlsanitize(r)
function that escapes all SQL metacharacters in a string r
escapes any SQL characters. The Saluki specification for

this CWE would be the same as command injection up to
API renaming.
CWE-337/676 Predictable Seed in PRNG We translate this
CWE into checks between known insecure sources of
randomness, and known PRNG sinks. For example, the
Saluki specification for sources p = time() flowing into
sinks srand(q) is almost the same as the above SQL and
OS property. A program containing both calls is vulnerable
along paths where q ever depends on p, and is safe if no
such path exists.

CWE-252 Unchecked Return Values Saluki can also check
that tainted values are used in checks, modeled as control flow
jumps based on tainted values. The Saluki language includes
when c jmp x, read as when condition c is satisfied, jump
to location x (which can be either a computed or immediate
address).

In particular, consider CWE-690: “Unchecked Return Value
to NULL Pointer Dereference.” In practice, this translates
to checking that the return value of memory management
functions like calloc and malloc are checked against
NULL. For example, Listing 2 shows source from Lighttpd’s
stat_cache.c. It turns out that there’s no check on the
return value keys after the calloc call. Note that the variable
sc->files->size is under attacker control.�
keys = calloc(1, sizeof(int) * sc->files->size);� �

Listing 2: Unchecked calloc

To detect this flaw, one needs to identify (a) calloc call
sites in the program, and (b) assert that the return value keys
is always checked. The Saluki specification for calloc is:�
prop calloc_maybe_checked ::=
p := calloc(_) |- when c jmp _ s.t. c/p� �

Listing 3: Unchecked calloc

Listing 3 matches all cases where some jump condition c
depends on the return value of calloc. In the Lighttpd
specification, we first provide a pattern for matching calloc
call sites, and bind a return value to a symbolic variable p.

Second, we provide a pattern for matching control flow
conditional statements, and bind the condition expression to a
symbolic variable c. Using these variables, we can describe
the cases where some conditional expression c uses the return
value p. We express this by s.t. c/p, which reads “such
that c is data dependent on p”. Interesting cases occur where
no conditional statement uses (or depends on) a calloc return
value. The negation of the property flags instances where Saluki
could not satisfy this assertion.

Saluki’s output produces 75 instances of unchecked
calloc calls in the ARM-compiled Lighttpd binary we
considered. Each instance constitutes a legitimate flaw in
Lighttpd, but not necessarily a vulnerability. Our discovery
has two effects: (a) a cursory inspection of the 75 cases revealed
one security-critical operation which may cause a memory
corruption, culminating in a new CVE, and (b) the maintainers
of Lighttpd introduced calloc checks for over 40 call

4

sites.3 This mitigates the potential of additional vulnerabilities
and prevents denial-of-service attacks due to unchecked NULL
pointers that may result from out-of-memory errors. Similarly,
Saluki can be used to detect CWE-252, “Unchecked return
values” which captures the general class of vulnerabilities in
spirit of the above.

Templates: Many of the CWEs share a common structure of
“check this after that”, and only logically differ in the specific
APIs checked. Saluki provides a set of reusable template rules
that only requires identifying the relevant APIs, and does not
require repeating the entire rule.

Limitations: Saluki does not specifically reason about
memory corruption vulnerabilities such as buffer overflows.
In particular, such vulnerabilities often require counting, e.g.,
does the source byte count exceed the destination byte count.
We leave a more thorough extension to such vulnerabilities as
future work. Saluki, however, can check common API idioms
that may be insecure. For example, while we cannot check
input size directly, we can check that user inputs do not flow
to known unsafe functions, e.g., for strcpy:�
prop if_strcpy_dst_depends ::=
recv(_,*p,_,_),strcpy(_,*q) |- never
s.t. q/p� �

Listing 4: Network input reaches strcpy

We demonstrate this capability by rediscovering the Heart-
bleed vulnerability.

III. MICROFLUX

A. Why Microflux?

An integral part of Saluki is deciding whether the expressed
security policy is satisfied by a program model, where the
program model includes a set of data flow facts. Unfortu-
nately, accurate inter-procedural, context-sensitive analysis data
flow analysis that reasons about aliasing is undecidable [27].
Therefore, any analysis seeking to handle such programs must
approximate.

One approach is to statically enumerate paths, e.g., similar
in spirit to the source-based techniques from PQL [29] and
Property Graphs [39]. Static enumeration typically does not
consider branch predicates, and thus may generate infeasible
paths. A second approach is to consider only realizable paths,
e.g., by enumerating concrete inputs, using fuzzing or symbolic
execution.

µflux strikes different design points in this space. First, µflux
simulates concrete dynamic behavior. This allows us to side-
step expensive symbolic reasoning techniques in static analysis
(e.g., aliasing) and binary analysis (e.g., variable recovery,
object-oriented code identification). Second, execution behavior
is parameterizable by a number of policies. This overcomes
limitations of dynamic techniques such as fuzzing and concolic
execution which (a) can only detect bugs triggered by an
executed path at runtime, and (b) must always start at the
program entry point.

3Commit 566cf.

B. Microflux Design

Branching Policy: Recall µflux can evaluate branches either
deterministically (i.e., by evaluating the branch in the specific
execution context) or non-deterministically (by evaluating all
branch points). When operating deterministically, we have
a witness of initial state that proves a particular branch is
feasible. This avoids exploring impossible branches, e.g., due to
conditions of the form if(some big expression that
is false).

When operating non-deterministically, we explore paths
regardless of the branch predicate. This allows Saluki to
explore a larger portion of the program, but at the cost of
potentially exploring infeasible paths. We note that this problem
is not specific to µflux, and occurs in other static analysis
techniques, e.g., [39]. In our evaluation, we have experimented
with both, and set the default Saluki policy to non-deterministic
mode. Our experiments show that non-deterministic mode finds
more vulnerabilities, and that infeasible paths do not create
overwhelming false positive policy violations. However, users
can configure which policy to choose based upon their own
experience.

Execute Anywhere: µflux can start executing from any
location in the intermediate representation. This feature allows
us to start executing at program points of interest with respect
to the specification, removing the need to initiate execution
at program entry. In practice we find that ignoring contextual
information before a program point of interest does not impact
the correctness of our results. In fact, for our examples in §II it
is preferable to start tracking specific information at its creation
point (e.g., precisely when a return value is defined, or input
from recv occurs).

