
PathMiner Powered Predictable Packet Processing

John Sonchack and Jonathan M. Smith
University of Pennsylvania

{ jsonch, jms }@cis.upenn.edu

Abstract—Performance advances have made software packet
processing a compelling alternative to hardware. However, soft-
ware still lacks the delay predictability of hardware, an important
property for security and quality of service. As a solution, we
introduce PathMiner, an analysis tool that automatically builds
performance models for software packet processors at the fine
granularity of per-packet execution times. PathMiner combines
symbolic execution and genetic algorithms in an iterative feed-
back loop to rapidly mine a packet processor binary for diverse
packets that invoke complex execution paths. With these packets,
PathMiner trains machine learning models that predict packet
execution times and paths based on raw packet header bytes. We
implement a prototype of PathMiner and test it by profiling
a software IP router. The evaluation shows that PathMiner’s
models predict delay with low error – for over 40% of packets
they predicted the router’s execution time to within 10 cycles.
Closer examination shows that PathMiner’s effectiveness is due
to higher execution path coverage than symbolic execution and
the capability to generate diverse training samples efficiently.
PathMiner takes an important step towards making it practical
to predict delay for any software packet processor.

I. INTRODUCTION

Over the past decade, the popularity of software packet
processing has grown alongside the desire for flexible and
programmable networks [10]. While the traditional downside
of software has been performance, closing the gap with hard-
ware has been an important ongoing effort for the networking
community [22], [1], [28].

As a result, overall performance of software packet pro-
cessors has increased to the point where they can meet the
throughput needs of high speed networks [8]. However, there
is another important but less addressed gap between hardware
and software, delay predictability: How long will a network
element spend processing a packet? Delay predictability,
especially at the tail, is critical for many applications. For ex-
ample, soft real-time systems [26], [19] need estimates of worst
case delays for scheduling; DoS defense systems [4] need to
identify execution paths that saturate compute resources of
network elements; and data center networks need to ensure
low tail latency [20] to optimize user experience.

With hardware packet processors it is simple to predict
delay because their data paths are designed to meet strict

? ?

Execution Tree
Exploration

Symbolic Execution Genetic Algorithms

Pa
th

C

on
st

ra
in

ts

Performance
Models

Ex
am

pl
e

Pa
ck

et
s Supervised

Learning
Path Guided

Packet Evolution

PathMiner
Packet Processor

Binary

Fig. 1. PathMiner mines packet processors for execution paths and sample
packets to train models.

timing deadlines, e.g., processing one packet per cycle [29],
[2], [15] to guarantee line rate. Unfortunately, there are no
such guarantees for software packet processors, not least of all
due to their complexity. Software is used for more advanced
functionality than hardware, e.g., routing instead of switching,
which will cause unpredictability even if we model commodity
servers perfectly and use real time operating systems [36].
Software packet processors follow the well-known rule [7] of
having exponentially many unique execution paths with respect
to program length. Latency varies greatly across execution
path, the selection of which can depend on a packet in complex
ways. For example, two packets that differ by only a single bit
in their IP headers can invoke significantly different execution
paths in a router if one packet has a valid IP header checksum
and the other does not.

All of this complexity makes it challenging to predict
delays, especially at the tail, for software packet processors.
Empirical profiling with random or pre-recorded packet traces
can estimate delays for some of the common execution paths,
but is unlikely to trigger those responsible for high delays.
Formal analysis techniques, such as symbolic execution, can
systematically search for longer execution paths but struggle
with complex control flows, e.g., that have many branch points.
Current formal approaches require manual effort to overcome
the challenge, such as code rewriting [37] and annotation [7],
or only work for applications built in specialized frameworks
that are amenable to analysis [32], [3]. This limits practicality
because operators are unlikely to modify source code, and
worse, commercial software is often distributed as binaries.

