
SPOC: Secure Payments for Outsourced
Computations

Michał Król
University College London

Fluentic Networks, UK
m.krol@ucl.ac.uk

Ioannis Psaras
University College London

Fluentic Networks, UK
i.psaras@ucl.ac.uk

Abstract—Constrained devices in IoT networks often require
to outsource resource-heavy computations or data processing
tasks. Currently, most of those jobs are done in the centralised
cloud. However, with rapidly increasing number of devices and
amount of produced data, edge computing represents a much
more efficient solution decreasing the cost, the delay and improves
users’ privacy. To enable wide deployment of execution nodes
at the edge, the requesting devices require a way to pay for
submitted tasks. We present SPOC - a secure payment system for
networks where nodes distrust each other. SPOC allows any node
to execute tasks, includes result verification and enforce users’
proper behaviour without 3rd parties, replication or costly proofs
of computations. We implement our system using Ethereum
Smart Contracts and Intel SGX and present first evaluation
proving its security and low usage cost.

I. INTRODUCTION

The Internet of Things (IoT) holds tremendous potential to
change many of our daily activities, routines and behaviors.
The pervasive nature of the information sources means that
a great amount of data pertaining to possibly every aspect
of human activity, both public and private, will be produced,
transmitted, collected, stored and processed. Already heav-
ily deployed smart devices are expected to drastically rise
in numbers in future years [1] consequently increasing the
volume of produced data. At the same time, constrained IoT
devices do not have enough computational power, making local
processing of such amounts of data impossible.

In the current model, the data is being transmitted to
the cloud for further processing and aggregation. However,
there is a constant stream of evidence that the centralized,
data-center model of cloud computing appears inferior in
light of emerging applications. Data flow exceeding backbone
capacities and demand for minimal latency, in some cases
sub-ms response times, is in fact excluding classic cloud-
based solutions. Furthermore, not all data produced by IoT
devices might be of further use, or need to be permanently
stored in backend cloud environments (i.e., only the result of
a computation on a data set might be of further interest).

As a result, recent research efforts have focused on dis-
tributed cloud infrastructures, where requested applications (or

functions) are executed in specialized execution nodes at the
edge of the network [2] [3]. Such an infrastructure can provide
lower delay, minimize the traffic that needs to travel all the way
to the back-end data center, and reduce the exposure to failures
of a single cloud provider.

However, for such system to be deployed, an efficient and
secure payment system is essential and can determine its future
success. In an open, non-walled garden cloud computing envi-
ronment, execution nodes are owned by multiple stakeholders,
while requestors do not know which nodes will execute their
tasks and thus whom to pay in advance. What is more, even
with this knowledge they do not want to pay for yet unfinished
or unverified tasks. On the other hand, an execution node
receiving a request does not want to use its resources without
making sure that it will eventually receive the corresponding
payment.

To make a payment system truly distributed, one needs to
include result verification techniques to ensure its correctness.
However, already proposed schemes repeat the same computa-
tions on multiple nodes, produce costly, cryptographic proofs
of computation1 or involve 3rd parties to act as a middleman
(see Sec. VI). All those techniques require requesting nodes
to pay orders of magnitude more than the actual cost of the
computations.

In this paper, we propose SPOC : Secure Payments for
Outsources Computations. SPOCis a distributed payment sys-
tem, which allows the transfer of funds between mutually dis-
trusting requesting and executing nodes. In SPOC, requestors
submit tasks to a blockchain and allow any node to claim it for
execution. The blockchain does not belong to any central entity
and its integrity is assured by thousands of miners charging
only a minimal fee (see Sec. II-A). When the computations are
finished the result is returned to the requestor and the executing
node is paid for its work. Our solution leverages deposits, smart
contracts and trusted execution environments (TEEs) to ensure
proper behaviour of all parties involved without establishing
any trust relation between them. SPOC does not involve a 3rd
party to resolve conflicts, perform redundant computations nor
create costly cryptographic proofs.

