
Unifying Lightweight Blockchain Client
Implementations

Damian Gruber
NEC Laboratories Europe
damian.gruber@neclab.eu

Wenting Li
NEC Laboratories Europe

wenting.li@neclab.eu

Ghassan Karame
NEC Laboratories Europe
ghassan.karame@neclab.eu

Abstract—Lightweight clients are gaining increasing adoption
in existing blockchain deployments, owing to their reduced
resource consumption. There are currently a number of libraries
that implement lightweight clients (e.g., BIP37, Electrum, LES,
filter commitments). Notice that these libraries are intrinsically
different and require significant effort to be integrated across
blockchain platforms. Additionally, lightweight clients require
the cooperation of full nodes, which are expected to invest in
their computational (to run filters) and bandwidth resources in
order to serve lightweight clients. Existing blockchains however
offer no rewards for full nodes in exchange—which offers little
incentives for full nodes to correctly serve lightweight clients.

In this paper, we shed light on this problem and we show
that smart contracts provide a natural and fair environment to
deploy and provision filters for lightweight clients. Namely, we
propose a scheme, SmartLight, that enables the integration of
filters/libraries within smart contracts to support a wide range
of lightweight client instantiations. We show that SmartLight
can integrate payment routines to reward full nodes to serve
lightweight clients. SmartLight can be integrated without mod-
ifications in existing blockchains that support smart contracts.

I. INTRODUCTION

The massive success of Bitcoin has unveiled a truly
genuine breakthrough: the blockchain. The blockchain allows
transactions, and any other data, to be securely stored
and verified without the need for any centralized authority
and while scaling to a large number of nodes. As such,
the blockchain has fueled innovation in the last couple
of years, and a number of innovative applications have
already been devised by exploiting the secure and distributed
provisions of the blockchain. Examples include Ethereum [4],
Hyperledger [6], Ripple [9], and R3 [8], among others.

Most existing blockchains require considerable storage
and computing resources. For instance, a typical Ethereum
installation requires more than 30 GB of disk space, and
requires considerable time to download and locally index
blocks and transactions that are contained in the blockchain.
In addition to space usage, users need to verify the correctness
of broadcasted blocks and transactions in the network.

To enable the use of resource-constrained devices within
the blockchain, most platforms support a lightweight mode
of operation, where lightweight clients only need to download
and process a small part of the blockchain.

	0

	50000

	100000

	150000

	200000

	250000

01/2014 07/2014 01/2015 07/2015 01/2016 07/2016

Fu
ll	
No

de
s

Date

Fig. 1: Number of reachable full Bitcoin nodes between 01/2014 and
01/2017 [17], [18].

Currently, a number of libraries support various filters
in order to enhance clients’ privacy (e.g., Ethereum’s LES).
Those filters can be defined with a target false-positive rate in
an attempt to hide the addresses of lightweight clients. Clients
have to manually download these libraries and do not have
any flexibility in choosing their filter types. For instance, in
Ethereum, the LES library does not employ any filter, and
does therefore not offer any address privacy for lightweight
clients. In Bitcoin, only Bloom filters are supported. Notice
that the literature includes a number of alternative filters such
as speed-optimized Bloom filters [24], and Cuckoo filters [22].

In existing deployments, full nodes are required to filter,
process, and forward transactions corresponding to each client
without any reward/renumeration. This offers little (if any)
incentives for full nodes to support lightweight clients. We
argue that this is one of the reasons to explain the sharp
decrease in the numbers of full nodes in the network (cf.
Figure 1). Given that the interaction between lightweight and
full nodes is not recorded in the blockchain, it is also very
challenging to estimate the number of lightweight clients in the
system and to evaluate the quality of service that they witness.

In this paper, we shed light on this problem and we
propose a solution, SmartLight, that enables the integration of
filters/libraries within smart contracts to support a wide range
of lightweight client instantiations. SmartLight contracts are
constructed by lightweight clients and act as a broker service
between these clients and the full nodes. SmartLight enables
lightweight clients to rely on arbitrary filters and enables a fair
rewarding scheme to correct full nodes in exchange of their
service. We analyze the provisions of SmartLight, and evaluate
its feasibility and performance within the Ethereum framework.