Data Dependence: Initial register and memory state can be
defined by a custom seed policy (e.g., populated by concrete
values). In this paper, we use µflux with a random seed
policy. Each initial read of a register or address is assigned
a value uniformly at random. This is a pragmatic choice; we
are interested in the semantics of data flow over program
terms (the transfer of values) to find vulnerabilities, not
the values themselves. Data dependence facts are extracted
after propagating taint over terms in the IR according to the
operational semantics in Appendix A. The full grammar and
operational semantics for the BAP IR is available and omitted
for brevity.4

Note the distinction of a branching policy for fact generation
and a specification in Saluki. Saluki quantifies over explicit data
flow relationships in the specification. µflux is the technique
used to supply Saluki with data dependence facts. We use
explicit data flow (e.g., [17, 32]); we leave considering implicit
flows as future work. Saluki does not directly consider control
flow or control dependence used to generate data flow facts:
these are implicit attributes. The branching policy gives us
the flexibility to parameterize how µflux generates facts with
respect to these implicit attributes. This is an intentional design
decision: data dependence facts on their own are sufficient
to express many vulnerabilities, as in §II. By delegating fact
generation to µflux, we can experiment with different tradeoffs
(or even use other techniques like fuzzing). We note that explicit

4https://github.com/BinaryAnalysisPlatform/bil

5

https://github.com/lighttpd/lighttpd1.4/commit/566cf8decbd63d921e914041d5d7940314ef2f1c

consideration of implicit data flows is an interesting opportunity
which we leave as future work.

Precision and Tradeoffs: Recall our first design goal: to
extract data dependencies with high fidelity, low false positives,
and over many paths. µflux finds “must” data dependencies,
but may explore infeasible paths by ignoring branch conditions.
This is one potential source of unsoundness. Our results show
that the tradeoff in exploring infeasible paths is is acceptable,
and we observe low false positives. Two reasons contribute to
this: (a) data dependence facts that do not affect the terms
in a specification play no role in proving a specification;
i.e., parametricity of specifications constrain opportunities for
unsound results, and (b) most of the vulnerability specifications
(e.g., injection), intend to prove the absence of data dependence
relationships, including and in spite of unrealizable paths.

Recall our second design goal: to reason about security
policies over all extracted data dependency flows at once. In
deterministic mode, the data dependence facts of a single
path are used to prove a specification. In non-deterministic
mode, facts are gathered along multiple paths. Extraction of
data dependence is always performed in a path- and context-
sensitive manner. However, in non-deterministic mode, data
dependence facts are merged after completing each path
exploration, resulting in a flow-sensitive analysis aggregated
over individual paths. We make this precision tradeoff so that
we can run a constructive proof over all data dependence facts at
once. Our results indicate that this tradeoff finds vulnerabilities
without needing to repeatedly reason over duplicate data
dependence facts for multiple paths individually. Note that
in non-deterministic mode, Saluki still supplies the program
terms responsible for violating a specification (so that a path
witness can be reconstructed).

We note that the µflux emulation engine may have imple-
mentation errors, causing additional sources of unsoundness.
We have tested emulation across a suite of Coreutils by
bi-simulating Saluki’s engines and a native x86 CPU. In
our experiments, emulation is 99.99% accurate for handled
instructions, and thus we do not consider this a serious issue.5
We stress that the above design choices and tradeoffs are
particular to µflux, and do not affect the soundness of the
prover. We developed our formalism to achieve a reusable,
sound reasoning engine over data dependence facts, thereby
isolating fact generation (and potential sources of unsoundness)
to a particular technique.

IV. SALUKI LOGIC SYSTEM AND LANGUAGE

The Saluki Logic System and Language enables sound and
decidable reasoning over explicit data dependence facts. We
introduce a security policy language to express vulnerability
patterns as specifications. A constructive proof procedure checks
whether a program violates a property. Note that the logic
system is general and may be reused with dynamic or static
analysis techniques that can generate data dependence facts.

Syntax and Semantics

To define properties we use a domain specific language.
The language grammar allows us to specify a property as a

5https://github.com/BinaryAnalysisPlatform/bap-veri

sequence of patterns and a set of constraints. The property
holds if all patterns match under the given constraints. The
grammar of the language is shown in Figure 3. We formally
define Saluki semantics as a set of axioms, shown in Figure 2.

Definition 1. The abstract program model is a triple of
propositional functions P = (T ,D,P). The proposition T t
denotes that a term t exists. The proposition D(l′, R′, l, R)
denotes information flow (data dependence) from a variable R
defined in a program term with label l to a variable R′ used
in a program term with label l′. The proposition P(p, l, R)
denotes a user-defined predicate p that holds for a variable R
used in a program term with label l.

Definition 2. A program term t is an ordered 5-tuple
(Lt,St,Ct,Dt,Ut) where

Lt is a Label that uniquely identifies a term,
St is a set of static Successors,
Ct is a set of program variables that affects the Choice of
a successor,
Dt is a set of program variables that are Defined by a
term, and
Ut is a set of program variables Used in the term.

We now gently introduce all parts of Saluki language, from
top to bottom.

Property: The axiom (prop) states that if a property
p` p′ s. t. c holds then the match of a pattern p under a
constraint c must imply matching of a concatenation p, p′ under
the same constraint.

Patterns: Patterns are user-specified expressions in our
syntax. Patterns contain logical variables. Logical variables are
bound to variables in the body of a matched program term The
process of binding logical variables to program variables is
called a valuation of a pattern and is denoted with a proposition
[[p]]v

t
= R that is inductively defined for each pattern. The

proposition [[p]]v
t
= R states that a pattern p valuates a variable

v to R in term t.

Pattern never never valuates. Axiom (never) states that
every attempt to valuate never is absurd.

Pattern v := v′ matches with any definition term t. This
pattern may bind a logic variable v to some program variable
from a set Dt and bind v′ to some program variable from
a set Ut. The semantics are given by axioms (def-v) and
(def-v’) respectively.

Pattern when v jmp v′ matches with a jump term t. This
pattern valuates a variable v to some program variable from
a set Ct and variable v′ to some program variable from a
set St. This semantics are given to by axioms (jmp-v) and
(jmp-v’) respectively.

Pattern v0 := id(v1, ... , vm) matches with function call term
t which calls a function named id. Logic variables are valuated
positionally, relying on a function arg(id, i) that valuates
the i-th argument of function id according to a used calling
convention.

The axiom (comma-p) inductively extends the above
axioms to a list of patterns.