1not to be confused with Proof of Work (PoW) used in Bitcoin [4]

Workshop on Decentralized IoT Security and Standards (DISS) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-51-7
https://dx.doi.org/10.14722/diss.2018.23002
www.ndss-symposium.org

II. BACKGROUND

A. Blockchain and Smart Contracts

The blockchain technology [4] implements a distributed,
append-only ledger in the form of connected blocks. Once
information is stored in the blockchain it cannot be removed
or altered. Network participants use a consensus protocol to
agree on current state of the ledger. As long as the majority of
participants are honest, the integrity of the ledger is assured.
Blockchain is widely used to record transactions in multiple
crypto-currencies (i.e., Bitcoin [4], Ethereum [5]). A common
extension consists of scripting languages enables to include
logic as part of the transaction and allows deployment of Smart
Contracts - code submitted to blockchain and executed by all
miners. Solidity - the scripting language of Ethereum is Turing-
complete allowing to implement wide range of applications
running on the blockchain.

B. Trusted Execution Environment

Intel Secure Guard Extension (SGX) is an example of
Trusted Execution Environment (TEE) that allows applications
or part of an application code to be executed in a secure
container, called enclave, protecting the integrity and confiden-
tiality of data. SGX protects data from other applications and
privileged system software, such as the operating system (OS),
hypervisor, and BIOS. SGX implements hardware encryption
in the CPU. In order to achieve protection against privileged
software, the memory content of the enclave is stored inside
the Enclave Page Cache (EPC), which is protected memory
where encrypted enclave pages and Intel SGX data structures
are stored. A page table that maps enclave pages onto EPC
frames is managed by the OS. However, the OS cannot see
the memory content because the EPC region is encrypted by
the Memory Encryption Engine (MEE) within the CPU. It is
only the enclave that is associated with the EPC page that can
access content within the enclave.

In order to enable an application to use enclaves, the de-
veloper must provide a signed shared library that will execute
inside an enclave. The library itself is not encrypted and can be
inspected before being started, hence no secret should be stored
inside the code. However, the SGX environment also provides
a remote attestation protocol[6]. Using this mechanism a user
can verify the identity and integrity of a target enclave running
on a remote host, and securely transfer confidential data using
TLS [7].

The SGX does not introduce significant overhead and does
not increase the execution time [8]. In its current version
SGX is susceptible to cache-timing attacks [9], however an
enhancement has already been proposed to eradicate this
vulnerability [10].

III. THREAT MODEL AND ASSUMPTIONS

We consider that the following actors participate in the
transaction:

• Requestors - constrained IoT devices submitting
resource-heavy tasks to the network and making the
payment.

• Executing Nodes - high-capacity nodes using their
resources to execute requested tasks/functions and
receiving the payment.

• Payment System - a smart contract running on a
blockchain.

Our threat model assumes that when the Requestor submits
its task to the blockchain, it does not know which node will
execute it. We assume that for the requestor, the value of the
executed task (VRi) is higher than the price she is willing to pay
(PRi). At the same time, the cost of running the computation
(Ci) is lower than the offered price (PRi). Both parties wish to
finalise the transaction, but mutually distrust one another. Each
party is potentially malicious, i.e., they may attempt to steal
funds, avoid making payments, and forge results if it benefits
them. Any time each party may drop, send, record, modify, and
replay arbitrary messages in the protocol. We assume that each
executing node has a TEE-capable machine, while requestors
are resource-constrained devices capable of performing simple
computations only.

Both the requestor and the executing node trust the
blockchain, their own environments, the TEE, and the function
running in the enclave. The rest of the system, such as the
network between the parties and the other party’s software
stacks (outside the TEE) and hardware are untrusted. During
function execution, the execution node may therefore: (i)
access or modify any data in its memory or stored on disk;
(ii) view or modify its application code; and (iii) control any
aspect of its OS and other privileged software. Our threat
model takes into account denial-of-service attacks, where an
executing node claims a task and never executes it, delaying
reception of valid results by the requestor. We model requestors
and executing nodes as individual rational adversaries. Rational
means that a party always acts in a way that maximizes
its payoff, and is capable of thinking through all possible
outcomes and choosing strategies which will result in the best
possible outcome.