II. LIGHTWEIGHT CLIENTS

Blockchains maintain an ever-growing ledger comprising of
blocks and transactions. We distinguish three different roles in
existing systems: miners or validators are nodes that participate

Workshop on Decentralized IoT Security and Standards (DISS) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-51-7
https://dx.doi.org/10.14722/diss.2018.23010
www.ndss-symposium.org

Protocol/Library Support for filters

Bitcoin

BIP 37 Supports Bloom filters for privacy
Download everything Results in perfect privacy
Electrum Reveal addresses, get UTXOs
Filter commitments Lightweight clients are presented with filters

Litecoin [7] BIP37 Supports Bloom filters for privacy
Dogecoin [2] BIP37 Supports Bloom filters for privacy
Ethereum LES No privacy

TABLE I: Overview of libraries for lightweight clients.

in the consensus routine to confirm blocks/transactions. Miners
are typically rewarded for participating in the validation
process (e.g., by receiving coinbase transactions [26]). Full
nodes are blockchain clients which maintain a complete copy
of the blockchain. These nodes do not have to participate in
the consensus (i.e., they do not mine) but verify the correctness
of each received block/transaction in the network and help
disseminating correct information within the blockchain. In
contrast to full nodes, lightweight clients do not download
and process the complete blockchain. Instead, they connect
to full nodes which only forward the transactions they request.
Notice that full nodes are not incentivized for this service. As
such, full nodes only have little incentives to (correctly) serve
lightweight clients. This could explain the reason why there are
currently millions of lightweight client installation, and only
6,000 full nodes that are reachable in the Bitcoin system [18].

Current blockchains offer a number of libraries to support
lightweight clients. Arguably, Bitcoin’s BIP37 [11] emerges
as the most widely used protocol. BIP37 allows lightweight
clients to insert their addresses into Bloom filters [19], which
are then outsourced to full nodes. Full nodes filter transactions
against the provided Bloom filters, and only forward matching
transactions to lightweight clients. Full nodes additionally
compute a compact proof, which allows lightweight clients
to verify the inclusion of relayed transactions within blocks.
This process is referred to as Simplified Payment Verification
(SPV) [26]. Since those filters correspond to clients, full nodes
need to process each transaction for each connected lightweight
client. Because Bloom filters only allow for approximate
membership queries, full nodes cannot directly learn the
addresses that a lightweight client inserted into a filter.

Electrum [3] adopts a significantly different approach.
Electrum lightweight clients rely on dedicated Electrum
servers, which index the blockchain. Electrum lightweight
clients can query those servers for unspent transaction outputs
(UTXOs) given their addresses. Here, Electrum servers learn
the clients’ addresses and their corresponding transactions and
balances—resulting in a lack of privacy towards those servers.
Filter commitments [16] emerge as another workable option
to support lightweight clients in Bitcoin. In this approach,
lightweight clients receive a filter of all transactions/addresses
included in a given block; lightweight clients then request the
block if the filter matches their addresses/transactions.

Ethereum [4] is expected to rely on the Light Ethereum
Subroutine (LES) [29] which allows lightweight clients to query
for their balances. Table I summarizes the provisions of libraries
for lightweight clients in a number of blockchain technologies.

Notice that each of these schemes (and possible
instantiations) requires a different protocol/library, which has to
be implemented and maintained by developers, and ultimately
downloaded and installed by lightweight clients. Owing to
this cumbersome process, blockchain systems typically do
not provide multiple lightweight client schemes. For instance,
apart from Bloom filters, one can rely on speed-optimized

Bloom filters [24], which reduce the amount of hash function
evaluations required, or using Cuckoo filters [22] which have
been proposed as a replacement for Bloom filters. Alternatively,
one can make use of Prefix filters [27] which only store strict
prefixes of elements. However, modifying the BIP37 protocol
to support any other filter in addition to Bloom filters entails
considerable implementation work.

