
Practical Runtime Attestation for Tiny IoT Devices

Stefan Hristozov∗, Johann Heyszl∗, Steffen Wagner∗ Georg Sigl†
∗Fraunhofer Institute for Applied and Integrated Security AISEC

Email: {stefan.hristozov, johann.heyszl, steffen.wagner}@aisec.fraunhofer.de
†Technical University of Munich

Email: sigl@tum.de

Abstract—One of the main challenges in IoT security is to
assure the integrity of the firmware running on a constrained
low-cost device. A solution to this challenge could be provided
by security service called attestation, where the device generates
an evidence about its firmware which is attested by a remote
verifier. How attestation evidence can be generated at boot time
on a tiny microcontroller was investigated in earlier work and
also specified by the TCG’s DICE specification. It is, however,
challenging to generate such attestation evidence during runtime,
where the device usually is prone to powerful attacks. Previous
contributions have attempted to solve this by using custom
hardware extensions of the CPU architecture. We, however,
present a method based on DICE to securely generate attestation
evidence at runtime using only standard CPU features like MPU,
privileged/unprivileged levels of execution and the required by
DICE boot ROM and lock mechanism. Precisely, we use the MPU
and privilege levels to effectively isolate the attestation firmware
and secrets from the remaining application. As a result, our
method can immediately be applied to a broad range of popular
microcontrollers. We provide a proof of concept implementation
for the Cortex-M4-based STM32L476 microcontroller.

I. Introduction

A key challenge in IoT security is the vulnerability of con-
strained microcontrollers against malicious modification of their
firmware. This can be a result of (1) reprogramming attacks
performed by an adversary with physical access to the device
or (2) remote attacks which use vulnerabilities in the software
implementation. A popular approach to mitigate such attacks
is a security service called attestation [5, 14]. Attestation doesn’t
provide protection against malicious firmware modification but
a way to verify that a device runs known firmware, i.e., it is
in a trusted state. By definition attestation is a process between
two parties: a prover (Prv) and a verifier (Vrf). In the context of
this work Prv is the resource constrained IoT device and Vrf
is some general more powerful device, e.g., server back-end.
From the prover’s perspective attestation consists of two steps:
(1) generation of an evidence about its trustworthiness and (2)
a secure protocol for conveying this evidence to the verifier.
In this paper we concentrate on the first part of the attestation
process – the generation of the attestation evidence, particularly
during runtime.

Previous research has shown that powerful security architec-
tures for low-end microcontrollers may be realized by using on-
chip hardware/software features. The most relevant are: SMART
[12], TrustLite [17], TyTAN [9], SPM [24] and Sancus [19]. On

the one hand they provide several security services one of which
is attestation but on the other they require non-standard on-
chip hardware like: custom bus access logic, additional CPU
instructions or special execution-aware MPU. It was also shown
[21, 13] that more simple features like a secret that can be
accessed after reset from a boot ROM and locked by hardware
afterwards may be sufficient to generate an attestation evidence
at boot time. This is also the approach that Device Identifier
Composition Engine (DICE) [4] from the Trusted Computing
Group (TCG) follows. An example for such lock mechanism is
the STM32 firewall [2]. The firewall can protect memory areas
to be read out from malicious software. Once a memory area
is locked by the firewall it can only be unlocked by reset.

DICE and all other methods, where the attestation evidence
is generated at boot time are vulnerable against an adversary
modifying the firmware at runtime after the evidence genera-
tion. We approach this problem by proposing a DICE based
hardware/software method for fresh evidence generation at
runtime, requiring only standard on-chip hardware. Additionally
to the required by DICE boot ROM and lock mechanism
our method requires only a standard Memory Protection Unit
(MPU) and privileged/unprivileged levels of execution and
doesn’t require e.g. external components like TPM [3], trusted
execution environments like TrustZone [1], or any on-chip non-
standard hardware features like shown in [12, 17, 9, 24, 19]. Its
main idea is to use a small, privileged, write-protected software
layer which handles access to secrets at runtime using the MPU
and can generate an attestation evidence at request from Vrf.
This method is especially targeted at inexpensive off-the-shelf
microcontrollers typically running at up to 200MHz, having up
to few hundred KBytes of on-chip RAM and up to 1MByte
of flash. We demonstrate that our approach is feasible and
practical for this class of devices by an implementation on the
STM32L476 which is an ARM Cortex-M4 microcontroller.