EN Execution Node
R Requestor
Ti task i
VRi value of tasks i for Requestor
PRi Requestor’s payment for task i
DRi Requestor’s deposit for task i
DEi Executing Node’s deposit for task i
Ci cost of executing task i

TABLE I: Notation

IV. SMART PAYMENTS

SPOC operates as follows. A requestor submits its task to
the blockchain specifying the reward. Any execution node can
then claim the task and start the computation. Once the task
is successfully claimed it is assigned to the execution node
and cannot be claimed by others. When the computation is
finished, the results are sent to the requestor (or other specified
node) and the execution node receives its payment. The proper
behaviour of both parties is assured by deposits that are sent
back after successfully finalising the transaction.

2

Fig. 1: A payment scheme using smart contracts.

A. System Overview

In SPOC, before submitting a task Ti, a Requestor (R)
starts by generating a secret Si and computing its hash Hi

(Fig. 1). The task is then submitted to the smart contract. The
submission includes a name of the function to execute, the
hash, payment PR and deposit DR. All information stored in
the contract is publicly visible, so the secret itself cannot be
submitted. Both PR and DR are locked in the contract and
cannot be manually retrieved by the requestor. DR prevents
the requestor from receiving the result and not unlocking the
payment for the node that did the computation. When an
executing node (EN) wants to execute the task, it must invoke
a claim function on the contract. The claim must contain
another deposit DE that will be lost if the executing node does
not execute the claimed task. As both DR and DE ensure
proper behaviour of the requestor and the execution node
respectively, they must be higher than a specified threshold. To
prevent parallel execution, only the first claim with a sufficient
deposit is accepted. The executing node must then instantiate
the requested function. The function’s authenticity is verified
by the requestor using the Remote Attestation Protocol (Sec.
II-B). If the check is successful, the requestor establishes a
secure TLS connection with the function and uses it to transmit
input parameters and secret Si. When the function finishes the
computation, it returns the result and the secret to the executing
node. The result is not sent back to the requestor using the TLS
connection, as it would require the requestor to stay online.
Also, in many scenarios the result must be reported to a third
entity (i.e., the cloud) and not to the requesting node. The
executing node can now submit the received secret to the smart
contract and receives back its deposit DE . The result must be
now sent to the indicated location (the requestor or a third
party). When the requestor confirms a proper transmission of
the result, it unlocks the payment on the smart contract. The
executing node receives its payments PR and the requestor
gets its deposit DR back.

SPOC consists of 3 modules residing on the requestor,
execution node and the blockchain, respectively.

B. Requestor

The module residing on the requestor resides on a con-
strained device and cannot execute resource heavy computa-
tions. The requestor must generate a short random secret and
computes its hash. It then submits the task to the blockchain.
Once the task is claimed, the requestor verifies the remote
function and transmits the secret, the input parameters and the
data encryption key through TLS to the executing node. The
function must be trusted by the requestor and the function’s
behaviour must be verified in advance [11]. Data produced by
the execution node should be encrypted and must be signed to
allow easy verification. If the check is successful, the requestor
contacts the blockchain again to unlock the payment.

C. Execution Node

We implement a simple client residing outside the TEE,
that observes the blockchain. If a new task is submitted, the
executing node tries to claim it and if successful (i.e., no other
node has requested it already), it downloads2 and instantiates
the corresponding function. The function should be verified3

before instantiating to avoid executing potentially malicious
code. Each function creates its own enclave to securely store
the secret, input parameters and produced results. The results
can be either sent back using established TLS connection, or
encrypted using a key provided by the requestor and sent using
an open channel. The SGX system provides each enclave with
a seal key that can be used to store data on stable storage and
access it again upon subsequent execution. This facilitates the
development of applications that can restart an enclave without
requiring a new remote attestation in case of system failure.
The enclave instead loads its secrets from a configuration file
encrypted with the enclave specific seal key and kept in stable
storage such as a hard drive. When a function finishes the
computations, the result is sent to the specified destination
and the whole enclave is removed together with produced
temporary files.