Bloom and Cuckoo Filters: Bloom filters are equipped with
a set of k hash functions, which map into their bit array. For
inserting an element, the k hash functions are evaluated, and
the corresponding bits are set. To verify membership of an
element, the corresponding k positions are inspected. Notice
that optimized Bloom filters only differ in how they compute
the hash functions. On the other hand, Cuckoo filters maintain
an array of buckets, where each bucket can store up to 4
fingerprints. An element is inserted into a Cuckoo filter by
computing its fingerprint and inserting this fingerprint into any
of two possible buckets. If both buckets are full, an element is
evicted and has to be relocated. If this recursive procedure does
not terminate within a pre-defined number of steps, the filter
is considered full. The corresponding membership verification
procedure computes the fingerprint of the given element, and
searches both possible buckets for this fingerprint.

III. SMARTLIGHT

In this section, we present our solution, SmartLight. Before
describing our solution in detail, we start by outlining the
main intuition behind SmartLight.

A. System and Threat Model

We consider an open (i.e, public) blockchain platform that
supports Turing-complete scripting language to describe a
smart contract (e.g., Ethereum).

We assume that a lightweight client C wishes to join the
blockchain network without contributing in the consensus
process. More specifically, the client is interested in receiving
a subset of transactions without investing any resources to
receive or validate other transactions. For that purpose, C is
interested in connecting to a number T of full nodes and ask
them to forward his transactions of interest. This is practically
achieved in existing lightweight client implementations by
outsourcing a filter F which defines the condition upon which
a transaction should be forwarded to C. An efficient filter
requires compact storage space and quick lookup time. As
discussed earlier, a number of filters enforce false-positives
in order to conceal the actual transactions that C is interested
in receiving. To incentivize full nodes to perform this service,
we assume that C is willing to offer a small fee for up to T
full nodes that forward correct transactions matching C’s filter.

We assume that both the lightweight clients and the
full nodes are rational entities, e.g., see [13] for a similar
assumption. By rational, we mean that these entities will
only deviate from the protocol if such a strategy increases
their profit in the system. For instance, lightweight clients
are interested in receiving all the transactions that match
their filters while paying the minimum amount of fees in the
network. Likewise, full nodes are interested in acquiring fees
from lightweight clients e.g., while minimizing their invested
computational resource (i.e., without executing their filters), or
by optimizing their bandwidth (i.e., by selectively withholding
the transmission of transactions). Moreover, nodes might be

2

interested to profile lightweight clients/full nodes [12] by
associating IP addresses with blockchain account addresses.

We assume that malicious nodes are computationally bounded
and cannot control consensus in the network. For example, in
a Proof of Work-based consensus, we assume that these nodes
cannot control more than 33% of the computing power in the
network [23]. However, a resource-constrained adversary can
attempt to “eclipse” lightweight clients by compromising all
the full nodes that they connect to. By doing so, the adversary
is able to control the view of any given lightweight client, selec-
tively withhold the delivery of transactions and/or blocks [23].

B. Intuition & Overview

SmartLight builds upon smart contracts in the blockchain
in order to offer flexible, fair, and transparent support for
lightweight clients.

Recall that smart contracts refer to self-contained code that is
executed by all blockchain nodes. For example, Ethereum [28]
is a decentralized platform that enables the execution of arbitrary
applications (or contracts) on its blockchain. Owing to its sup-
port for a Turing-complete language, Ethereum offers an easy
means for developers to deploy their distributed applications in
the form of smart contracts. Interestingly, lightweight clients
rely on specific library implementations, and do not make use of
smart contracts. Namely, lightweight client support is currently
implemented outside the smart contracts paradigm.

In contrast to existing implementations of lightweight clients,
SmartLight allows users to invoke specially-crafted smart
contracts that orchestrate the interaction between lightweight
clients and the full nodes. By leveraging smart contracts,
SmartLight provides clients with full flexibility in terms of
the number of full nodes to contact, the lightweight client
protocol/library, and even the employed filter type. By doing
so, SmartLight can be integrated without modifications in
existing blockchains that support smart contracts.

If a lightweight client wishes support from full nodes, it
first implements a SmartLight contract. Such a contract can be
deployed in the blockchain by sending a transaction comprising
SmartLight’s payload. The payload consists of three routines: an
assignment routine, a filtering routine, and a payment routine.