6

[[never]]v
t
= R→ ⊥ (NEVER) [[v0 := id(v1, ... , vm)]]vi

t
= R→ T t ∧ arg(id, i) = R (SUB-A) [[v := v

′
]]v

t
= R→ T t ∧ R ∈ Dt (DEF-V)

[[v := v
′
]]v′

t
= R→ T t ∧ R ∈ Ut (DEF-V’) [[when v jmp v

′
]]v

t
= R→ T t ∧ R ∈ Ct (JMP-V) [[when v jmp v

′
]]v′

t
= R→ T t ∧ R ∈ St (JMP-V’)

p s. t. v
′
/v → v ∈ V(p) ∧ v

′ ∈ V(p)→ [[p]]v
t
= R ∧ [[p]]v

t′
= R

′ ∧ D(Lt′ , R
′
, Lt, R) (DEP) p s. t.P(v)→ v ∈ V(p)→ T t ∧ [[p]]v

t
= R ∧ P(p, Lt, R) (PRE)

[[p, p
′
]]v = R→ [[p]]v = R ∨ [[p

′
]]v = R (COMMA-P) p s. t. c, c

′ → p s. t. c ∧ p s. t. c
′ (COMMA-C) p ` p

′
s. t. c→ p s. t. c→ p, p

′
s. t. c (PROP)

Fig. 2: The Saluki Language Semantics

r ::=prop id , p` p′ s. t. c :: property
p ::= :: patterns

| p1, ... , pm :: list
| v := id(v1, ... , vm) :: sub
| v := v′ :: def
| when v jmp v′ :: jmp
| never :: bot

v ::= id | ∗id :: values
c ::= c1, ... , cm | v′/v | P(v) :: constraints

Fig. 3: The Saluki Specification Language

Constraints: Patterns are matched under some (possibly
empty) set of user-specified constraints. The match is defined as
an inductive proposition for two possible constraints. (1) If a pat-
tern p matches under constraint v′/v it creates the implication
that if both v′ and v occurs in the pattern p, then they must be
valuated to such program variables for which D holds. (2) If
a pattern p matches under a user-defined predicate constraint
P(v) it creates the implication that if a logic variable v occurs
in the pattern p then it should be valuated to such program
variable for which P holds.

An axiom (comma-c) denotes that a pattern p matches
under a list of constraints if it matches with each constraint.

We present details of the Saluki Proof System in Appendix D.

V. IMPLEMENTATION

Saluki is implemented in 1,675 lines of OCaml code. It
is built on top of the BAP platform, which currently supports
lifting of the x86, x86-64, and ARM architectures to an
intermediate representation. BAP performs CFG recovery and
inference of function prototypes for the GNU C Library. BAP
uses LLVM as a disassembly backend. Saluki is released
online 6 in support of open science.

VI. EVALUATION

We evaluate Saluki with respect to the following research
questions:

1) What classes of real-world vulnerabilities can we detect
using Saluki? We tested 5 unique security policies for
detecting taint-style vulnerabilities, and found 6 zero-days
in COTS binaries (§VI-C). We also evaluate Saluki on
known vulnerabilities found in previous work that detects
taint-style vulnerabilities in source code [39, 40]. We find
that we discover strictly more vulnerabilities by emulating
µflux in non-deterministic mode.

2) How fast is our implementation, and what coverage do
we achieve?

6https://github.com/BinaryAnalysisPlatform/bap-plugins/tree/master/saluki

We perform a pure performance benchmark to test the
speed of µflux using an empty security policy in non-
deterministic execution mode. Our implementation takes
54 seconds on average per binary, averaged over all
binaries in the Coreutils [2] test suite. We measure the
number of IR instructions evaluated per second using
µflux. At a high-level, we find that we are competitive
with binary instrumentation-based micro execution [20].
We achieve 96% statement coverage, averaged over the
Coreutils test suite with an empty security policy (§VI-G).

A. Experimental Setup

Our experiments were performed on an Ubuntu 14.04 LTS
virtual machine with an Intel i7 2.2GHz CPU core and 6GB
RAM.

We picked five binaries on the attack surface of five
active, distinct vendor SOHO routers for vulnerability discovery.
Binaries are considered to be on the attack surface if network
input is processed by the binary.7 Our analysis considers
binaries extracted from the SOHO router firmware of Cisco,
Linksys, Belkin, Airlink, and Buffalo. We also evaluated Saluki
on known vulnerabilities in the Linux kernel, OpenSSL (Heart-
bleed), Pidgin, and C++ compiled binaries. With the exception
of the C++ binaries, our choice is based on previous work
that detects taint-style vulnerabilities in source code [39, 40].
We chose C++ binaries to demonstrate the additional novel
capabilities that Saluki offers.

For performance measurement we used the set of ARM
Coreutils binaries comprising 100 binaries. We evaluate the
speed and coverage of µflux on Coreutils due to its wide use,
reflection of real programs, and popularity for benchmarking.

B. Threat Model

Vulnerabilities differ from traditional software flaws in
constituting a security risk. Additionally, what constitutes a
security risk is highly context-dependent. One example is CWE-
337, where a PRNG is initialized from a predictable seed, such
as a process ID or system time. In our results we found two
binaries that seed srand with time: one uses it for generating
web session cookies, while the other uses it for randomizing
an update schedule. The former presents a clear security risk,
while the impact of the latter is unclear, and likely does not
pose a security risk. Saluki finds specification violations which
may or may not be exploitable. However, all of Saluki’s reports
in our tests correspond to insecure programming practices.

7Automatically determining binaries on the attack surface of a device is an
interesting point of future work, but outside of the scope of this paper.

7

https://github.com/BinaryAnalysisPlatform/bap-plugins/tree/master/saluki

Flaws Time (s) Facts Insns (K) Cov (%)
Binary Vuln ID CWE (0-days) det fl. det fl. det fl. det fl. Fns Spec
Lighttpd CVE-2016-1545 252 75 (1) 33 52 962 1,919 330.0 2,724.1 22 99 99 C4
admin.cgi CVE-2016-1334 20/78 10 (1) 45 108 122 1,448 656.3 22,894.9 31 96 141 C3
admin.cgi CSCuy68380 337 1 (1) 41 43 37 48 3.7 144.1 26 100 3 C5
pathload2 VU #911048 120 1 (1) 11 93 0 17 8.0 16,086.0 13 100 10 C1
easyconf - 78 1 (1) 9 11 0 30 8.1 139.1 19 100 2 C3
cm.cgi - 120 1 (1) 9 10 0 74 1.6 30.0 9 100 1 C2

openssl CVE-2014-0160 120 5 228 301 23,999 25,817 61.8 88.7 15 20 972 C9
ozwpan.ko CVE-2013-4513 120 1 70 72 160 608 0.3 16.7 17 40 2 C9
libmsn.so CVE-2013-6482 20/676 1 44 46 48 5,032 15.0 119.1 12 54 18 C7
watchstatus.cgi
audiotrack.cgi

CVE-2015-6910
CVE-2015-6911

89 4 44 46 132 784 24.1 321.3 20 82 27 C6

TABLE I: Saluki Analysis Results for 0-days (Lighttpd through cm.cgi) and and known vulnerabilities (openssl through
audiotrack.cgi). Fns is the number of functions. Deterministic mode is denoted by det, and non-deterministic (flood) mode
by fl. Shaded binaries indicate the vulnerability could only be found with flood execution mode (i.e., flood mode is better). Cov
gives the percentage coverage of IR instructions for deterministic and flood mode, respectively.