2Depending on the more general setup, the function might already be in
local storage, e.g., [3]

3i.e., using techniques discussed in [11]

3

D. Smart Contract

We implement our smart contract in Solidity, the language
used by Ethereum [5]. The pseudo-code is presented in Lst. 1.
The requestor starts by calling “submitTask” with the function
name and a hash of the generated secret. The invocation must
be combined with the transfer of funds containing both a pay-
ment and a deposit. If the submitted amount is not sufficient,
the transaction will be rejected. A successful invocation creates
a task that is stored on the blockchain. The execution node can
then claim the task using the task ID and submitting a deposit.
When the execution node receives the secret after finishing the
computation, it can call “finalizeExecutionNode” to
get back its deposit. The function compares the secret against
its hash submitted by the requestor. The money transfer is
made only if the check is successful. When the requestor
receives the result, it calls “finalizeRequestor”. The
smart contract returns the deposit to the requestor, sends the
payment to the execution node and deletes the task. Finally,
we implement a timeout function. If the task is not executed
within a specified threshold, the requestor can use it to get
back the allocated payment. Both deposits remain locked in the
contract and cannot be used anymore. The threshold value can
be set depending on the application and is publicly visible for
potential execution nodes. We also implement a set of contract
events allowing interested parties to be notified when a new
task is submitted, claimed, finished or times out.

Listing 1: SPOC contract.
c o n t r a c t Smar tPayments {

f u n c t i o n submi tTask (s t r i n g funct ionName ,
b y t e s 3 2 hash ,
u i n t e x p i r e s)
p u b l i c p a y a b l e r e t u r n s (u i n t t a s k I D) {

i f (msg . v a l u e < THRESHOLD){
msg . s e n d e r . t r a n s f e r (msg . v a l u e) ;
re turn ;

}
t a s k I D = numTasks ++;
t a s k s [t a s k I D] = Task (funct ionName ,

hash ,
msg . sende r ,
msg . v a l u e − THRESHOLD,
THRESHOLD,
0x0 ,
0 ,
f a l s e ,
f a l s e ,
now ,
e x p i r e s) ;

re turn t a s k I D ;

}

f u n c t i o n c l a imTask (u i n t t a s k I D)
p u b l i c p a y a b l e r e t u r n s (boo l r e s u l t) {

i f ((msg . v a l u e < THRESHOLD) ||
t a s k s [t a s k I D] . c l a i m e d ||
t a s k s [t a s k I D] . comple t ed){

msg . s e n d e r . t r a n s f e r (msg . v a l u e) ;
re turn f a l s e ;

}

t a s k s [t a s k I D] . execu t ionNode = msg . s e n d e r ;
t a s k s [t a s k I D] . e x e c u t i o n N o d e D e p o s i t = msg . v a l u e ;
t a s k s [t a s k I D] . c l a i m e d = t rue ;

re turn true ;
}

f u n c t i o n f i n a l i z e E x e c u t i o n N o d e (u i n t t a sk ID , b y t e s 3 2 s e c r e t)
p u b l i c r e t u r n s (boo l r e s u l t){

i f ((t a s k s [t a s k I D] . execu t ionNode != msg . s e n d e r) ||
(! t a s k s [t a s k I D] . c l a i m e d) ||
(t a s k s [t a s k I D] . comple t ed) ||
(sha256 (s e c r e t) != s e c r e t)){

re turn f a l s e ;
}
t a s k s [t a s k I D] . comple t ed = t rue ;
msg . s e n d e r . t r a n s f e r (t a s k s [t a s k I D] . e x e c u t i o n N o d e D e p o s i t) ;