Clearly, a solution that requires the outsourcing of transaction
filtering through smart contracts does not scale well with
the number of blockchain nodes if each node is expected to
execute all such contracts. This is why SmartLight relies on
an assignment routine, which restricts the set of full nodes
that are expected to execute the contract. For example, clients
can specify a set of whitelisted server account addresses or a
random prefix of account addresses. Full nodes that match the
assignment condition will establish a connection with the client
later on to provide filtering service. We show that malicious
full nodes cannot influence/abuse the assignment routine in
SmartLight to increase their advantage in the network.

In the filtering routine, SmartLight defines which transactions
the corresponding lightweight client is interested in. This
routine could comprise a filter, which accumulates the client’s
blockchain addresses while offering some privacy guarantees
(through false positives). Full nodes compare all incoming
transactions against the filtering routine and check if any of
the included addresses match the filter. This can be instantiated
with any space-efficient filter structure. Notice that SmartLight

can also be instantiated without any filter, or using filters that
feature 0% false-positives.

SmartLight further incorporates a routine to pay/reward
those full nodes (i.e., that satisfy the assignment routine)
which correctly filter the lightweight clients’ transactions. This
offers incentives for full nodes to execute only those contracts
to which they are assigned. Notice that this does not prevent
other full nodes from running the contract and forwarding
transactions to lightweight clients; this behavior will not be
however rewarded by the SmartLight contract.

Notice that full nodes can attempt to claim rewards
independently of whether they correctly executed the contract.
SmartLight prevents that misbehavior by allowing lightweight
clients to pay in exchange for every transaction that the full
nodes forward. To minimize communication overhead, rewards
for transactions are aggregated in batches. Alternatively,
SmartLight can incorporate payment routines in order to
ensure fair rewards to full nodes. By doing so, SmartLight
does not only incentivizes full nodes to correctly filter all
lightweight clients’ transactions, but also disincentivizes
lightweight clients from “free-riding” in the blockchain by
embedding the payment routines in the contract.

We show that SmartLight achieves these properties without
compromising the privacy of lightweight clients and/or
full nodes. Namely, SmartLight ensures that network layer
information (such as IP addresses) are only visible to those
nodes which share a given contract for forwarding transactions.

C. Protocol Specification

Recall that, in SmartLight, a lightweight client deploys
a contract in the blockchain which handles its interaction
with full nodes. This contract consists of three routines: an
assignment routine, a filtering routine, and a payment routine.

Assignment Routine: The assignment routine restricts the set
of full nodes that are expected to execute the rest of the contract
(and to filter transactions for the lightweight client). Clearly,
it is a desirable goal to prevent full nodes from influencing the
assignment process (e.g., to prevent Eclipse attacks on clients).

One plausible assignment approach is based on the combined
use of account and IP addresses (cf. Algorithm 1). Here, a full
node is assigned to a lightweight client if the last n bits of its
active account address match the corresponding bits set by the
client in the contract (see isAssigned()). Since we assume
an open Blockchain system, nodes can create different accounts
on the fly (i.e., Sybil attack [21]) to enforce their assignment
to a particular contract. This is exactly why the assignment
routine relies on IP addresses as a unique identifier of nodes;
such an approach ensures that any given IP address will get
a single assignment—irrespective of the number of accounts
held by the node. To maintain backwards compatibility
with Bitcoinj [1], SmartLight also incorporates a routine for
whitelisting; a full node can be allowed to serve a client if
it has been whitelisted by the client (see isAllowed()).

Once a full node whose account satisfies the assignment
condition agrees to provide the filtering service, it will reply
to the SmartLight contract with a transaction agree(). This
transaction includes its IP address encrypted by the client’s
public key, its account address, as well as a signature under

3

the claimed account.1 As we show later, this approach prevents
nodes to associate a given IP address to an account address;
the IP address can only be decrypted by the lightweight
client. Given the IP address, the lightweight client initiates
the connection to assigned nodes using an off-chain channel
to receive filtered transactions. We stress at this point that the
IP address of the lightweight client will only be visible to full
reachable nodes that match the assignment routine. Notice that
full nodes that are located behind a NAT (Network Address
Translation) can also provide reachable IP/port combination
addresses to the client in a similar way.