C. Zero-day Vulnerability Discoveries

Table I enumerates our discovery of 6 zero-days in five dis-
tinct COTS vendor products. We distinguish between insecure
programming practices (flaws) and confirmed vulnerabilities
(zero-days), both of which are automatically reported by
Saluki. Notably, our discoveries range over a variety of CWE
classifications, illustrating Saluki’s application to detecting a
diverse set of flaws.

1) admin.cgi: The admin.cgi binary exposes device
administration through a webpage. Saluki found two distinct
vulnerabilities in admin.cgi. The first vulnerability we found
in admin.cgi is a command injection to system. Saluki
flagged the code location in the binary where the result of a
sprintf call flows to system. This vulnerability allows an
unauthenticated attacker to execute remote code through the
web-interface, and was assigned CVE-2016-1334. The second
vulnerability in admin.cgi uses a random value to generate
a web session cookie. However, the PRNG is seeded by a
predictable value: time(NULL), allowing an attacker to guess
the stream of random number generation with a smaller key
space of initial seed values than brute force.

2) pathload2: The pathload2 binary is used to determine
bandwidth of an Internet connection. Saluki reports a direct
data flow from the recv buffer to the source buffer of
strcpy. The strcpy does not validate the length of the
source string, resulting in a buffer overflow. This vulnerability
was acknowledged by CERT, but required further coordination
with the original software author for confirmation and resolution.
We were unable to contact the author after multiple attempts.

3) easyconf: The easyconf binary is a third-party binary
that to enables remote configuration of the router. It contains
a command injection vulnerability similar to that found in
admin.cgi. We discovered it using the same specification,
by detecting a flow from sprintf to system through an
attacker-controllable string.

4) cm.cgi: The cm.cgi allows remote configuration of
wireless network settings. A common convention for CGI bina-
ries in embedded devices is to read input through environment

variables. A buffer overflow vulnerability was discovered in
cm.cgi by modifying the buffer overflow specification of
pathload2, replacing the source of input from recv to
getenv. This revealed a buffer overflow vulnerability resulting
from a string passed through the QUERY_STRING HTTP
parameter that overflows in strcpy.

5) Lighttpd: Lighttpd is a popular, high performance
webserver that runs on embedded devices and servers alike.
We discovered a vulnerability in lighttpd resulting from
unchecked return values. Although not all instances are ex-
ploitable, Saluki reports 75 flaws where calloc is unchecked.
Our detection and disclosure of these issues prompted the
Lighttpd maintainers to perform checking of over calloc
call sites.8

Disclosure: We have responsibly disclosed all vulnerabil-
ities. Two vulnerability discoveries remain unresolved. For
easyconf, the vendors acknowledged the receipt of this
issue, but have not responded to further follow-up queries.As
mentioned, the author of pathload2 could not be contacted.
For cm.cgi, receipt of our reports were not acknowledged
after multiple attempts to make contact.

D. Controlled Experiment Case Study: C++ binaries and SQL
Injection

C++ compiled binaries present significant challenges to
static binary analysis. Vtables and object references add an
additional layer of complexity that makes complete CFG
recovery and alias analysis difficult. The design choices in
§III allow us to analyze security properties in localized areas
that works in the presence of partial CFG recovery and without
performing a direct alias analysis.

We investigated two additional SQL injection CVEs
reported in a media server COTS product. 9 The report
names two vulnerable CGI binaries, watchstatus.cgi
and audiotrack.cgi. Saluki detects three cases of SQL
injection in the shared library that map to both CVEs with a

8Commit 566cf.
9https://packetstormsecurity.com/files/133519/Synology-Video-Station-1.5-

0757-Command-Injection-SQL-Injection.html

8

https://github.com/lighttpd/lighttpd1.4/commit/566cf8decbd63d921e914041d5d7940314ef2f1c

single specification. The specification is listed in Appendix C6.
This specification generated false positive. We investigated
the false positive and found that it is due to an internal
constant string being appended. For true positives, the string
being appended is an unbound variable in the function. We
demonstrate this example as a validation that (a) can cope with
C++ compiled binaries, (b) can be adapted according to check
that certain property invariants hold (a SQL string should not be
appended using append), and (c) works on a realistic binary
intended to evaluate vulnerability detection.

E. Controlled Experiment Case Study: Heartbleed

We demonstrate that Saluki works on large, real-world
programs by finding the Heartbleed vulnerability in OpenSSL
(378,691 source LOCs). Recall that the root cause of the
Heartbleed vulnerability is a missing bounds check on the
length argument payload passed to memcpy (line 23 in
Listing 5). The attacker-controlled payload can be exploited
to leak 64KB of memory to the client.�
1 // ssl/d1_both.c
2 int dtls1_process_heartbeat(SSL *s) {
3 unsigned char *p = &s->s3->rrec.data[0];
4 unsigned short hbtype;
5 unsigned int payload;
6 ...
7 /* Read type and payload length first */
8 hbtype = *p++;
9 n2s(p, payload);
10 + if (1 + 2 + payload + 16 > s->s3->rrec.length)
11 + return 0; /* silently discard per RFC 6520 sec.4*/
12 pl = p;
13 ...
14 if (hbtype == TLS1_HB_REQUEST){
15 unsigned char *buffer, *bp;
16 int r;
17 ...
18 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
19 bp = buffer;
20 ...
21 memcpy(bp, pl, payload);
22 ...
23 r = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT,
24 buffer, 3 + payload + padding);
25 ...
26 }
27 ...
28 }� �

Listing 5: The Heartbleed Vulnerability.

Statically detecting the Heartbleed vulnerability poses a chal-
lenge because it is hard to determine information flow from
the original source in the presence of indirect control flow
due to function pointers. Source-based approaches infer the
n2s macro on line 10 as an input source [40]. The macro is
replaced with instructions in the binary code, which mean we
can’t make use of the inferred source as an API call in a Saluki
specification. We note that automatic inference of sources is
an interesting research direction that couples well with Saluki.
Unfortunately, current approaches have limited applicability for
binaries. We leave this topic as a point of future work.