Introducing PathMiner. In this paper, we take a step towards
making delay predictability practical for any software packet
processor. We introduce PathMiner, a fully automated sys-
tem that analyzes a packet processor binary to build models of
it at the fine granularity of per-packet execution. The models

Workshop on Binary Analysis Research (BAR) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-1891562-50-9
https://dx.doi.org/10.14722/bar.2018.23020
www.ndss-symposium.org

predict execution paths and times using raw packet header
bytes as input features. They are potentially useful for many
applications. For example, a real time system [26] could use
the models for a more accurate estimate of tail latency in
networks with software packet processors, while a DoS defense
system [4] could use the models to identify execution paths that
consume many cycles and proactively rate limit packets that
are predicted to invoke those paths.

To build accurate models, PathMiner must find complex
execution paths in the binary and generate diverse training
samples that represent the range of possible packets that may
invoke those paths. PathMiner achieves these goals by
setting up a tight feedback loop between symbolic execution
(SE) and genetic algorithms (GAs) as shown in Figure 1.
PathMiner uses SE to search for feasible execution paths
with the input packet represented symbolically. Whenever SE
reaches a branch in the control flow that is too complex
for symbolic logic to solve efficiently, PathMiner turns
to GAs. Using the constraint formula, PathMiner derives
parameters for the GA that pressures it to generate packets
that reach the branch and then follow long execution paths.
These packets are fed back to the SE as seeds that provide
it with a skeleton of long paths beyond the branch, so it can
make progress without having to solve the complex symbolic
formula. Whenever SE identifies a complete execution path
through the binary, PathMiner uses the same GA technique
to generate randomized packets that invoke it; these packets
are labeled with execution time and path ID and used to train
models.

Prototype Implementation and Results. We implemented
a prototype of PathMiner using S2E [5], Pyevolve [25],
and Scikit [24]. The prototype includes a harness to analyze
the binaries of Click [22] packet processors.

We profiled a full IP router [22] for 12 hours using the
prototype and found that:

• PathMiner’s models predicted delay accurately
based on raw packet header bytes. They predicted
router execution times to within 10 cycles for over
40% of packets and had a median error of 0.

• PathMiner provided significantly higher coverage
than S2E by itself. It found over 4X more execution
paths and 50% higher execution times in the analysis.

• PathMiner’s models could also go beyond latency,
predicting which execution path the router would use
to process a packet with high accuracy and recall, .96
and .92.

II. BACKGROUND

A general tool for building ML models that predict packet
delays and execution paths of unmodified packet processor
binaries is clearly desirable. The core challenge is sampling
a diverse set of execution paths in the binary and efficiently
generating training packets that represent them. PathMiner
leverages two search-based binary analysis techniques to meet
this goal: symbolic execution and genetic algorithms. As we
describe in this section, each technique is powerful but has
limitations for discovering execution paths and generating
training packets.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Av
g

Ti
m

e
to

So

lv
e

Co
ns

tra
in

t (
se

co
nd

s)

Fig. 2. Average time spent in constraint solver per branch instruction, while
profiling the IP router with S2E.

A. Symbolic Execution (SE)

The key idea behind symbolic execution [21] is to execute a
program with symbolic inputs that can represent any values,
which allows an analysis engine to identify execution paths
that the program would take under different input values. The
program runs in a symbolic execution engine that acts as an
interpreter and represents program variables as formulas over
the symbolic values. As execution proceeds, the engine builds
an execution tree that represents feasible execution paths, i.e.,
those possible with some concrete input values. Each node in
the tree corresponds to executing a basic block of code and
stores a first-order path constraint formula that represents all
of the constraints the symbolic inputs must have met to reach
that point in the execution. Each edge represents a transition
between basic blocks. If the exit point of a basic block is a
conditional branch with operands that depend on the symbolic
input, the symbolic engine uses a constraint solver to determine
which branches are feasible based on the branch condition and
the constraint formula of the parent node. The symbolic engine
adds a child node for every feasible branch, with an updated
path constraint formula to account for the branch condition.