Filtering Routine: This routine defines which transactions
a full node should forward to the client. Specifically, it
implements a contains() predicate, which takes addresses
as arguments. Full nodes extract all addresses from a received
transaction and verify their membership using this procedure
by invoking the contract in local execution environment such
as EVM (Ethereum Virtual Machine). If any address in a
transaction matches, the transaction will be forwarded to the
client. Notice that there are different possibilities to implement
the membership verification procedure. For instance, this can be
realized through Bloom filters, optimized Bloom filters, Cuckoo
filters, or Prefix filters (or no filters at all). In Algorithm 2,
we show how to integrate Bloom filters within SmartLight.

Payment Routine: This routine specifies the rewarding
mechanism in exchange for the service of the full nodes. Such
a mechanism should achieve two goals. First, full nodes should
be able to claim rewards for their services (i.e., for filtering
the blockchain). Second, lightweight clients should only pay
in exchange for correct services.

One possible way to achieve this would be that lightweight
nodes reward each transaction that matches the membership
test, which is forwarded by the full nodes. Algorithm 1
implements such an approach. Here, the contract maintains
the client’s balance and allows the client to increase this
balance (through function addtoBalance()). The contract
further specifies a per-transaction reward, which determines
the amount of wei (10−18 ether) that a full node receives
per correctly relayed transaction. Clearly, the reward amount
depends on the filter type and the requested work. The higher
is the amount of execution effort to filter transactions, the
higher is the reward amount. Full nodes that do not agree
with the reward amount simply do not run the contract. This
offers considerable incentives for lightweight clients to set a
reasonable reward amount.

In this approach, whenever they receive a transaction from
full nodes, lightweight clients send back a signed commitment
which consists of a tuple ack= 〈sequence′,Account〉 if the
transaction matches the given filter and the SPV proof of the
transaction is correct. Here, sequence′ denotes the current total
number of received transactions, and Account refers to the full
node’s account address. At any point in time, full nodes can
present ack to the contract to trigger the claim() procedure.
The latter checks if ack is well-formed; if so, it issues a reward
for sequence′−sequence transactions where sequence is the
latest (highest) sequence number that the full node Account
has claimed from SmartLight. Consider the case where a full

1Recall that in Ethereum, the account address and the signature are part of
the standard protocol specification to validate the authenticity of the transaction
originator. Therefore, the smart contract just needs to verify sender’s account
address given the assignment condition and save the encrypted IP address to
the ledger.

Algorithm 1: SmartLight
Input : accountPrefix; // Prefix of the accounts as

assignment requirement
accountWL; // White list of accounts
balance; // Initially zero
servers; // Initially empty list
n; // # matching bits for assignment
lastSeqs; // Mapping: Accounts to sequence

numbers. Initially empty
pubKey; // Client’s public key
r; // Per-message reward in wei

Function addtoBalance()
balance += tx.value;

Function isAssigned(Account)
if Account∈accountWL then

return true;
n′← Number of trailing bits shared in Account and
accountPrefix ;

return n′≥n;
Function agree(EncpubKey(IP))

Account← tx.origin;
if isAssigned(Account);
then

servers←servers∪〈Account,EncpubKey(IP)〉;
lastSeqs[Account]←0;

Function claim(ack, sig)
Check sig for ack, using pubKey;
〈sequence′,Account〉←ack;
if Account∈servers;
then

sequence← lastSeqs[Account];
d←sequence′−sequence;
if d>0 && balance≥d∗r;
then

Send d∗r wei to tx.origin;
balance -= d∗r;
seq[Account]←sequence′;

Function contains(e)

Algorithm 2: Sketch of a SmartLight implementation of
a Bloom Filter.

Input :k; // Number of hash functions
filter; // Pre-populated filter (bit array)

Function contains(e)
for i = 0; i < k; i++ do

if filter[hi(e)] 6=1 then
return false;

return true;

node has forwarded N transactions to the client and received
N acknowledgments (i.e, ack1...ackN). To claim the reward
for the service of these N transactions, the full node submits
a claim() transaction that includes the last acknowledgment
ackN . Similarly, to reward the next N forwarded transactions,
full nodes only need to submit claim(ack2N).

Notice that this approach ensures that full nodes are rewarded
for every correct transaction that they forward. Whenever
the client fails to send ack for the received transaction, the
full nodes stop providing the filtering service. Moreover, this
approach allows full nodes claim the reward in batch—thus
reducing transaction fees as well as transaction storage overhead.
One can also envision the reliance of fair exchange proto-
cols [14], [25] within SmartLight to achieve fairness guarantees.