We use a systematic approach that is both checkable by
Saluki and overcomes the limitations above. We use the fact
that the first basic block contains local registers (including
the stack and offsets) that are initially free (unbound). The
intuition is that these free variables correspond to variables and
arguments in source code. We seed taint these free variables
in the IR for all functions in OpenSSL using µflux and

make use of Saluki’s built-in predicate to check whether
there is a flow from any tainted free variable to the third
argument of memcpy without a check (Specification C9).
The check finds exactly the two violations due to Heart-
bleed: one in function dtls1_process_heartbeat and one in
tls1_process_heartbeat. Note that the Heartbleed fix inserts
an essential conditional check on payload (lines 11 and 12).
We also confirmed that the fix introduces code satisfying the
constraint in the Saluki specification, i.e., Saluki does not report
an error for the patched binary (as desired).

Limitations: Table I shows low coverage for OpenSSL using
µflux. This is due to bounded execution and lack of complete
CFG recovery. The implication is that not all of the information
flows to memcpy’s in OpenSSL are covered. Additionally, the
ratio of data dependence facts to instructions is high due to
our principled (but generous) taint strategy. We observed 4
false positives due to overtainting, where tainted values flow to
memcpy calls that are not reachable. Many of the extracted data
dependence facts are unimportant to discovering Heartbleed,
but they do not produce overly noisy results with respect to the
specification. Our case study validates two important points:
Saluki scales to real programs and can express specifications
sufficient to find critical vulnerabilities like Heartbleed.

F. Controlled Experiment Discussion

We also analyzed known vulnerabilities in the Linux Kernel
(CVE-2013-4513) and Pidgin, a chat client (CVE-2013-6482).

Linux Kernel: Saluki has support to check compiled kernel
modules. Compiled kernel modules add complexity to static
binary analysis by requiring recovery of relocatable symbols
and fixing branch targets. We used Saluki to find a kernel buffer
overflow in the ozwpan module due to an absent bounds check
on the third argument to copy_from_user. The specification
is the same as Heartbleed, but with copy_from_user as the
sensitive sink.

Pidgin: The CVE-2013-6482 vulnerability in Pidgin con-
tains a vulnerability where NULL may be passed to atoi
from an attacker-controlled API function. In the libmsn.so
binary, atoi is compiled to strtol. Specification C7 finds
the vulnerability.

C++: Saluki can cope with C++ compiled binaries and can
successfully track taint values to detect known vulnerabilities.
One challenge with out-of-box C++ support is modeling
C++ APIs and compiler ABIs. For example, to find known
vulnerabilities in C++, we needed to model (a) that the
std::swap function propagates tainted to (b) particular
registers not modeled in the default ARM ABI. We note that
future improvements to ABI and API promise to benefit C++
support.

Note that Table I shows that non-deterministic (flood)
execution mode is successful in finding all of the vulnerabilities,
whereas deterministic mode found vulnerabilities in four cases.
One threat to validity is that we achieved low coverage
for these binaries. However, low coverage may also be due
to specifications that only match and execute terms in leaf
functions (e.g., ozwpan.ko).

9

G. Speed and Coverage

We performed several experiments to characterize the speed
and coverage of Saluki.

Speed: Table I summarizes the times to analyze vulnerable
binaries. Most binaries finish under 100 seconds except for
OpenSSL.To determine the speed of µflux more generally,
we ran a benchmark over 100 Coreutil binaries. We bounded
execution to 10 million IR basic blocks, and initiated execution
from each function entry point. The average time of execution
per binary is 54 seconds. The time for each binary is shown
in Figure 5.

In total, our Coreutils benchmark evaluated roughly 1.5
billion IR instructions in under 82 minutes. This allows us to
emulate roughly 320K IR instructions per second with µflux.
Though desirable, it is difficult to compare µflux to the MicroX
implementation [20], a conceptually similar technique which
also enable execution from arbitrary program points. Two main
caveats hinder a direct comparison. First, MicroX uses dynamic
library instrumentation to execute native x86 instructions, while
Saluki implements an IR interpreter (i.e., one x86 instruction
may correspond to many IR instructions). Second, MicroX tests
on different hardware and targets the x86 ntdll.dll binary,
while we benchmarked against ARM Coreutils.

Keeping these caveats in mind, we note the MicroX paper
achieves roughly 184 instructions per second (taking the
number of tests executed times the maximum number of
unique instructions as an upper bound), and 127 instructions
average across all tests (based on a one minute timeout for
each test). Even with conservative approximations of tens of IR
instructions per native instruction, our benchmarks are a positive
indication that Saluki is fast, with large potential speedup over
existing implementations for executing on realistic binaries.

Coverage: Saluki achieves an average statement coverage
of 79% over all vulnerable binaries using µflux in non-
deterministic mode. In this mode, greater coverage allows µflux
to recover more data dependency facts. In our experiments,
activating non-deterministic mode (fl. flood coverage in Table I)
allows Saluki to discover six vulnerabilities (shaded in Table I)
that deterministic (det coverage) mode cannot.

In our Coreutils benchmark, Saluki achieves 96% statement
coverage on the lifted IR averaged over all binaries. Figure 5, in
the Appendix,summarizes the benchmark. Binaries which did
not achieve 100% coverage occurs when execution is unable to
proceed past a loop with the given execution bound (10 loops
by default).

VII. RELATED WORK

Taint analysis [33] is a general technique for propagating
dataflow information. Shankar et. al. [35] perform a static taint
analysis to detect format string vulnerabilities. Our approach
for resolving data dependency in this paper is µflux. µflux
relates to MicroX [20], a runtime VM for testing purposes.
MicroX is a VM for performing dynamic execution from a
user-specified function or code location. We differ from MicroX
by performing evaluation on the IR of the program, and do not
require a native runtime environment to simulate the dynamic
behavior of the program. This allows us to seamlessly reuse
security property specifications for multiple architectures (ARM,
x86, etc.).

Many static analysis techniques have been used for finding
security issues in programs. Query language approaches relate
closely to the specification aspect of Saluki. Source-based
approaches (e.g., by Yamaguchi et al. [39, 40], and tools such
as PQL [26, 28, 29] and Pidgin [24] use taint-style patterns
to find vulnerabilities. In general, binaries present unique
challenges where we cannot exploit knowledge of source-level
constructs (e.g., macros and objects). We adapt to the challenge
by reasoning exclusively over the semantics of binary code
to generate data dependence facts, combined with a formal
model to find vulnerabilities. Automatic inference (as in [40]
is a promising avenue that could be used in conjunction with
Saluki to automatically inferring vulnerability specifications).
Metal [18, 22] uses rule templates for finding defects in source
code; in this context, Saluki specifications also performs user-
supplied assertion checks, but for binary code. Cova et. al. [15]
present a taint-based symbolic execution technique to find taint-
style vulnerabilities for binaries. However, this work lacks a
formal approach to modeling vulnerabilities and cannot describe
vulnerabilities using reusable specifications.