Execution Path Discovery. Symbolic execution can find
short execution paths quickly. However, its exploration rate
quickly asymptotes when it reaches longer paths. This biases
its overall discovery towards short paths. For example, in a 3
hour analysis of the IP router with the S2E SE engine, the
discovery rate drops from multiple paths per second to under
1 new path per hour. There are at least two underlying causes:
complex path constraints and path explosion.

First, as the SE engine reaches longer execution paths,
exploration slows because it spends more time in the constraint
solver. The number of the path constraints grows linearly with
execution path length, and the cost of solving a constraint
formula also grows at least linearly [14]. As Figure 2 shows,
after 2 hours of profiling an IP router with S2E, its constraint
solver (z3 [6], one of the most efficient solvers) spent multiple
seconds, on average, solving the constraint for each branch.

Second, the number of feasible paths through a program
grows exponentially with program size, and is often infinite,
e.g., due to unbounded loops [21]. This path explosion is
a well-known issue for SE and makes it difficult to find a
representative sample of long execution paths. The SE engine
does not have the time to evaluate every possible path, and

2

does not know which selection of branches will lead to the
long execution paths that the profiler seeks.

Training Sample Generation. The SMT solver generates
a concrete input that invokes each complete execution path,
in order to prove that the path is feasible. This provides one
training sample per path, but generating additional samples
with the SMT solver is expensive. It requires re-evaluating the
formula with additional constraints that explicitly disallow the
previous solutions. This is not efficient when a large number
of samples are required, e.g., for machine learning. Worst,
successive samples are often very similar to each other, as
solvers tend to search for satisfying assignments with as few
changes as possible, for performance.

B. Genetic Algorithms

Genetic Algorithms (GAs) [17] are a stochastic search tech-
nique inspired by evolutionary survival of the fittest princi-
ples. In a GA, solutions to a problem are encoded into a
chromosome. A fitness function maps a chromosome to a
score that measure its quality as a solution. A GA begins
with a population of randomly generated chromosomes, and
iteratively evolves the population to increase fitness. To evolve
the population, from a parent generation to a child generation,
the GA first selects pairs of fit chromosomes from the parent
generation. It mutates the selected chromosomes by replacing
parts of them with random values, with low probability. Fi-
nally, it applies a crossover operation to each chromosome pair,
which swaps some of their values. The resulting chromosomes
are optionally repaired with a custom function, to ensure
that they represent valid solutions, then placed into the next
generation. A GA evolves new generations until the population
converges with respect to fitness score.

GAs are appealing because they are unsupervised. The user
only needs to provide input on the “shape” of a solution and
how to score its quality. Additionally, GAs tend to converge
quickly, because the parts of chromosomes that lead to high
fitness scores in one generation are exponentially likely to
appear in the next [11]. These properties have led GA to be
used for NP-hard optimization problems in many fields.

Execution Path Discovery. GAs have been used to estimate
worst case execution time in real-time systems [27], [35], with
fitness functions that score high execution times positively.
This can be an effective way to identify a few long execution
paths. However, in the IP router, we found that GAs tended to
get stuck in longer than average paths that were easy to invoke
with random packets. The GAs converged on these paths and
their populations quickly lost diversity, which prevented them
from exploring other parts of the execution tree. For example,
paths for ARP processing, which were invoked for any packet
with an Ethernet type of 0x0806. GAs often converged on
the ARP paths, which prevented them from making progress
towards finding longer execution paths for processing IP
packets with valid checksums.

Training Sample Generation. Once a GA is locked into an
execution path, it can rapidly produce randomized inputs that
invoke the path by simply evolving additional generations. This
is faster than an SMT solver, and yeilds more diverse samples.

? ?

Complete Path Constraints

Packet Processor
Execution Tree

Symbolic Execution Engine

Supervised
Learning

Training
Packets

Latency
Predictor

Path
Predictor

Models

Stuck Node
Path

Constraints

Seed
Packets

Restricted
Genetic

Algorithm

Path Exploration

Model
Building

Restricted
Genetic

Algorithm
Restricted
Genetic

Algorithm

Restricted
Genetic

Algorithm
Restricted
Genetic

Algorithm

Fig. 3. Overview of PathMiner.