4

D. Security & Privacy Analysis

Security: We first consider a rational full node Af that wants
to increase its profits while minimizing his efforts of filtering
transactions. Since C will verify each received transaction before
providing an acknowledgement that can be used to claim the
reward, Af are incentivized to correctly execute the filter com-
putation in order to forward correct transactions. In this respect,
Sybil attacks constitute the only viable strategy for Af to maxi-
mize its profit in the system. Namely, Af can attempt to create
several account addresses that all match the assignment routine
in the hope of multiplying his revenues while filtering transac-
tions only once. SmartLight deters this strategy by relying on IP
address identifiers for nodes; this means that a rational adversary
would have to serve on a number of IP addresses in order to cre-
ate multiple identities in the network. More specifically, Smart-
Light prevents Sybil attacks based on IP address by letting the
lightweight client to initiate the connection to the regular node.
In this case, the adversary has to invest considerable resources
(e.g., subscribe multiple Internet service contracts, contaminate
WAN routers or run a Botnet) in order to obtain multiple
identities. We therefore argue that SmartLight achieves similar
security guarantees with respect to rational full nodes when
compared to existing lightweight client implementations—who
are also not immune against node compromise or Botnet attacks.

Notice that resource bounded full nodes cannot completely
monopolize all the connections to lightweight clients since they
cannot prevent other honest full nodes from committing to the
contract and serving C. Namely, as long as C is connected to
at least one honest node, the adversary is not able to eclipse
C. Recall that C can also have a predefined white list of full
nodes in the contract too.

With respect to security against rational lightweight clients,
the payment routine in SmartLight guarantees that the clients
pay for all the forwarded transactions. The payment routine
operates in a “pre-paid” mode. The clients first have to charge
the contract with sufficient credits, and the contract will
execute the reward distribution to the serving nodes. Since the
adversary cannot control the consensus of the network and
assuming that the majority of the blockchain network is honest,
the contract will follow the payment routine and the network
will finally reward any full nodes who present a valid ack token.
Since full nodes expect an authenticated acknowledgment
for each forwarded transaction, these nodes stop serving the
client if the client refuses to provide a valid acknowledgment.
Therefore, given N forwarded transactions, SmartLight ensures
that the regular nodes are credited for forwarding at least N−1
transactions—effectively capturing the worst case scenario
where the last forwarded transaction is not acknowledged by
the lightweight client (and the full node thus stops forwarding).

Privacy: We now show that SmartLight prevents curious
nodes from associating IP addresses of full nodes/lightweight
clients with their respective blockchain account addresses.

Recall that SmartLight relies on account address information
to perform node assignment and makes use of IP address infor-
mation to identify each full node in case a full node possesses
multiple qualified account addresses. A full node whose account
address matches the assignment submits an encrypted IP address
that can only be decrypted by the lightweight client (that will
use this info to establish the off-chain channel). If a full node
is not assigned according to the contract, it cannot learn the IP
address of the client; similarly, if a full node does not commit
to the filtering service, the lightweight client is not able to learn

Ether USD
Deploy client contract (Bloom) 0.033 0.36
Deploy client contract (Cuckoo) 0.050 0.54
Claim reward ≈ 0.001 0.01
Increase client balance 0.001 0.02

TABLE II: Evaluation in terms of entailed blockchain fees.

 0

 50

 100

 150

 60 3840 7680 15360

Ti
m

e
 (

m
s)

Filter size

Filter Lookup Time

Bloom Filter

Optimized Bloom Filter

Cuckoo Filter

Fig. 2: Evaluation: Lookup time w.r.t. filter size. We present mea-
surements for Bloom filters, optimized Bloom filters, and Cuckoo
filters.

any extra information about the full node. Moreover, to further
prevent the connected full nodes from learning the IP addresses
associated with their accounts, lightweight clients can establish
an off-chain channel via anonymizing networks, such as TOR
[20], to prevent the disclosure of their real IP addresses.