}

f u n c t i o n f i n a l i z e R e q u e s t o r (u i n t t a s k I D)
p u b l i c r e t u r n s (boo l r e s u l t){

i f ((t a s k s [t a s k I D] . r e q u e s t o r != msg . s e n d e r) ||
(! t a s k s [t a s k I D] . c l a i m e d) ||
(! t a s k s [t a s k I D] . comple t ed)){

re turn f a l s e ;

}

msg . s e n d e r . t r a n s f e r (t a s k s [t a s k I D] . r e q u e s t o r s D e p o s i t) ;
t a s k s [t a s k I D] . execu t ionNode . t r a n s f e r (t a s k s [t a s k I D] . payment) ;
d e l e t e t a s k s [t a s k I D] ;

}

f u n c t i o n t i m e o u t (u i n t t a s k I D) p u b l i c r e t u r n s (boo l r e s u l t){
i f (now > t a s k s [t a s k I D] . s t a r t + t a s k s [t a s k I D] . e x p i r e s
|| ! t a s k [t a s k I D] . comple t ed){

t a s k s [t a s k I D] . r e q u e s t o r . t r a n s f e r (payment) ;
re turn s t r u e ;

}
re turn f a l s e ;

}

}

V. EVALUATION

We evaluate SPOC by performing a security analysis and
running and investigating the behaviour of the smart contract
on a test Ethereum network. We implement our solution using
cpp-ethereum - a C++ Ethereum client4 on a Dell XPS 13
laptop. The enclave runs with Intel SGX SDK for Linux v2.0.
The performance of the execution node depends heavily on
the submitted task. However, Intel SGX is proven to introduce
only minimal overhead to the computations [8].

A. Security Analysis

In this section, we provide the intuition behind the security
properties of the protocol. We defer formal proofs of security
to the extended version of the paper. Before submitting a task,
the Requestor must generate a new secret and compute its hash.
The hash is submitted to the blockchain and is thus publicly
visible. We allow only one execution node to start working on
the task and receive the allocated payment when finished. This
sequence of events prevents parallel computations and protects
from malicious users who could try to compute the secret from
the hash and steal the funds. It also prevents the requestor
(as he knows the secret) from stealing the payment from an
execution node that is working on the task. The hash function
does not have to be fully secure, but should be significantly
more costly to reverse than computing the actual task itself.
Even with fixed 32 byte input, calculating 2256 signatures is
impossible within short amount of time. When a task times out
and the requestor decides to resubmit it, the requestor must
generate a new secret and hash. It is important to tune the
“expires” parameter, so that the execution node has enough
time to complete the task, but reversing the hash function
should be impossible within this time window. The secret
itself is known only to the requestor and transmitted through
a secure channel to a protected enclave. The same applies
to the submitted input. When the execution node receives
the secret, it is submitted to the blockchain through an open
connection and becomes publicly visible. However, the secret
is useless for nodes that did not claim the task and can be
used only by the valid node. The output data is encrypted and
signed by keys provided by the requestors. Its integrity can
then be easily verified and decrypted by authorised users. The
executing nodes never hold the encryption key, it thus cannot
forge results.

We investigate possible scenarios where both Requestor
and Executing Node try to cheat and analyse their outcome
(Tab. II).

4https://github.com/ethereum/cpp-ethereum

4

https://github.com/ethereum/cpp-ethereum

• All parties behave honestly and the transaction is
finalised - the Executing Node uses its resources to
perform the computation (Ci. The Requestor receives
the results (VRi) and the payment (Pi) is transferred
to the Executing Node and both deposits are sent back
to their owners.

• An executing node claims a task, but does not
execute it - the requestor withdraws the task after a
time out, getting back its money (Pi). Both deposits
(DRi and DEi) remain locked on the contract. This
is because both EN can decide not to compute the
task, but R can also prevent it by not sending input
parameters and the smart contract is not able to
distinguish between both cases.