Model checking tools and techniques [14, 19, 30] such
as MOPS [12, 34] and SLAM [5, 6] verify temporal safety
properties of programs. Saluki can be seen as taking a model
checking approach which elides the need for traditional model
checking connectives by introducing the single data dependence
relation. Dynamic techniques such as concolic execution [21]
and fuzzing [31] are effective at finding vulnerabilities, but
are restricted to analyzing the paths observed during runtime
execution. Although we presented a static analysis, we envision
dynamic techniques as complementary to our approach. For
one, we can refine the data dependency model in Saluki based
on execution traces and dynamic coverage.

VIII. CONCLUSION

We introduced Saluki, a new tool for checking taint-style
(data dependence) security properties in binary code. Saluki
comprises (a) a novel logic system and property language to
express security properties and (b) a new technique called µflux
for extracting path- and context-sensitive data dependencies.
A user-supplied specification drives a decidable analysis over
the program model that outputs a proof of property violations.
Our specifications describe a number of CWEs demonstrating
the practical value of our approach. We used Saluki to find
known vulnerabilities in the Linux Kernel, OpenSSL, and
C++ compiled binaries, as well as five 0-day vulnerabilities in
COTS binaries. Our results suggest that Saluki can be applied
effectively toward vulnerability discovery. A further promising
avenue for future work is to evaluate the benefits of different
backend analyses for generating data dependence facts under
Saluki.

ACKNOWLEDGMENTS

This work was supported by the Institute for Information
and communications Technology Promotion (ITTP) grant
funded by the Korea government (MSIT) (No.2015-0-00565,
Development of Vulnerability Discovery Technologies for IoT
Software Security) and in part by DARPA under grant number
N66001-13-2-4040. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the view of our sponsors.

10

REFERENCES

[1] “Binary Analysis Platform,” https://github.com/
BinaryAnalysisPlatform/bap, 2016, online; accessed 7
April 2016.

[2] “Coreutils - GNU core utilities,” http://www.gnu.org/
software/coreutils/coreutils.html, 2016, online; accessed
16 February 2016.

[3] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley,
“Enhancing Symbolic Execution with {Veritesting},” in
International Conference on Software Engineering, New
York, New York, USA, 2014, pp. 1083–1094.

[4] G. Balakrishnan and T. Reps, “WYSINWYX: What You
See Is Not What You Execute,” ACM Transactions on
Programming Languages and Systems, no. 6, pp. 1–84,
2010.

[5] T. Ball, V. Levin, and S. K. Rajamani, “A Decade of
Software Model Checking with SLAM,” Communications
of the ACM, vol. 54, no. 7, p. 68, 2011.

[6] T. Ball and S. K. Rajamani, “The SLAM Project: Debug-
ging System Software via Static Analysis,” in Symposium
on Principles of Programming Languages, 2002, pp. 1–3.

[7] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“ByteWeight: Learning to Recognize Functions in Binary
Code,” in USENIX Security Symposium, 2014, pp. 845–
860.

[8] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “A taint
based approach for smart fuzzing,” IEEE International
Conference on Software Testing, Verification and Valida-
tion, pp. 818–825, 2012.

[9] E. Bounimova, P. Godefroid, and D. Molnar, “Billions
and Billions of Constraints: Whitebox Fuzz Testing in
Production,” Microsoft MSR-TR-2012-55, Tech. Rep.,
2012.

[10] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz,
“{BAP}: A Binary Analysis Platform,” in International
Conference on Computer Aided Verification, 2011, pp.
463–469.

[11] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Un-
leashing Mayhem on Binary Code,” in IEEE Symposium
on Security and Privacy, 2012, pp. 380–394.

[12] H. Chen and D. Wagner, “MOPS: An Infrastructure for
Examining Security Properties of Software,” in ACM
Conference on Computer and Communications Security,
2002, pp. 235–244.

[13] V. Chipounov, V. Kuznetsov, and G. Candea, “{S2E}:
A Platform for In-Vivo Multi-Path Analysis of Software
Systems,” in International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2011, pp. 265–278.

[14] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model
checking: algorithmic verification and debugging,” Com-
munications of the ACM, vol. 52, no. 11, pp. 74–84, 2009.

[15] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static
Detection of Vulnerabilities in x86 Executables,” IEEE
Annual Computer Security Applications Conference, pp.
269–278, 2006.

[16] J. Dahse, G. Horst, and T. Holz, “Simulation of Built-
in PHP Features for Precise Static Code Analysis,” in
Proceedings of the Network and Distributed System
Security Symposium, 2014, pp. 23–26.

[17] D. E. Denning and P. J. Denning, “Certification of

programs for secure information flow,” Communications
of the ACM, vol. 20, no. 7, pp. 504–513, 1977.

[18] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking
System Rules Using System-Specific Programmer-Written
Compiler Extensions,” in USENIX Symposium on Operat-
ing Systems Design and Implementation, 2000.

[19] P. Godefroid and N. Klarlund, “Software Model Checking:
Searching for computations in the abstract or the concrete,”
Integrated Formal Methods, 2005.

[20] P. Godefroid, “Micro execution,” International Conference
on Software Engineering, pp. 539–549, 2014.

[21] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE:
Whitebox Fuzzing for Security Testing,” Communications
of the ACM, vol. 55, no. 3, pp. 40–44, 2012.

[22] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system
and language for building system-specific, static analyses,”
ACM SIGPLAN Notices, vol. 37, no. 5, p. 69, 2002.

[23] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos,
“Dowsing for Overflows: A Guided Fuzzer to Find Buffer
Boundary Violations,” in USENIX Security Symposium,
2013.

[24] A. Johnson, L. Waye, S. Moore, and S. Chong, “Ex-
ploring and enforcing security guarantees via program
dependence graphs,” Programming Language Design and
Implementation, pp. 291–302, 2015.

[25] N. Jovanovic, C. Kruegel, and E. Kirda, “Static analysis
for detecting taint-style vulnerabilities in web applications,”
Journal of Computer Security, vol. 18, no. 5, pp. 861–907,
2010.

[26] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin,
D. Avots, M. Carbin, and C. Unkel, “Context-sensitive
Program Analysis as Database Queries,” ACM Symposium
on Principles of Database Systems, pp. 1–12, 2005.

[27] W. Landi, “Undecidability of Static Analysis,” ACM
Letters on Programming Languages and Systems, vol. 1,
no. 4, pp. 323–337, dec 1992.

[28] V. B. Livshits and M. S. Lam, “Finding Security Vul-
nerabilities in Java Applications with Static Analysis,” in
USENIX Security Symposium, 2005.

[29] M. Martin, B. Livshits, and M. S. Lam, “Finding appli-
cation errors and security flaws using PQL: a Program
Query Language,” in ACM SIGPLAN Notices, vol. 40,
no. 10, 2005, p. 365.