II. Related Work

In this section we give an overview over the most common
techniques for attestation evidence generation and the TCG’s
DICE.

A. Generating an Attestation Evidence

The attestation evidence is a block of data which provides
sufficient information to Vrf in order to decide whether Prv
runs known and trusted software, i.e., Prv is in a trusted
state. In the most general case the attestation evidence is a
measurement generated by a cryptographic hash function over
the firmware of the device, or parts of it. In the following, we
give an overview over the most common methods of generating
attestation evidence, see also [5, 10]:

Workshop on Decentralized IoT Security and Standards (DISS) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-51-7
https://dx.doi.org/10.14722/diss.2018.23011
www.ndss-symposium.org



1) Standard-Hardware-Based: One of the most popular at-
testation methods uses a discrete co-processor called Trusted
Platform Module (TPM) [3]. TPMs are equipped with spe-
cial purpose registers called Platform Configuration Registers
(PCRs). PCRs cannot be overwritten but only extended by
hashing of software measurements together with the PCRs
previous values. The TPM can sign the PCRs with an attestation
private key in order to generate an attestation evidence.

Other standard-hardware-based methods use tightly inte-
grated trusted execution environments within the main ap-
plication processor. ARM TrustZone [1] is an example for
such execution environment. TrustZone provides two virtual
processors known as secure world and normal world. The
isolation between them is enforced by hardware. An example
how TrustZone may be used for attestation is given by Mi-
crosoft’s fTPM [20] where TrustZone is used for a firmware
TPM emulation.

Another trusted execution environment is Intel SGX [18].
SGX provides instruction and memory access features which
can be used to instantiate protected containers referred to as
enclaves. SGX has a built-in mechanism which uses special
instructions and processor extensions for attestation.

In this paper we provide an attestation method for low-
cost IoT devices, where a discrete TPM typically cannot be
used because of economic and power consumption reasons.
Even though ARM recently announced the ARMv8-M low-
end microcontroller architecture with support for TrustZone we
are not considering using such trusted execution environments
because the majority of microcontrollers available now and in
the future will still lack such hardware features.

2) Software-Based: Software-based methods use functions
with side channel information such as timing required for
certain operations. Any emulation of this functions leads to
significant overhead, which may be used to detect fraud, see
[23, 22]. Such methods are unsuitable for IoT applications
because they require a communication environment with precise
time behavior.

3) Hardware/Software-Based: As shown above, the standard-
hardware-based and the software-based techniques are not
suitable for low-end IoT applications. In order to overcome
their limitations several hardware/software techniques were
developed; the most relevant of which are:

SMART: SMART [12] is a dynamic root of trust architecture
for low-end devices, which is capable to generate an attestation
evidence at runtime. SMART uses custom hardware bus access
logic and hence, is not applicable for the currently available
of-the-shelf microcontrollers.

SPM/Sancus: SPM [24] and Sancus [19] present a security
architecture which provides isolation of software modules using
additional CPU instructions. This architecture allows very fine
grained task isolation, but has the obvious disadvantage, that
it requires modification of the processor’s instruction set in
hardware.

TrustLite/TyTAN: TrustLite [17] and its successor TyTAN
[9] provide flexible, hardware-enforced isolation of software
modules. This is achieved by using a dedicated Execution-Aware
Memory Protection Unit (EA-MPU) in hardware.

RIoT/DICE: The described hardware/software techniques
are powerful architectures. Compered to them, RIoT [13] and
DICE [4] are simpler. They propose a method for generating at-
testation evidence at boot time by requiring a secret value which
is accessed from a boot ROM and then locked. The feasibility of
DICE for off-the-shelf devices is already demonstrated in [16].
Another similar boot time attestation technique is presented
by Schulz et al. in [21]. All boot time methods are vulnerable
against adversaries, which can modify at run time the device’s
firmware after the evidence generation.

B. Boot Time Attestation with DICE

A device that implements the DICE [4] specification may
consist of n software layers L = {L0, L1, . . . , Ln−1} and
an Unique per Device Secret (UDS) which doesn’t change
during the lifetime of the device. The lowest layer L0 is placed
in ROM. After reset L0 reads the UDS and locks it using
a hardware feature e.g. a firewall, therefore UDS cannot be
accessed from firmware in the other layers. The layers are
executed sequentially starting from L0. Each layer Lm measures
the software of the next layer Lm+1 using a cryptographic hash
function h() in order to generate a digest Dm+1 of its binary.