However, the challenge, which PathMiner addresses, is
getting the GA to converge on the desired execution path.

III. INTRODUCING PATHMINER

PathMiner is based on the observation that GAs and SE
have complementary search biases and sample generation
properties. SE can methodically search through the execution
tree of a packet processor to find representative paths, but
has difficulties finding long paths and efficiently generating
training examples. On the other hand, GAs can find long paths
and generate examples efficiently, but tend to get stuck in local
optima.

Figure 3 summarizes PathMiner’s architecture. The in-
put is a packet processor binary and the outputs are classifiers
that predict execution times and paths using the first 128 bytes
of a packet as categorical features.

PathMiner explores the execution tree using SE. Its SE
engine executes the binary with a symbolic packet as input.
Whenever it reaches a new node in the execution tree, it pushes
the path constraints of the new node to a queue for the GA
engine. The GA engine cycles through the path constraints
and uses each one to set up a path restricted GA. In each
GA, the chromosomes and objective function are customized
to pressure convergence on packets that invoke long execution
paths and satisfy the input path constraints.

PathMiner applies the GAs to two types of execution
nodes. First, execution nodes in parts of the tree where SE
has stopped making progress due to complex constraints.
PathMiner mines these nodes for seed packets that the SE
engine can execute concretely, i.e., without symbolic analysis.
This adds new nodes to unexplored parts of the execution tree
without invoking the expensive solver, since the concrete seeds
prove the feasibility of their execution paths.

PathMiner uses GA to mine packets that match leaf
nodes, which represent complete execution paths through the
packet processor, for model building. PathMiner labels these
packets with their execution path IDs and average execution
time, as determined by the SE engine and GA. It trains

3

Path Constraint
(Packet is IP) AND (has valid IP Checksum)

Chromosome
pkt[0]:pkt[11] = < any values >
pkt[12] = 0x08
pkt[13] = 0x00
pkt[14]:pkt[end] = < any values >

TABLE I. EXAMPLE OF A PATH CONSTRAINT AND THE GA
CHROMOSOME THAT PATHMINER GENERATES.

supervised ML models with the labeled packets and returns
the models.

A. Symbolic Execution Engine

PathMiner uses S2E [5] for symbolic execution. We chose
S2E because it had two important features. First, it supports
concrete execution, which lets it take advantage of the sample
packets generated by the GAs. Second, S2E supports sym-
bolic execution of binaries, which run in a QEMU VM with
symbolic extensions. We extended S2E with a custom plugin
to communicate with other components of PathMiner that
exports path constraints as they are discovered and imports
seed packets. We also configure S2E to timeout the constraint
solver after 10 seconds. When a timeout happens, S2E selects
a next branch by setting the packet to a random concrete value
and taking whichever branch it invokes.

B. Path-Restricted Genetic Algorithms

PathMiner uses GAs to generate packets that invoke long
execution paths and satisfy the constraint formulas of specific
nodes in the execution tree. The key is deriving a chromosome,
fitness function, and repair function from a specific constraint
formula to pressure a GA towards generating packets that
satisfy it.

Constraint-based Chromosome. PathMiner sets the chro-
mosome of each GA to restrict it to a search space that is
an over-approximation of the input constraint formula. The
chromosome prohibits the GA from setting any byte to a
value that make the packet unsatisfiable independent of any
other byte values. This greatly reduces the search space of the
GA because many execution paths in packet processors are
gated by specific values appearing in specific packet header
fields. Table I shows an example of a path constraint and the
corresponding chromosome that PathMiner produces. The
example constraint formula requires that a packet is a valid
IP packet, which requires that bytes 12 and 13 (the Ethernet
type field) are set to 0x08 and 0x00, and also that the IP
checksum is valid. The automatically generated chromosome
eliminates packets that do not have the correct Ethernet type,
but does not encode the more complex checksum constraint.