[30] M. Musuvathi, D. Park, and A. Chou, “CMC: A pragmatic
approach to model checking real code,” 2002.

[31] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren,
G. Grieco, and D. Brumley, “Optimizing Seed Selection
for Fuzzing,” in USENIX Security Symposium, 2014, pp.
861–875.

[32] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld,
“Explicit secrecy: A policy for taint tracking,” in 2016
IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2016, pp. 15–30.

[33] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You
Ever Wanted to Know about Dynamic Taint Analysis
and Forward Symbolic Execution (but Might Have Been
Afraid to Ask),” in IEEE Symposium on Security and
Privacy, 2010, pp. 317–331.

[34] B. Schwarz, D. Wagner, J. Lin, G. Morrison, and J. West,
“Model Checking An Entire Linux Distribution for Secu-
rity Violations,” Annual Computer Security Applications
Conference, pp. 13–22, 2005.

11

https://github.com/BinaryAnalysisPlatform/bap
https://github.com/BinaryAnalysisPlatform/bap
http://www.gnu.org/software/coreutils/coreutils.html
http://www.gnu.org/software/coreutils/coreutils.html

[35] U. Shankar, Talwar Kunal, J. S. Foster, and D. Wagner,
“Detecting Format String Vulnerabilities with Type Quali-
fiers.” in USENIX Security Symposium, 2001.

[36] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna, “Sok: (state of) the art of
war: Offensive techniques in binary analysis,” in IEEE
Symposium on Security and Privacy, 2015.

[37] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna, “Driller : Augmenting Fuzzing Through Selective
Symbolic Execution,” pp. 21–24, 2016.

[38] J. Wilhelm and T.-c. Chiueh, “A Forced Sampled Ex-
ecution Approach to Kernel Rootkit Identification,” in
International Symposium on Recent Advances in Intrusion
Detection, 2007, pp. 219–235.

[39] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Model-
ing and Discovering Vulnerabilities with Code Property
Graphs,” in IEEE Symposium on Security and Privacy,
2014, pp. 590–604.

[40] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck,
“Automatic inference of search patterns for taint-style
vulnerabilities,” in IEEE Symposium on Security and
Privacy, 2015, pp. 797–812.

APPENDIX

A. Benchmark

B. Taint Propagation Rules

C. Vulnerability Specifications

A summary of the vulnerability specifications we used are
provided here, with associated CWE ID and description.

1) Specification 1: CWE-120: “Buffer Copy without Check-
ing Size of Input (‘Classic Buffer Overflow’)” with recv.�
prop recv_to_strcpy ::=
recv (_,*p,_,_), strcpy (_,*q) |- never
s.t. {q / p}� �

Listing 6: pathload2 specification

2) Specification 2: CWE-120: “Buffer Copy without Check-
ing Size of Input (‘Classic Buffer Overflow’)” with getenv.�
prop recv_to_strcpy ::=
p = getenv (_), strcpy (_,*q) |- never
s.t. {q / p}� �

Listing 7: cm.cgi specification

3) Specification 3: CWE-78: “Improper Neutralization of
Special Elements used in an OS Command (‘OS Command
Injection’).”�
prop recv_to_system ::=
sprintf (*p,_,_), system (*q) |- never
s.t. {q / p}� �

Listing 8: admin.cgi specification

4) Specification 4: CWE-252: “Unchecked Return Value.”�
prop calloc_maybe_checked ::=
p := calloc(_) |- when c jmp _
s.t. {c / p}� �

Listing 9: Lighttpd specification

5) Specification 5: CWE-337: “Predictable Seed in PRNG.”�
prop srand_seeded_with_time ::=
p := time(_), srand(q) |- never
s.t. {q / p}� �

Listing 10: admin.cgi specification

6) Specification 6: CWE-89:�
prop no_sql_appends_before_add_cond ::=
ZNSs6appendEPKcj(p,),
j__ZN15LibVideoStation7VideoDB11AddCondtionERKSs
|- never
s.t. {q / p}� �

Listing 11: No SQL appends before SQL create

Note that Listing 11 uses the mangled C++ names of methods
to verify the property with Saluki.10

7) Specification 7: CWE-676:�
prop no_check_on_strtol_from_source ::=
p = xmlnode_get_data (_),
strtol(q,_,_)
|- when c jmp _
s.t. {c / p, q /p}� �

Listing 12: No check when passing input to strtol

8) Specification 8: CWE-120:�
prop taint_to_memcpy_with_no_check ::=
p = _;
memcpy(_,_,q)
|- when c jmp _
s.t. {q / p, c / p, for all p that is tainted}� �

Listing 13: No bounds check on third argument of memcpy

9) Specification 9: CWE-120:�
prop taint_to_copy_from_user_with_no_check ::=
p = _;
copy_from_user(_,_,q)
|- when c jmp _
s.t. {q / p, c / p, for all p that is tainted}� �

Listing 14: No bounds check on third argument of memcpy

10Mangled C++ names may be demangled with the c++filt utility. E.g.,
_ZNSs6appendEPKcj produces std::basic_string<char, std::char_traits<char>,

std::allocator<char»::append(char const*, unsigned int)

12

(t |= p s. t. c)→ (t, t
′ |= p, p

′
s. t. c)

t, t
′ |= prop id , p` p′

s. t. c
(PROP)

t]〈p〉; G G |= c

t |= p s. t. c
(PATTS)

t]〈p〉; G t
′
]〈p〉; G

′

(t, t
′
)]〈p〉; G,G

′ (TERMS)
t]〈p〉; G

t]〈p, p′〉; G
(LHS-P)

t]〈p′〉; G

t]〈p, p′〉; G
(RHS-P)

(l, _, _, _, S, S′
)]〈v := v

′〉; (v
l
= S, v

′ l
= S

′
)
(DEF)

S = (_, _, _, ... , _)

(l, S, S
′
, _, _)]〈when v jmp v

′〉; (v
l
= S

′
, v

′ l
= S)

(JMP)

R1 = id ∨ ... ∨ Rn = id

(l, (R1, ... , Rn), _, _, _)]〈v0 := id(v1, ... , vm)〉; v
l
= arg(id, 0), ... , vm

l
= arg(id,m)

(SUB)

D(l
′
, R

′
, l, R) G(v)

l7→ R G(v
′
)

l′7→ R
′

G |= v
′
/v

(DEP)
G(v)

l7→ R P (P, l, R)

G |= P(v)
(PRE)

G(v)
l7→ >

G |= v
′
/v

(LHS)
G(v

′
)

l′7→ >
G |= v

′
/v

(RHS)
G(v)

l7→ >
G |= P(v)

(TOP)