Dm+1 = h(Lm+1) (1)

A deterministic one-way key derivation function KDF () is
used in order to generate a derived secret Km. The derived
secret Km is based on a measurement of the next layer Dm+1

and UDS or Km−1, see Eq. 2 and Fig. 1.

Km =

{
KDF (UDS,D1) for Km = K0

KDF (Km−1, Dm+1) for Km > K0
(2)

UDS
K1K0

D1 D2

L1 L2L0

Figure 1: Basic DICE structure

After all operations within a given layer Lm are executed,
the derived secret of the previous layer Km−1 and all its
artifacts in registers and RAM are deleted. Thus, it is obvious
that any modification of the firmware on any layer Lm except
L0, which is placed in ROM will lead to different measurement
Dm and different derived secret Km−1. This means that a
derived secret is suitable to be used as an attestation evidence
E.

III. Problem Statement

The firmware of a device that implements DICE or any
similar boot time attestation technique may be compromised
at runtime after the evidence E is generated. In this case the
adversary may access E and use it to attest the device. More-
over, the adversary may save E and a malicious firmware in
the non-volatile memory, which will cause a different evidence
E′ to be calculated at the next reboot. However, this would
be irrelevant because the adversary will use the stored E for
any further attestations. DICE provides no mechanism to detect

2



such a malicious modification of the device firmware, i.e., the
attestation evidence cannot be trusted.

A possible approach to handle such situations is to use
E once and then delete it. This approach requires the strong
assumption that the attestation happens just after power up,
thus the exposure of E is constrained. A bigger disadvantage
is that for a second attestation, a reboot is required and this is
unacceptable for the majority of real world applications.

Another approach which doesn’t require a reboot and is
currently state of the art is to update the firmware of all
devices with a new patched version when a vulnerability is
discovered. Then all devices must attest with a new Enew

which corresponds to the patched version. This approach has
two disadvantages: (1) a successful attack on an embedded
device does not necessarily manifest itself in a way that can
be recognized, and, (2) sufficient support for security patches
may be difficult because IoT devices are expected to be very
long-lived and inexpensive.

IV. Adversarial Model

Our proposed attestation method provides a mechanism to
detect malicious firmware modification caused by one of the
following adversary types:

1) Physical Adversary: A physical adversary has physical
access to the device and can perform simple reprogramming
attacks overwriting firmware layers excluding the boot layer
L0 and UDS , which are placed in ROM. Our method provides
no protection against a physical adversary who can debug the
device, readout its firmware or perform more powerful and
complex physical attacks.

2) Remote Adversary: A remote adversary can remotely mod-
ify the firmware of Prv residing in flash memory. For this
purpose, the remote adversary may use a memory corruption
vulnerability of the Prv at runtime to gain access over the
program execution and trigger permanent modification of the
flash memory.

V. Runtime Attestation

In this section we describe our runtime attestation method.

A. Overview

The overview of our method is structured as following:
first the main components that we use are described, then
the concept of privileged levels is introduced. We conclude the
overview with a brief description of our runtime attestation
method.

1) Main Components: Our runtime attestation method is
based on software architecture consisting of three software
layers: boot layer L0, core layer L1 and OS/App layer L2.
The static software components (code and constants) of L0 are
placed in ROM. The static software components of L1 and L2

are placed in flash. The layers share the same RAM area for
global variables, stack and heap. As by DICE we use an Unique
Device Secret UDS which has to be immutable, thus it is placed
in ROM.

The boot layer is responsible for calculating the first
derived secret by measuring L1 and calculating K0 =

KDF (UDS,D1). The core layer is responsible for the gen-
eration of the attestation evidence. The OS/App layer contains
the application on top of optional real time OS.

2) Privilege Levels: Our attestation method uses privileged
and unprivileged software execution. An executed as privileged
software can change the configuration of certain resources,
but the same software cannot change their configuration when
executed as unprivileged. Relevant privileged resources in this
paper are: the MPU, the interrupt controller and the vector
table relocation register.