To compute the chromosome, PathMiner uses the Z3 [6]
SMT solver. For each possible value of each byte, it checks
whether the path constraint is still valid if a condition is
appended to it requiring the byte to be set to that value. The
generation is not expensive because each check is a small
incremental change to the input path constraint formula, whose
solution is cached in the solver.

Constraint-based Fitness. PathMiner uses a fitness func-
tion that captures the extent to which packets in the population
satisfy the constraint formula. Equation 1 shows the fitness
score in terms of the number of path constraints the packet
satisfies (S) and the average execution time for the packet (E).
The terms are normalized by the total number of constraints
(C) and the maximum execution time observed across all the
GAs so far (ˆmax(E)).

F =
S

C
+

E

ˆmax(E)
(1)

The first term pressures evolution towards packets that
satisfy the constraints. The second term biases it towards
packets that cause high execution times.

PathMiner checks if a packet satisfies the constraint
formula using a SMT solver (Z3 [6]) and, if it does not,
requests that the solver return a minimum unsatisfiable core,
or the smallest set of constraints that cannot be satisfied.

Constraint-based Repair. Finally, PathMiner also explic-
itly repairs some of the packets that do not satisfy the con-
straints. This has two purposes. First, it prevents unsatisfying
packets with long execution times from dominating the search.
Second, it seeds the GA with examples of packets that satisfy
complex constraints to accelerate convergence. PathMiner
only needs to repair a small fraction of the unsatisfying
packets (i.e. < 10%) because satisfying packets have high
fitness scores, which causes them to be highly represented in
subsequent generations.

Other Genetic Operators. PathMiner uses standard pa-
rameters for other genetic operators: a two point crossover,
tournament selector, and random replacement mutator. These
operators are widely used and more details can be found in
the literature [18], [13], [30].

C. Supervised Learning

PathMiner trains ML models with the packets that GAs
generate from complete execution paths. The models predict
the execution time and path for each packet, using the first 128
bytes of the packet as features. Currently, PathMiner trains
two types of models. First, a regression model that predicts
how long the packet processor will take to execute a packet,
in cycles. Second, a classification model that predicts which
execution path the packet processor will invoke for the packet.

The current prototype uses a random forest of decision
trees, with the number of trees fixed to 40. We chose the
random forest because of minimal tuning parameters and the
ability to handle packets as categorical data.

IV. PROFILING AN IP ROUTER

For a preliminary evaluation of PathMiner, we used it to
profile a canonical IP router implemented with Click [22].
Figure 4 shows a block diagram of the router. Each block
represents a Click module that is between 100 - 1200 lines
of C++ code and implements a different router function,
e.g., IP forwarding, ICMP processing, checksum validation,

4

FromDevice Classifier

ARPResponder

Paint

Strip

CheckIPHeader GetIPAddress

LookupIPRoute

DropBroadcasts CheckPaint

IPGWOptions

FixSrcIp DecIPTTL

IPFragmenter ArpQuerier

ToDevice

Fig. 4. Module-level control flow in the Click IP router.

Analysis System S2E PathMiner

Coverage Metric

Execution Paths (# Paths) 368 2122
Execution Tree Size (# Nodes) 18677 70630
Longest Path Found (# Cycles) 10109 14449
Branches Covered (# Branches Instructions) 335 4480

TABLE II. COVERAGE STATISTICS FOR CLICK IP ROUTER.

or ARP processing. There are hundreds of Click modules
and applications [23]. We chose the IP router because it
is a practical and widely used application that has complex
execution paths, such as for IP option processing, which have
proven difficult for symbolic execution to handle without code
annotations or modeling [7].

We ran a 12 hour analysis of the router with PathMiner,
set to generate 1000 model training packets for each discovered
execution path. As a baseline, we compared against a 12 hour
analysis with S2E, using the packets generated by its constraint
solver to train the same type of models that PathMiner
produces. For a testing set, we collected all of the paths found
by either profiler and used constrained GAs to produce 1000
new packets for each path.