• An executing node computes the task, but does not
send back the result - the Executing Node is able
to get its deposit back (DEi), but is not getting paid
for performed computations, while using its resources
(Ci) to compute the result. However, the requestor is
not able to retrieve its deposit (DRi) nor the payment
either (Pi).

• A malicious requestor receives valid results, but
does not confirm - the malicious requestor loses it
deposit (DRi), while the executing node is not getting
paid for used resources (Ci).

Only when both parties behave honestly, they both gain
value. In other scenarios, the cheating entity always loses
funds. Unfortunately, removing any dispute resolution entity
comes at a cost: an honest party can still lose money if its peer
behaves improperly. In SPOC, a rational attacker will always
behave honestly, however a malicious adversary could cheat
to make the other party lose funds. The smart contract can
automatically unlock the funds if it could verify that the result
was made available to the requestor. A naive solution consists
of submitting results directly to the blockchain. However,
storing large data sets significantly increase the cost of the
transaction. A more viable approach involves distributed peer-
to-peer storage such as IPFS [12]. The results must be made
public in an encrypted and signed form, so that everyone,
including the smart contract, can verify its authenticity, but
only the requestor can decrypt the content.

Scenario Requestor Execution Node
Both honest VRi − Pi Pi − Ci

EN does not execute −DRi −DEi

EN does not sent the result −(Pi + DRi) −Ci

R does not confirm VRi − Pi − DRi −Ci

TABLE II: Output of different system users’ behaviours.

B. Smart Contract evaluation

We analyse the cost of invoking each function of the con-
tract and its deployment (Tab. III). The tests were performed on
test Rinkeby network5. Ethereum allows to specify a priority of
newly submitted transactions. The slowest ones are processed
within 10 minutes, standard within 5 minutes and the fastest
within 2 minutes. With faster processing time comes increased
transaction cost. With the slowest transaction processing, the
system is cheap to exploit, keeping the cost much below 1$6

5www.rinkeby.io
6Costs calculated using https://ethgasstation.info/

(to be further split between requestors and execution nodes).
However, with the fastest transaction, the cost increases up
to almost 8$ that is be unacceptable for smaller tasks. At the
same time, for all the tested setups the delay is significant. The
functions must be called sequentially and only if the previous
call is confirmed to avoid double spending attacks [13] (i.e.,
an execution node must be sure that the task is submitted
before claiming it). This means that the system is not suitable
for delay-sensitive tasks, but this limitation is implied by the
underlying blockchain technology (in our case - Ethereum).
Involving a more lightweight distributed ledger [14] could
potentially overcome this limitation.

VI. RELATED WORK

Multiple papers discuss result verification techniques. The
first group focuses on constructing cryptographic proof of
computation [15], [16], [17], [18]. Such proofs are easy
to verify without the need to re-execute the computations.
However, the overhead of pre-computation and creation of the
proof is orders of magnitude higher than the actual cost of
the computation being verified. Another approach consists of
running the same computations on multiple servers [19], [20],
[21], [22]. As long as a given fraction of servers is honest,
the result can be guaranteed by a consensus protocol. These
techniques require at least one honest server and significantly
increase the overhead by repeating the computations.

An approach closer to our work involving blockchain tech-
nology is [23]. The authors assume only two execution entities
and design smart contracts discouraging them from colluding.
Huang et al. [24] also distribute the task to multiple workers
and exploit Commitment-based sampling [25] to verify the
correctness of the result. Before starting the computations, the
workers have to commit to the task by spending bitcoins that
are lost in case of dishonest behaviour. However, both systems
([23], [24]) still require to repeat computations and assume a
trusted 3rd party to resolve conflicts.