The switch from unprivileged to privileged happens by
means of an interrupt, i.e., when an interrupt occurs the
corresponding Interrupt Service Routine (ISR) is executed as
privileged software. A regular function call to an ISR doesn’t
change the privilege level of execution, i.e., when the call comes
from unprivileged software an ISR is executed as unprivileged,
when it comes from privileged software the ISR is executed as
privileged. The switch from privileged to unprivileged happens
when execution returns from an ISR or by writing to a
special hardware register, which is only writable from privileged
software. We refer to this register as control register. We
also assume that after power up or reset, code is executed as
privileged.

3) Main Concept of Runtime Attestation: Our method is based
on the idea that secrets and privileged software are protected by
using either ROM, MPU or hardware memory lock (firewall).
Such privileged software is the software in L0, L1 and the ISRs.
The software of L0 is placed in ROM, thus it is write-protected
by default. The software of L1 and the ISRs is write-protected
with the MPU. The layer L2 is not write-protected, thus it can
be overwritten by software update.

At runtime the application code in L2 is executed as
unprivileged, i.e., it cannot modify the MPU configuration. At
some point in time L2 gets an attestation request from Vrf
which contains a nonce N . The application code generates a
software interrupt. The corresponding ISR contains the core
layer L1 which is executed as privileged and can modify the
MPU in order to unlock a secret previously generated and held
in RAM. The core layer then measures the OS/App layer L2

and binds cryptographically the measurement, the secret and the
nonce in order to generate an attestation evidence. After this,
the secret is locked with the MPU and the execution returns
into L2.

B. Runtime Attestation Process

In the following we describe our runtime attestation process
step-by-step and refer to Fig. 2:

1) Step 1: After power-up or reset the program execution
starts in the boot layer L0 as privileged, see  symbol in
Fig. 2. L0 measures the core layer L1 and calculates K0 =
KDF (UDS,D1). Then K0 is written in dedicated area in
RAM. Then the MPU is configured to restrict read and write
access this area, and write access to L1, ISRs and the vector
table. The UDS is locked with a hardware feature e.g. a firewall
and it can only be unlocked by reset. Then the execution is
passed to the ISR containing core layer by a function call.

3



2) Step 2: In this step, the core layer may enforce a Writable
XOR Executable (W⊕X) policy [25], which prevents a remote
adversary to load and execute code from RAM. For this purpose,
the MPU is used, whose configuration is modifiable since the
core layer is executed as privileged. The W⊕X policy states
that a memory area can either be writable or executable, but
not both. The core layer may load code from flash into a certain
RAM area and make this area non-writable but executable using
the MPU. The rest of the RAM excluding the area which
contains K0 should be made writable but non-executable, in
order to hold stack, heap and global variables. Alternatively,
if it is not desired to execute code from RAM, the complete
RAM may be made non-executable. Then the privilege level is
switched to unprivileged by writing to the control register
and execution is passed to the OS/App layer by a function call.

3) Step 3: In this step code from the application layer L2

is executed. The application builds communication channel to
Vrf. Then at some point in time Vrf sends an attestation request
which contains a nonce N . The nonce is made available for
core layer L1 by using a global variable. Then the application
generates a software interrupt which passes the execution to the
ISR containing L1.

4) Step 4: This step is divided in two sub steps for clarity:
First, the core layer L1 measures the OS/App layer L2 and
ISRs excluding the core layer itself. For the measurement, the
function h(), see Eq. 1 is used. Then K0 is unlocked and read
out. An asymmetric key pair {Kpub,Kpriv} is deterministically
generated based on K0:

{Kpub,Kpriv} = KDFa(K0). (3)

The private key Kpriv is used to sign the nonce N and the
measurements Disr , D2, in order to calculate the attestation
evidence E:

E = {N,Disr, D2}Kpriv . (4)

Additionally, if application code is contained in RAM, it has
to be measured and its measurement has to be included in the
evidence E:

E = {N,Disr, D2, Dram_code}Kpriv . (5)

In the second sub step Kpriv is saved and access to it is
restricted using the MPU. E is made available to L2 by using a
global variable. Key artifacts are erased from stack and registers.
Then the execution returns from the ISR to the Application in
L2, which is executed as unprivileged.

5) Step 5: In this step the application in L2 sends E to Vrf.
6) Subsequent attestations: In case that Vrf sends another

request, the steps are executed again starting from step 3 but
instead of generating {Kpub,Kpriv} again, Kpriv is used.