The high level goal of was to understand how delay, i.e.,
execution time, varies across the router’s execution paths and
evaluate the models that PathMiner generated for predicting
it. We sought to answer two main questions:

• Does PathMiner achieve higher coverage than SE?
Can it find a tighter bound for worst-case delay?

• How accurately can PathMiner models predict de-
lays and execution paths?

Coverage. Table IV summarizes coverage statistics for the
PathMiner and S2E analyses. PathMiner discovered
5.76X more execution paths and covered 13.37X more branch
instructions in the control flow of the router.

PathMiner also found longer paths, which are important
to identify for DoS defense and scheduling in soft real-
time systems. PathMiner’s longest discovered path was for
processing a fragmented packet with ttl = 0 and multiple
options. As Table IV shows, it was nearly 50% higher than
the longest path that S2E discovered, which lacked the
ttl = 0 that caused expensive ICMP processing.

Predicting Delay. Figure 5 shows the distribution of error for
predicting execution times when the training and testing sets
included packets from mutually exclusive sets of paths. The

2000 1000 0 1000 2000
(Predicted - Observed) Cycle Count

0.000

0.005

0.010

0.015

0.020

Fr
ac

tio
n

of
 T

es
t P

ac
ke

ts

Symbolic
Median
PathMiner
Median
Symbolic
PathMiner

Fig. 5. Prediction error of PathMiner latency models for the IP router.

histogram summarizes 10 trials. In each trial, 100 execution
paths were withheld from the training data and only used for
testing.

PathMiner’s median error was 0 cycles. For 44.13%
of packets, it predicted execution time to within 10 cycles.
The distribution was unimodal and centered at 0, but skewed
towards overestimating cycle count. In comparison, S2E’s
error distribution was bimodal with a median error of 407.33
cycles. It only predicted the execution times of 0.59% of
packets to within 10 cycles. We discovered three factors that
made PathMiner more effective than S2E alone.

First, it had higher code and execution path coverage. As
Figure 6 shows, PathMiner found new execution paths at a
linear rate throughout the analysis because feedback from the
GAs continuously guided the SE to deeper execution paths
without requiring it to solve complex constraints. S2E by
itself, however, stalled after around 1.5 hours due to the issues
described in Section II.

Second, PathMiner also generated more training samples
throughout the analysis. Figure 7 shows that training samples
are important for accurate models, especially in combination
with high execution path coverage. Each point in Figure 7
represents 10 trials in which we measured absolute delay
prediction error for packets from 100 random execution paths,
using models trained with the first 400 - 1200 non-testing paths
that PathMiner discovered.

Third, PathMiner also generated more diverse training
samples for each path. Figure 8 plots the edit distance between
successively generated training packets for one execution path.
PathMiner’s training samples had much higher edit dis-
tances, indicating that they better represented the range of
possible packets that could invoke the execution path.

5

0 2 4 6 8 10 12
Analysis Runtime (Hours)

0

500

1000

1500

2000

Ex
ec

ut
io

n
Pa

th
s D

isc
ov

er
ed PathMiner

Symbolic Execution

Fig. 6. Execution path discovery rate for
PathMiner and S2E.

400 600 800 1000
Number of Training Execution Paths

50

100

150

200

M
ed

ia
n

Ab
so

lu
te

 E
rro

r (
Cy

cle
s)

10 samples
100 samples
1000 samples

Fig. 7. Delay prediction error as number of training
paths and samples per path varies.

0 200 400 600 800 1000
Sample Packet ID

0

20

40

60

80

100

120

Ed
it

Di
st

an
ce

 fr
om

 P
re

vi
ou

s P
ac

ke
t

PathMiner
Symbolic

Fig. 8. Diversity of generated training samples for
one execution path.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.5

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

of
 P

at
hs

Symbolic Execution
Symbolic Execution Avg.
PathMiner
PathMiner Avg.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.5

1.0

Fig. 9. Precision and Recall when predicting execution path.