Multiple projects focus on incentivising fairness and timely
delivery of the results using cryptocurrencies [26], [27], [28],
[29], [30]. Workers deposit predefined amount of money that is
lost if they misbehave. However, all of them focus on fairness
rather than verifying produced results. Finally, several projects
aim to facilitate blockchain-based micro-payments [31], [32],
[33], [34]. Those projects are complementary to ours, and
could be used to lower the cost and overhead of transactions.

VII. CONCLUSION

We presented SPOC, a new execution payment system
for untrusted IoT networks. Our system allows any node to
submit and execute tasks and enforces users’ proper behaviour
using Trusted Execution Environment (TEE) and Smart Con-
tracts. Our solution is secure against rational adversary, cost
efficient and introduces minimal computational overhead on
IoT devices. In our future work, we plan to extend our
system by a distributed results submission platform, making
it fully resistant to arbitrary adversary as well. We also plan
to investigate more lightweight distributed ledger solutions to
decrease the exploitation cost and make the system suitable
for delay-sensitive tasks.

5

www.rinkeby.io
https://ethgasstation.info/

Function Gas Ether Slow ($) Ether Standard ($) Ether Fast ($)
Deploy 1260850 0.00013 (0.057$) 0.01387 (6.324$) 0.03656 (16.673$)

submitTask 277880 0.00003 (0.013$) 0.00278 (1.267$) 0.00806 (3.675$)
claimTask 145120 0.00001 (0.007$) 0.00145 (0.662$) 0.00421 (1.919$)

finalizeExecutionNode 52802 0.00001 (0.002$) 0.00053 (0.241$) 0.00153 (0.698$)
finalizeRequestor 106357 0.00001 (0.005$) 0.00117 (0.533$) 0.00308 (1.406$)

Total per task 582159 0.00006 (0.027$) 0.0064 (2.92$) 0.01688 (7.698$)

TABLE III: Cost of invoking contract functions.

ACKNOWLEDGMENT

This work has been supported by the EC H2020 UMOBILE
project (GA no. 645124), the EC H2020 ICN2020 project
(GA no. 723014) and the EPSRC INSP fellowship project
(EP/M003787/1).

REFERENCES

[1] T. Danova, “Morgan stanley: 75 billion devices will be connected to
the internet of things by 2020,” Business Insider, vol. 2, 2013.

[2] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,”
in Intelligent Systems and Control (ISCO), 2016 10th International
Conference on, pp. 1–8, IEEE, 2016.

[3] M. Król and I. Psaras, “Nfaas: Named function as a service,” in ACM
ICN’17, pp. 1–11, ACM, 2017.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[5] V. Buterin et al., “Ethereum white paper,” 2013.

[6] “Intel SGX Remote Attestation.” https://software.intel.com/en-us/node/
709014.

[7] S. Gueron, “A memory encryption engine suitable for general purpose
processors.,” IACR Cryptology ePrint Archive, vol. 2016, p. 204, 2016.

[8] C. Zhao, D. Saifuding, H. Tian, Y. Zhang, and C. Xing, “On the per-
formance of Intel SGX,” in Web Information Systems and Applications
Conference, 2016 13th, pp. 184–187, IEEE, 2016.

[9] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
Intel SGX,” in Proceedings of the 10th European Workshop on Systems
Security, EuroSec’17, (New York, NY, USA), pp. 2:1–2:6, ACM, 2017.

[10] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
controlled-channel attacks against enclave programs,” in Proceedings of
the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, 2017.

[11] M. Król, M. Claudio, D. Grewe, I. Psaras, and C. Tschudin, “Open
security issues for edge named function environments.” https://www.ee.
ucl.ac.uk/∼ipsaras/files/named-function-security.pdf, 2017.

[12] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[13] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast
payments in bitcoin,” in Proceedings of the 2012 ACM conference on
Computer and communications security, pp. 906–917, ACM, 2012.

[14] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” arXiv preprint
arXiv:1708.03778, 2017.