C. Asymmetric cryptography

We use asymmetric cryptography for the evidence genera-
tion. An alternative might be to use an HMAC. The advantage
of asymmetric cryptography for our use case is that Vrf and
Prv doesn’t need to have a shared secret. However, Kpub

must be extracted from Prv in a trusted environment, e.g.,
during production and provided to Vrf through separate trusted
channel. Alternatively, Kpub can be generated by the production
server. The verifier Vrf must also know the measurements Disr ,
D2 and Dram_code additionally to Kpub.

UDS
🗝

boot
L0

OS/App
L2

core
L1

ISRs
X

K0

X

Step 1🖉

🔓



ROM

fla
sh

RA
M

UDS
K0

D1

UDS
🗝

boot
L0

OS/App
L2

core
L1

ISRs
X

K0

X
W⊕X or

non-executable

Step 2🖉 🖉

🔒

 

ROM

fla
sh

RA
M

UDS
🗝

boot
L0

OS/App
L2

core
L1

ISRs
X

K0

X
W⊕X or

non-executable

Vrf

Step 3🖉 🖉

🔒

 

ROM

fla
sh

RA
M

N

UDS
🗝

boot
L0

OS/App
L2

core
L1

ISRs
X

K0

X
W⊕X or

non-executable

Step 4.1🖉 🖉

 🔓

 

ROM

fla
sh

RA
M

N

K0

D2,isr

UDS
🗝

boot
L0

OS/App
L2

core
L1

ISRs
X

Kpriv

X
W⊕X or

non-executable

Step 4.2🖉 🖉

 🔓

 

ROM

fla
sh

RA
M

E

Kpriv

UDS
🗝

boot
L0

OS/App
L2

core
L1

ISRs
X

Kpriv

X
W⊕X or

non-executable

Vrf

Step 5🖉 🖉

🔒

 

ROM

fla
sh

RA
M

E

Figure 2: Runtime Attestation Process

Legend:  code from this code area is executed,  UDS
locked with memory lock (firewall), 🔒 secret in RAM
locked with MPU, 🔓 secret in RAM unlocked,

🖉 wire-protected privileged software

4



D. Interruptibility

The evidence generation is a time consuming task. There-
fore, it is realistic to assume that a real world application will
require to interrupt L1 in order to execute some hard real-time
operations. We approach this problem by configuring the ISR,
which contains L1, to have the lowest interrupt priority and
all other interrupts to have higher priorities. In this way more
urgent interrupts can be handled. It is secure to do so, because
all ISRs are write-protected and their behavior is defined, thus
they will not, e.g., read out secrets during the execution of
L1. Also if a remote adversary is presented in OS/App layer,
it will not be possible for the remote adversary to program
new ISRs because the interrupt controller can only be modified
from software executed as privileged. A remote adversary is also
not capable to re-target interrupts to malicious code, since the
vector table is non-modifiable and it cannot be relocated from
unprivileged software.

E. Use Of Privileged Resources

An OS or application in L2 may require to configure other
privileged resources which are not related to our attestation
method. For this purpose, the same concept of software gen-
erated interrupt may be used. The ISR corresponding to the
software interrupt, may contain a switch-case statement with
predefined configurations of privileged resources. Which branch
will be executed might be controlled by passing a value by a
global variable.

F. Loading Software Components in RAM at Runtime

For some applications may be required to load different
software components at runtime in RAM and execute them.
This task may be realized by the core layer. Then, at an
attestation request, additionally to the attestation evidence
E = {N,Disr, D2, Dram_code}Kpriv also an identifier of the
currently loaded component has to be sent to Vrf. In this
way Vrf can determine which software component is currently
contained in RAM and verify the evidence.

VI. Requirements and Limitations

A. Requirements

1) MPU and Privileged/Unprivileged Execution: The proposed
method requires an MPU and privileged/unprivileged software
execution. The switch between privileged and unprivileged
execution has to happen by means of an interrupt or a write to
a register as described in Section V-A2.

2) Boot ROM: Our attestation method also requires a ROM
memory for holding the boot layer L0 and UDS. Alternatively,
often the commercially available chips can provide a mechanism
to write-protect flash areas using option bytes, which can be
used instead of boot ROM.