Predicting Execution Path. Figure 9 shows that
PathMiner’s models are also effective at predicting the exact
execution path a packet will invoke, given it is a path that
the models have been trained on. The figure shows precision
and recall rates for predicting execution path based on packet
header values, when the models were trained with packets
from all discovered execution paths. PathMiner had an
average precision of 0.96 and recall of 0.92. It identified the
packets that belonged to most execution paths with perfect
precision and recall. In comparison, S2E models had an
average precision of 0.74 and a recall of 0.58.

V. DISCUSSION AND FUTURE WORK

Initial results with the PathMiner prototype are promising.
There are many interesting questions to address in future work.
In this section, we discuss three important topics of our active
research.

Classification Throughput. PathMiner’s models are based
on decision trees. We have not measured the throughput or
latency of these models with our current prototype. However,
performance should be high when using the appropriate plat-
forms. Previous work has demonstrated that decision trees
can be optimized for network traffic classification and sustain
throughputs of over 90 million packets per second on a single
commodity servers [33].

Networking Environments. PathMiner does not currently
profile the Linux kernel’s networking stack – it injects the
symbolic packets directly into the packet processing binary.

With the appropriate hooks in S2E, it is possible to inject
symbolic packets at a lower level, e.g., into a virtual ethernet
interface connected to the binary.

Related Work. Outside of the networking domain, there are
other systems that augment symbolic execution with other
complementary search heuristics [34], [12], [9], [16], [31].
These systems are designed for vulnerability finding; we have
not evaluated whether they are also useful for delay predictabil-
ity in software packet processors. PathMiner builds on all
of these systems by introducing the concept of using GAs to
efficiently generate randomized samples that match an SMT
constraint by carefully configuring its genetic operations.

PathMiner also demonstrates that GAs can also be used
to work around complex path constraints and increase the
depth to the execution tree. This is an orthogonal approach to
other recent systems that use GAs and SE, such as Driller [31].
The GAs in Driller fuzz small components of the program to
increase the breadth of the execution tree, rather than depth.

VI. CONCLUSION

PathMiner takes an important step towards reducing the
delay predictability gap between hardware and software packet
processors. It analyzes binaries to automatically generate
models of the execution times and paths that packets will
invoke in software packet processors. PathMiner combines
two powerful and complementary search techniques: symbolic
execution and genetic algorithms. Symbolic execution provides
a framework that allows PathMiner to methodically search
a packet processor’s execution paths, while customized genetic
algorithms accelerate the symbolic execution and generate
training data for building models. We evaluated PathMiner
by using it to profile a software IP router. It produced highly
predictive models and covered more execution paths than
symbolic execution, without requiring code annotation or other
user input. There are many use cases for PathMiner as
a networking tool. The preliminary results motivate further
exploration of its possible applications in both networking and
as a general tool for binary analysis.

Acknowledgements: We thank the anonymous reviewers
for their input on this paper. This research was partially
supported by NSF grant number 1406225 and ONR grant
number N00014-15-1-2006.

6

REFERENCES

[1] “Data plane development kit,” URL http://dpdk. org.
[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-

zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 99–110.

[3] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A NICE
way to test OpenFlow applications,” in Proc. Network System Design
and Implementation (NSDI), Apr. 2012.

[4] A. Chen, A. Sriraman, T. Vaidya, Y. Zhang, A. Haeberlen, B. T.
Loo, L. T. X. Phan, M. Sherr, C. Shields, and W. Zhou, “Dispersing
asymmetric ddos attacks with splitstack.” in HotNets, 2016, pp. 197–
203.

[5] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-
vivo multi-path analysis of software systems,” ACM SIGPLAN Notices,
vol. 46, no. 3, pp. 265–278, 2011.

[6] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” Tools and
Algorithms for the Construction and Analysis of Systems, pp. 337–340,
2008.

[7] M. Dobrescu and K. Argyraki, “Software dataplane verification,” Com-
munications of the ACM, vol. 58, no. 11, pp. 113–121, 2015.

[8] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: exploiting
parallelism to scale software routers,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles. ACM,
2009, pp. 15–28.