IV. IMPLEMENTATION & EVALUATION

A. Methodology

In order to evaluate the feasibility of our proposal, we
implemented SmartLight, instantiated with standard and
optimized Bloom filters, as well as Cuckoo filters, respectively.

SmartLight’ contracts were written in Solidity for the
Ethereum blockchain. In our implementation, we relied on the
Solidity realtime compiler [10], version 0.3.6. The experiments
were conducted with geth [5], version 1.4.18. In order to
translate gas into ether, we assume a price of 20 Gwei per unit
of gas. We further assume a price of 10.89 USD per ether. In
our evaluation for blockchain fees, the filters were initialized to
represent 120 elements. Our experimental setup for measuring
the runtime performance of the studied filters relies on an 8-core
machine (Intel Xeon CPU E3-1230 V2, 3.30 GHz), has 16 GiB
memory and an SSD. We implemented the filters in Java, and
configured them with a target false-positive rate of 0.01%. For
computing SPV proofs, we adapted the Bitcoinj [1] library,
version 0.15-SNAPSHOT. The dataset underlying our runtime
measurements consists of Bitcoin blocks 418.000 to 418.999,
which have been mined between June 26th, and July 2nd,
2016. We measure the costs incurred by SmartLight in terms
of entailed fees in the Ethereum blockchain. To this end, we
analyze the amount of gas (Ethereum’s unit for fees) consumed
for deploying SmartLight on the Ethereum blockchain, and for
interacting with the contract (i.e., costs resulting from sending
transactions to the contract). We also measure the (monetary)
costs a full node has to bear for executing the filtering routine,
depending on the filter type. Specifically, we measure the time
that a full node requires to perform membership verification of
the addresses appearing in all investigated transactions and to
compute the corresponding SPV proofs. Each data point in our
plots is averaged over 10 independent runs; where appropriate,
we also present the corresponding 95% confidence intervals.

5

 0.025

 0.03

 0.035

 60 3840 7680 15360

C
o
st

s
(C

e
n
ts

)

Filter size (# elements)

Bloom Filter

Optimized Bloom Filter

Cuckoo Filter

Fig. 3: Evaluation of costs in cents. We present measurements for
Bloom filters, optimized Bloom filters, and Cuckoo filters, and we
vary the number of elements inserted into the filters.

B. Evaluation

Contract deployment: Table II shows the costs in terms
of fees that lightweight clients have to pay for deploying
SmartLight contracts in Ethereum. We observe that SmartLight
with Bloom filters (0.36 USD) result in approximately 50%
lower blockchain fees, when compared to Cuckoo filters
(0.54 USD) . This results from the fact that the code for
Bloom filters is significantly smaller than that of Cuckoo filters.
Notice that the fees incurred by deploying speed-optimized
Bloom filters is almost equivalent to those for standard Bloom
filters (the code only differs in a few lines).

Contract Execution Time: Figure 2 depicts the address
membership verification time depending on the filter type
with respect to the number of addresses inserted within the
filter. Bloom filters require approximately 80 ms to verify
membership—irrespective of the filter size. Speed-optimized
Bloom filters are significantly faster for small filters since
they only evaluate a single hash function, instead of two hash
functions. Cuckoo filters allow for faster address membership
verifications, when compared to both standard and optimized
Bloom filters. Notice that, for Cuckoo filters, the membership
verification time does not depend on the filter size.

Executing assignment routine: Assignment does not result
in any blockchain fees since full nodes can execute the routine
locally – they do not need to send a transaction.

Executing filtering routine: Figure 3 depicts the costs for per-
forming membership verification of the addresses in the 1.000
blocks and to compute SPV proofs for matched transactions.
We estimated the costs of executing the filters by adapting the
costs of Amazon EC2 c3.2xlarge instances (0.248 USD per
hour [15]). Notice that transaction filtering does not result in any
blockchain fees. Again, full nodes can perform the computation
locally. We observe that for small filters (i.e., filters that contain
few elements), this process is cheaper with optimized Bloom
filters (0,0295 cents), when compared to standard Bloom
filters (0,035 cents). This is due to an additional performance
optimization which allows optimized Bloom filters to evaluate
a single hash function only. This is however not possible for
larger filters, where two hash function evaluations are necessary.
We further observe that Cuckoo filters (0,029 cents) outperform
the other studied filters. We finally point out that these costs are
orders of magnitude lower than the contract deployment costs.