3) UDS and UDS Lock Mechanism: Our attestation method
also requires Unique per Device Secret (UDS) placed in ROM
and UDS lock mechanism as required by the DICE specifica-
tion.

B. Limitations

1) Strong Physical Adversary: The proposed attestation
method provides no protection against a strong physical ad-
versary, which can overcome the device’s debug protection or
perform more powerful physical attacks.

2) ROP Vulnerability: The mentioned in Section II methods,
as well as our method, do not provide detection of Return-
Oriented Programming (ROP) attacks. Related work in this
area is DynIMA [11], which combines boot time TPM-based
binary measurement and code instrumentation in order to attest
runtime program flow. DynIMA doesn’t provide any detection
of the binary compromise after measurement.

3) DOS Vulnerability: The proposed attestation method may
be vulnerable against DOS attacks started by a malicious
verifier. This is because measurement and signing are slow
and energy consuming operations. An additional mechanism is
required to ensure that Vrf is not malicious. We note that this
is a separate branch of research and refer to [10, 15] for more
information.

VII. Implementation and Evaluation

The proposed attestation method can be implemented on
devices which meet the requirements from Section VI-A. One
of this requirements is MPU and privileged/unprivileged exe-
cution, which is met by, e.g., microcontrollers based on ARM
Cortex-M0+/M3/M4/M7. Switch between privileged and un-
privileged execution is achieved by means of an interrupt and a
register as described in Section V-A2. A software interrupt can
be generated by executing the svc instruction.

Another requirement is ROM memory. Many of the com-
mercially available microcontrollers may provide ROM memory.
On chips which don’t provide such memory, flash memory
protection by means of option bytes is often available.

DICE as well as our method require also a dedicated
mechanism to make UDS not accessible after it is read out
by the boot ROM. UDS must become accessible again only
after reset. This requirement is satisfied by the STM firewall
[2]. A list of similar hardware features from other vendors is
given in [21].

A. Cryptographic Operations

The proposed attestation framework requires the use of
several cryptographic operations which can be divided in two
groups: (1) hash-based cryptography for the measurement func-
tion, see Eq. 1, key derivation function, see Eq. 2, and (2)
asymmetric cryptography for the derivation of the asymmetric
keys, see Eq. 3 and signing for the evidence generation, see Eq. 4.
As measurement function we used SHA256. As key derivation
function we used SHA-256-HMAC. For the asymmetric oper-
ations we chose the Ed25519 signature algorithm proposed by
Bernstein et al. [7]. Ed25519 has two advantages compared to
other asymmetric signature algorithms – (1) it is significantly
faster compared to RSA or ECDSA and (2) the private key can
be any 32 Byte long number. The second allows us to omit the
need of dedicated asymmetric key derivation function (Eq. 3)
and to use K0 as a private key in Eq 4. For the crypto operations
we used the library cifra [8] and Ed25519 implementation by
Beer et al. [6].

5



B. Evaluation

For the evaluation we used an STM32L476, which is based
on Cortex-M4, has 1MByte flash, 128 KByte SRAM and runs at
80MHz. This chip provides the possibility to use option bytes
in order to write-protect parts of the flash memory which is
required for layer L0 and UDS. For the UDS lock we use the
firewall [2] provided by this chip. For all presented results the
highest compiler optimization -O3 was used. Table I presents
the static memory requirements for code and constants of L0

and L1 as well as secrets in ROM and RAM. Table II shows

Table I: Static memory requirements

Memory area Memory type Size
L0 boot ROM 3768 Byte
L1 core flash 7672 Byte
Secrets in ROM ROM 32 Byte
Secrets in RAM RAM 32 Byte

the dynamic memory requirements in terms of peek stack usage
and required time for the operations. As shown in Table I, the

Table II: Peek stack usage and speed

Lx Operation on bytes Stack peek Cycles Seconds
L0 HMAC / 8 K 1392 Byte 647.42e3 8.1ms
L1 sha256 / 1011 K 896 Byte 117.38e6 1.46 s
L1 ed25519 sign 1280 Byte 51.73e6 646.62ms
L1 total 1280 Byte 169.11e6 2.12 s

static memory requirements are less than 12 KByte, which is
acceptable for a broad range of low-end microcontrollers. The
dynamic RAM requirements for the stack are also acceptable.
As shown in Table II, the most time-consuming operations are
the SHA256 measurement of the memory area available for
the application code, which for this micro-controller is almost
1MByte (1011 KByte) and Ed25519 signing.