[9] W. Drewry and T. Ormandy, “Flayer: Exposing application internals.”
WOOT, vol. 7, pp. 1–9, 2007.

[10] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellec-
tual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[11] S. Forrest and M. Mitchell, “What makes a problem hard for a genetic
algorithm? some anomalous results and their explanation,” Machine
Learning, vol. 13, no. 2-3, pp. 285–319, 1993.

[12] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 2009, pp. 474–484.

[13] D. E. Goldberg, “Genetic algorithms in search, optimization, and
machine learning, 1989,” Reading: Addison-Wesley, 1989.

[14] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satisfiability
solvers,” Foundations of Artificial Intelligence, vol. 3, pp. 89–134, 2008.

[15] V. Gurevich, “Programmable data plane at ter-
abit speeds,” http://open-nfp.org/static/app/pdfs/
Sponsor-Lecture-Vladimir-Data-Plane-Acceleration-at-Terabit-Speeds.
pdf.

[16] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations.” in
USENIX Security Symposium, 2013, pp. 49–64.

[17] J. H. Holland, “Adaptation in natural and artificial systems. an in-
troductory analysis with application to biology, control, and artificial
intelligence,” Ann Arbor, MI: University of Michigan Press, 1975.

[18] ——, Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence.
MIT press, 1992.

[19] Q. Hou, C. Qiu, K. Mu, Q. Qi, and Y. Lu, “A cloud gaming system
based on nvidia grid gpu,” in Distributed Computing and Applications to
Business, Engineering and Science (DCABES), 2014 13th International
Symposium on. IEEE, 2014, pp. 73–77.

[20] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,” in
Proceedings of the Third ACM Symposium on Cloud Computing. ACM,
2012, p. 9.

[21] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[22] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug 2000.

[23] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, 2014, pp. 459–473.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learn-
ing Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[25] C. S. Perone, “Pyevolve: a python open-source framework for genetic
algorithms,” Acm Sigevolution, vol. 4, no. 1, pp. 12–20, 2009.

[26] L. T. X. Phan, “Real-time network function virtualization using timing
interfaces,” in International Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems, 2016.

[27] P. Puschner and R. Nossal, “Testing the results of static worst-case
execution-time analysis,” in Real-Time Systems Symposium, 1998. Pro-
ceedings. The 19th IEEE. IEEE, 1998, pp. 134–143.

[28] L. Rizzo and M. Landi, “Netmap: Memory Mapped Access to Network
Devices,” in Proc. ACM SIGCOMM, 2011.

[29] A. Sivaraman, M. Budiu, A. Cheung, C. Kim, S. Licking, G. Varghese+,
H. Balakrishnan, M. Alizadeh, and N. McKeown, “Packet transactions:
High-level programming for line-rate switches.”

[30] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” com-
puter, vol. 27, no. 6, pp. 17–26, 1994.

[31] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, 2016,
pp. 1–16.

[32] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet:
scalable symbolic execution for modern networks,” in Proceedings of
the 2016 conference on ACM SIGCOMM 2016 Conference. ACM,
2016, pp. 314–327.

[33] D. Tong, Y. R. Qu, and V. K. Prasanna, “High-throughput traffic clas-
sification on multi-core processors,” in 2014 IEEE 15th International
Conference on High Performance Switching and Routing (HPSR), July
2014, pp. 138–145.

[34] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,” in
Security and privacy (SP), 2010 IEEE symposium on. IEEE, 2010,
pp. 497–512.

[35] J. Wegener and F. Mueller, “A comparison of static analysis and
evolutionary testing for the verification of timing constraints,” Real-
Time Systems, vol. 21, no. 3, pp. 241–268, 2001.

[36] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. Phan, I. Lee, and
O. Sokolsky, “Rt-open stack: Cpu resource management for real-time
cloud computing,” in Cloud Computing (CLOUD), 2015 IEEE 8th
International Conference on. IEEE, 2015, pp. 179–186.

[37] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea, “A
formally verified nat,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. ACM, 2017, pp.
141–154.

7