Executing payment routine: Table II shows the costs associ-
ated with payment, namely for a client to increase its balance,
and for a full node to claim a reward. In both cases, the required
transactions cost approximately 1 cent. Our results suggest that
Cuckoo filter contract deployment cost more gas because of
their complexity, but incur less costs for transaction filtering.

V. OUTLOOK

In this paper, we proposed SmartLight, a solution that
enables the integration of filters/libraries within smart contracts
to support a wide range of lightweight client instantiations.
SmartLight can integrate rewarding mechanisms for full
nodes to serve lightweight clients. Our findings suggest that
SmartLight can be easily deployed without modifications
within smart contracts and can be instantiated with a multitude
of existing filters, such as Bloom or Cuckoo filters. SmartLight
can additionally capture various other lightweight client imple-
mentations, such as committed Bloom filters, among others.

We argue that SmartLight motivates the unification of various
existing lightweight client implementations under one umbrella
and transparently orchestrates/regulates the interaction between
lightweight clients and full nodes. SmartLight offers consid-
erable incentives for full nodes to correctly serve lightweight
clients by incorporating rewarding mechanisms. We therefore
hope that our findings motivate further research in this area.

REFERENCES

[1] “Bitcoinj – A library for working with Bitcoin,” https:
//github.com/bitcoinj/bitcoinj/.

[2] “Dogecoin,” http://dogecoin.com/.
[3] “Electrum Bitcoin Wallet,” https://electrum.org/.
[4] “Ethereum – Homestead Release,” https://www.ethereum.org/, accessed:

2016-11-25.
[5] “Ethereum Go client,” https://github.com/ethereum/go-ethereum/wiki/

geth.
[6] “Hyperledger – Blockchain Technologies for Business,”

https://www.hyperledger.org/.
[7] “Litecoin: Open source p2p digital currency,” https://litecoin.org/.
[8] “R3,” http://www.r3cev.com/.
[9] “Ripple,” https://ripple.com/.

[10] “Solidity realtime compiler,” https://ethereum.github.io/browser-solidity/.
[11] “Connection Bloom filtering,” https://github.com/bitcoin/bips/blob/

master/bip-0037.mediawiki, 2012.
[12] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,

“Evaluating user privacy in bitcoin,” in International Conference on
Financial Cryptography and Data Security. Springer, 2013, pp. 34–51.

[13] F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef, “Transparent
data deduplication in the cloud,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 886–900.

[14] N. Asokan, M. Schunter, and M. Waidner, “Optimistic protocols for
fair exchange,” in Proceedings of the 4th ACM conference on Computer
and communications security. ACM, 1997, pp. 7–17.

[15] A. W. S. (AWS), “EC2 Instance Pricing,” https://aws.amazon.com/ec2/
pricing/reserved-instances/pricing/, accessed: 2016-11-24.

[16] A. Back, “Bloom filtering, privacy,” https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2015-February/007500.html, 2015.

[17] BitcoinPulse, “Dynamic monitoring of bitcoin,” accessed: 2017-01-30.
[18] Bitnodes, “BGlobal Bitcoin Node Distribution,” https://bitnodes.21.co/,

accessed: 2017-02-15.
[19] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[20] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The

second-generation onion router,” in Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251375.1251396

[21] J. R. Douceur, “The sybil attack,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 251–260.

[22] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies. ACM, 2014, pp. 75–88.

6

[23] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering with
the delivery of blocks and transactions in bitcoin,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 692–705.

[24] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better bloom filter,” in European Symposium on Algorithms.
Springer, 2006, pp. 456–467.

[25] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Towards fairness of
cryptocurrency payments,” CoRR, vol. abs/1609.07256, 2016. [Online].
Available: http://arxiv.org/abs/1609.07256

[26] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[27] P. Todd, “Privacy and blockchain data,” https://lists.linuxfoundation.org/

pipermail/bitcoin-dev/2014-January/004019.html.
[28] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum Project Yellow Paper, 2014.
[29] F. Zsolt, “Light Ethereum Subprotocol (LES),” https://github.com/

zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-\%28LES\
%29, accessed on 2016-12-22.

7