VIII. Conclusion

In this paper we presented an attestation method for low-
end IoT devices. Our method provides detection of runtime
compromise of the device firmware. This is a feature that
other attestation techniques, where the attestation evidence is
generated at boot time do not provide. Moreover, we achieve
this by using only standard on-chip hardware. More precisely,
we use MPU and privilege levels to effectively isolate the
attestation firmware and secrets from the remaining application.
As a result, our method can immediately be applied to a broad
range of popular microcontrollers, which we demonstrated
with an implementation on the Cortex-M4-based STM32L476.
We conclude our paper by presenting an evaluation of the
implementation in terms of memory and computation speed.

Acknowledgements

The work presented in this contribution was supported by
the German Federal Ministry of Education and Research in the
project secUnity through grant number 16KIS0394.

References

[1] “Building a secure system using trustzone technology.”
[Online]. Available: http://www.arm.com

[2] “Stm32l4 firewall.” [Online]. Available: http://www.st.com/
content/ccc/resource/STM32L4_Security_Firewall.pdf

[3] “Tpm main specification level 2 version 1.2,
revision 116,” March 2011. [Online]. Available:
https://trustedcomputinggroup.org/

[4] “Trusted platform architecture hardware requirements for
a device identifier composition engine,” December 2016.
[Online]. Available: https://trustedcomputinggroup.org/

[5] T. Abera et al., “Things, trouble, trust: On building trust
in iot systems,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC).

[6] D. Beer, “Curve25519 and Ed25519 for low-memory
systems,” http://www.dlbeer.co.nz/oss/c25519.html, 2017,
[Online; accessed on 30.10.2017].

[7] D. J. Bernstein et al., “High-speed high-security signatures,”
Journal of Cryptographic Engineering, 2012.

[8] J. Birr-Pixton, “Cifra,” https://github.com/ctz/cifra, 2017,
[Online; accessed on 30.10.2017].

[9] F. Brasser et al., “Tytan: Tiny trust anchor for tiny devices,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Confer-
ence.

[10] ——, “Remote attestation for low-end embedded devices:
The prover’s perspective,” in 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC).

[11] L. Davi et al., “Dynamic integrity measurement and attesta-
tion: towards defense against return-oriented programming
attacks.” 2009.

[12] K. Eldefrawy et al., “SMART: Secure and Minimal Architec-
ture for (Establishing a Dynamic) Root of Trust,” in NDSS
2012.

[13] P. England et al., “Riot - a foundation for trust in the
internet of things,” Tech. Rep., April 2016.

[14] A. Francillon et al., “A minimalist approach to remote
attestation,” in Proceedings of the Conference on Design,
Automation & Test in Europe, ser. DATE ’14.

[15] A. Ibrahim et al., “Seed: Secure non-interactive attestation
for embedded devices,” in 10th ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec 2017).

[16] L. Jäger et al., “Rolling dice: Lightweight remote attestation
for cots iot hardware,” in Proceedings of the 12th International
Conference on Availability, Reliability and Security, 2017.

[17] P. Koeberl et al., “Trustlite: A security architecture for tiny
embedded devices,” ser. EuroSys ’14.

[18] F. McKeen et al., “Innovative instructions and software
model for isolated execution,” 2013.

[19] J. Noorman et al., “Sancus: Low-cost trustworthy extensible
networked devices with a zero-software trusted computing
base,” in USENIX Security 13.

[20] H. Raj et al., “ftpm: A firmware-based tpm 2.0 implemen-
tation,” Tech. Rep., 2015.

[21] S. Schulz et al., “Boot attestation: Secure remote reporting
with off-the-shelf iot sensors,” Cryptology ePrint Archive,
Report 2017/577, 2017.

[22] A. Seshadri et al., “Swatt: software-based attestation for
embedded devices,” in IEEE Symposium on Security and
Privacy.

[23] ——, “Pioneer: Verifying code integrity and enforcing un-
tampered code execution on legacy systems,” SIGOPS.

[24] R. Strackx et al., Efficient Isolation of Trusted Subsystems in
Embedded Systems.

[25] L. Szekeres et al., “Sok: Eternal war in memory,” in 2013
IEEE Symposium on Security and Privacy.

6