[15] M. Walfish and A. J. Blumberg, “Verifying computations without
reexecuting them,” Communications of the ACM, vol. 58, no. 2, pp. 74–
84, 2015.

[16] M. M. Oliaiy, M. H. Ameri, J. Mohajeri, and M. R. Aref, “A verifiable
delegated set intersection without pairing,” in Electrical Engineering
(ICEE), 2017 Iranian Conference on, pp. 2047–2051, IEEE, 2017.

[17] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and
B. Parno, “Hash first, argue later: Adaptive verifiable computations on
outsourced data,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1304–1316, ACM,
2016.

[18] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish, “Verifiable
asics,” in Security and Privacy (SP), 2016 IEEE Symposium on,
pp. 759–778, IEEE, 2016.

[19] R. Canetti, B. Riva, and G. N. Rothblum, “Practical delegation of
computation using multiple servers,” in Proceedings of the 18th ACM
conference on Computer and communications security, pp. 445–454,
ACM, 2011.

[20] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient byzantine
fault tolerance,” IEEE Transactions on Computers, vol. 65, no. 9,
pp. 2807–2819, 2016.

[21] J. van den Hooff, M. F. Kaashoek, and N. Zeldovich, “Versum:
Verifiable computations over large public logs,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1304–1316, ACM, 2014.

[22] D. Szajda, B. Lawson, and J. Owen, “Hardening functions for large
scale distributed computations,” in Security and Privacy, 2003. Pro-
ceedings. 2003 Symposium on, pp. 216–224, IEEE, 2003.

[23] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
“Betrayal, distrust, and rationality: Smart counter-collusion contracts for
verifiable cloud computing,” arXiv preprint arXiv:1708.01171, 2017.

[24] H. Huang, X. Chen, Q. Wu, X. Huang, and J. Shen, “Bitcoin-based
fair payments for outsourcing computations of fog devices,” Future
Generation Computer Systems, 2016.

[25] W. Du, M. Murugesan, and J. Jia, “Uncheatable grid computing,” in
Algorithms and theory of computation handbook, pp. 30–30, Chapman
& Hall/CRC, 2010.

[26] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in Security and Privacy
(SP), 2014 IEEE Symposium on, pp. 443–458, IEEE, 2014.

[27] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair proto-
cols,” in International Cryptology Conference, pp. 421–439, Springer,
2014.

[28] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize correct
computations,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 30–41, ACM, 2014.

[29] R. Kumaresan and I. Bentov, “Amortizing secure computation with
penalties,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 418–429, ACM, 2016.

[30] X. Chen, J. Li, and W. Susilo, “Efficient fair conditional payments for
outsourcing computations,” IEEE Transactions on Information Foren-
sics and Security, vol. 7, no. 6, pp. 1687–1694, 2012.

[31] J. Lind, I. Eyal, P. Pietzuch, and E. G. Sirer, “Teechan: Payment chan-
nels using trusted execution environments, 2017,” URL https://arxiv.
org/pdf/1612.07766. pdf.[Online.

[32] T. Lundqvist, A. de Blanche, and H. R. H. Andersson, “Thing-to-thing
electricity micro payments using blockchain technology,” in Global
Internet of Things Summit (GIoTS), 2017, pp. 1–6, IEEE, 2017.

[33] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” Technical Report (draft), 2015.

[34] “Raiden Network.” https://raiden.network/.

6

https://software.intel.com/en-us/node/709014
https://software.intel.com/en-us/node/709014
https://www.ee.ucl.ac.uk/~ipsaras/files/named-function-security.pdf
https://www.ee.ucl.ac.uk/~ipsaras/files/named-function-security.pdf
https://raiden.network/

	Introduction
	Background
	Blockchain and Smart Contracts
	Trusted Execution Environment

	Threat Model and assumptions
	Smart Payments
	System Overview
	Requestor
	Execution Node
	Smart Contract

	Evaluation
	Security Analysis
	Smart Contract evaluation

	Related Work
	Conclusion
	References