()(v)
l7→ >

(NIL)
(R = R1) ∨ ... ∨ (R = Rm)

(v
l
= (R1, ... , Rm), G)(v)

l7→ R
(HD)

G(v)
l7→ R v 6= v

′

(v
l
= R

′
, G)(v)

l7→ R
(TL)

Fig. 4: The Saluki Inference Rules

 0

 100

[

ba
se

64

ba
se

na
meca

t
ch

co
n

ch
grp

ch
mod
ch

ow
n

ch
roo

t

ck
su

m
co

mm cp
cs

pli
t
da

te dd df dir du
ec

hoen
v

ex
pa

ndex
pr
fac

torfal
sefm

t
fol

d

gro
up

s
he

ad
ho

sti
d id

ins
tal

l
joi

n killlin
k ln

log
na

me ls

md5
su

m
mkd

ir
mkfi

fo

mkn
od

mkte
mpmv

nic
e nl

no
hu

p
np

roc

nu
mfm

t od
pa

ste

pa
thc

hk
pin

ky pr

pri
nte

nv
pri

ntf ptxpw
d

rea
dli

nk

rea
lpa

th rm
rm

dir

run
co

n
se

q

sh
a1

su
m

sh
a2

24
su

m

sh
a2

56
su

m

sh
a3

84
su

m

sh
a5

12
su

m
sh

redsh
uf
sle

epso
rt
sp

litsta
t

std
bu

f
stt

y
su

m
sy

nc tac tai
l
teetes

t

tim
eo

ut
tou

ch tr
tru

e

tru
nc

atetso
rt tty

un
am

e

un
ex

pa
ndun

iq
un

lin
k

up
tim

e
us

ersvd
ir wc

who
am

i
whoye

s
 0

 100

 200

 300

 400

 500

St
at

em
en

t C
ov

er
ag

e
(%

)
Tim

e (s)

Coreutil Binary

Time (s)
Statement Coverage (%)

Fig. 5: GNU Coreutils Benchmark

D. Proof System

We prove properties specified in the Saluki language using
a set of inference rules (see Figure 4). Given a program
P = (T ,D,P) and a property P , our goal is to prove that
the property holds for all possible combinations of terms,

∀t1 ...∀tm, T t1 ∧ ... ∧ T tm → t1, ... , tm |= P.

For each combination of terms we build a derivation tree.
If for some sequence of terms it is not possible to build the
tree, then we use this sequence as a constructive proof that
the property does not hold. To prove a property P named
id for a sequence of terms t, t′ we must build the derivation

a ; v load v from a
∗a := v store v at a
v 7→ t v is tainted by t

a ; v a 7→ t

v 7→ t
LOAD

∗a := v v 7→ t

a 7→ t
STORE

♦uv1 ; v2 v1 7→ t

v2 7→ t
UNOP

v1♦bv2 ; v3 v1 7→ t

v3 7→ t
LHS

v1♦bv2 ; v3 v2 7→ t

v3 7→ t
RHS

Fig. 6: A Taint Semantics for Concrete Evaluation

from t, t′ |= prop id , p` p′ s. t. c. We say that t, t′ proves
property id if it is possible to build the tree.

Property rule: The (prop) rule proves either that (1) t |=
p s. t. c doesn’t hold or (2) t, t′ |= p, p′ s. t. c holds. Both are
proved with the (patts) rule. The (patts) rule obligates
the solver to find a valuation G from all possible valuations of
t, denoted t]〈p〉 ; G, satisfying the constraint c.

Term rules: Rule (terms) corresponds to the
(comma-c) axiom, and obligates that valuations from
both terms should be taken into account. However, the rule
gives the solver freedom to choose the order of matching. A
pair of rules (lhs-p) and (rhs-p) directly corresponds to
the (comma-p) axiom.

Rules (def), (jmp), and (sub) define how terms
valuate the corresponding patterns. They are a straightforward
implementation of the corresponding axioms. There is no rule
for the never pattern, so it is impossible to build a derivation
for it.

Constraint rules: Rules (dep) and (pre) obligate the
solver to find bindings in valuation a G for which D and
P propositions hold, respectively.

The proposition G(v)
l7→ R is defined by rules (nil),

(hd), and (tl) which inducts over a list of bindings. These
rules are used to prove that constraints D and P are satisfied
(cf., rules (dep), (pre), (rhs),(lhs),(top)).

13

Correctness: The Completeness Theorem states that our
inference rules are consistent with a set of axioms that define
the language semantics. Our formalism lays the groundwork for
proving correctness properties. We provide an outline of proofs
for our formalism, but do not pursue them fully. Recall that
our objective is foremost to implement principled reasoning
and checking of data dependence facts.

Soundness Part: Soundness states that our inference rules
preserves the truth, i.e., that our system produces only tautolo-
gies.

Proof. The proof is an induction over the length of a derivation
tree. In the previous section we showed the relation of the
semantics to axioms. All of the base cases in our semantics
are a straightforward implementation of corresponding axioms.

Completeness Part: Completeness states that our inference
rules are consistent with a set of axioms that define the language

semantics. To prove completeness, we want to show that our
system produces not only tautologies, but all of the tautologies.

Proof Sketch. Our formalism lays the groundwork to show that
it is complete. However, proving completeness is a laborious
exercise that is typically done using a automated theorem
prover such as Coq. The proof may be sketched out as follows:
First assume that there exists a derivation of rules for which
a corresponding proposition does not hold. Then show that
by visiting each possible branch of the derivation tree we
reach a contradiction. A contradiction implies that our rules
are consistent. This step is very tedious as it must be done
for each possible derivation. We leave this as an exercise for
future work.

E. Coreutils Benchmark

Refer to Figure 5.

14

	Introduction
	Modeling and Checking Security Properties
	Saluki Operation
	Vulnerability Specifications

	Microflux
	Why Microflux?
	Microflux Design

	Saluki Logic System and Language
	Implementation
	Evaluation
	Experimental Setup
	Threat Model
	Zero-day Vulnerability Discoveries
	admin.cgi
	pathload2
	easyconf
	cm.cgi
	Lighttpd

	Controlled Experiment Case Study: C++ binaries and SQL Injection
	Controlled Experiment Case Study: Heartbleed
	Controlled Experiment Discussion
	Speed and Coverage

	Related Work
	Conclusion
	Appendix
	Benchmark
	Taint Propagation Rules
	Vulnerability Specifications
	Specification 1: CWE-120
	Specification 2: CWE-120
	Specification 3: CWE-78
	Specification 4: CWE-252
	Specification 5: CWE-337
	Specification 6: CWE-89
	Specification 7: CWE-676
	Specification 8: CWE-120
	Specification 9: CWE-120

	Proof System
	Coreutils Benchmark

