
A Lightweight Authentication and Key Exchange
Protocol for IoT

Abdulrahman BIN Rabiah∗, K. K. Ramakrishnan∗, Elizabeth Liri∗ and Koushik Kar†
∗Department of Computer Science and Engineering, University of California, Riverside

Email: abinr001@ucr.edu, kk@cs.ucr.edu, eliri001@ucr.edu
†Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute

Email: koushik@ecse.rpi.edu

Abstract— Security in IoT environments is critical, as there
are many situations where IoT devices provide sensory infor-
mation that needs to be shared securely. However, providing
authenticated and secure communication for IoT devices can
be a challenge. IoT devices have many constraints, including
limitations in computation, power, memory and energy. Moreover,
they often have to go through a gateway/sink to connect to the
network. For secure communication to the rest of the network,
the IoT device needs to trust the gateway/sink, and this requires a
means for the device to authenticate the gateway and vice-versa.
We also seek to support secure communication even when the
IoT device and gateway are disconnected from the rest of the
network. In this paper, we provide a lightweight authentication
and key exchange protocol for such IoT environments where
the IoT device and gateway are communicating over a wireless
channel. Our protocol depends on each pair of devices having two
unique keys, a master key and an initial session key, provided at
configuration time. The session key is constantly changing, and is
used as the key for exchanging frames securely during a session.
The protocol is lightweight and uses only symmetric-key cryptog-
raphy and Hashed Message Authentication Code (HMAC)-based
key derivation function (HKDF) to provide authentication, key
exchange, confidentiality and message integrity. The protocol does
not depend on any Trusted Third Party (TTP), and is a good fit
for disconnected IoT environments. The keys are never exchanged
over the network, providing perfect forward secrecy. The protocol
is efficient in the amount of computation required, memory and
energy usage.

I. INTRODUCTION

The use of IoT devices is growing and sensors are becom-
ing increasingly ubiquitous in our lives. There are a number of
areas where critical functions, such as monitoring a patient’s
health status and the environment, depend on data collected
from IoT devices. Some functions may frequently send large
amounts of data, such as for video surveillance. Such data must
be shared in a secure and authenticated manner.

IoT devices are resource constrained, being limited in
processing, memory and the availability of power, especially
because a lot of them are powered by batteries. They also
mostly use wireless as the physical medium of communication.
The IoT device uses the gateway/sink as the primary entity

through which it communicates with the rest of the environ-
ment. For this reason, we seek to have secure and authenticated
communication between the IoT device and the gateway/sink
that it communicates with. However, traditional authentication
and key establishment protocols are not entirely suitable in
the IoT environment, because of its specific constraints. Using
public key cryptography for authentication and key establish-
ment is not feasible because of the dependence on a Trusted
Third Party (TTP), and its high computational requirement.
Public key cryptography places a severe demand on compute
capability, memory and battery consumption that cannot be
met in typical IoT devices. IoT environments may also need
to operate in a disconnected mode, with no access to a TTP.

Authentication and key exchange between two nodes with-
out a trusted third party requires some form of a priori estab-
lishment of a shared secret between the nodes. In addition, it
is important to eliminate the single point of ’failure’ (exposure
of the secret) in the system. For this reason, we seek to have
more than one secret key. Each secret key serves a different
purpose. Moreover, we think it is important that the protocol
provide Perfect Forward Secrecy (PFS). PFS means that even if
the long-term secret key is known somehow at some point, all
past session communications must still be secure. In addition,
a different session key for each session allows a smaller
number of messages encrypted with one session key, making
it more difficult for the attacker to find session keys using
cryptanalysis. Moreover, even if the attacker is able to find a
session key somehow, that session key (being specific to that
session) is not useful in decrypting data of future sessions. This
motivates the use of limited-life session keys in the lightweight
authentication and key exchange protocol for IoT environments
that we propose in this paper.

A common practice in IoT security nowadays is to have
IoT devices already provisioned with digital certificates, signed
by the manufacturer, which are used for authentication and
key exchange. However, this common approach requires IoT
devices to have high computational capability and high power
consumption, as digital certificates rely on public key cryp-
tography. In contrast, we propose using symmetric key cryp-
tography, which is much simpler. Moreover, the common
approach requires more memory as public key cryptography
uses longer keys compared to symmetric key cryptography and
digital certificates, which are a few KB have to be stored. Our
proposed protocol has a much smaller memory requirement.
Relying on digital certificates without contacting a TTP creates
the single point of ’failure’ as the only system secret for

Workshop on Decentralized IoT Security and Standards (DISS) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-51-7
https://dx.doi.org/10.14722/diss.2018.23004
www.ndss-symposium.org

authentication is the private key. If the only system secret
is compromised somehow, with this common approach, the
authentication and key exchange can be done by the attacker;
in contrast, the proposed protocol does not depend solely on
one system secret for authentication and key exchange, so even
if one of system secrets is found somehow, the authentication
and key exchange process cannot be spoofed by the attacker.

The protocol we propose has two keys shared between the
IoT device and the gateway: a shared long-term symmetric
master key, denoted by Km, and a shared short-term symmetric
session key, denoted by Ks. The initial session key, is denoted
by Kiks. Both the master key and the initial session key are in-
serted manually once into the IoT device and the gateway/sink.
Each gateway authenticates the IoT device and vice versa
using messages exchanged between the two devices, which are
encrypted using the shared Km and hashed using the shared
Kiks. Moreover, the protocol ensures that both ends continue
to have a shared Ks, that is used for encrypting and hashing
session messages. More importantly, the secret keys are never
exchanged explicitly over the network. A re-authentication
and update of session key, Ks, takes place periodically. The
messages exchanged between updates is termed a ‘session’.
Each session has a threshold, which is a maximum number of
frames exchanged in that session. The update of the session
key, Ks, is based on a random set of the frames exchanged
in the previous session as well as the previous Ks, and the
master key Km. As a result, even if the attacker found the
Ks somehow at some point, he would not be able to calculate
next session keys and decrypt messages unless he has both
the Km and the current Ks. Additionally, since it is hard to
have a perfect channel where all frames are captured by the
attacker [12], our protocol forces the attacker to face three
different obstacles. Overcoming the IoT system’s security is
thus much more difficult.

In addition, our protocol takes into consideration the var-
ious constraints and requirements of IoT environments. It
uses lightweight mechansims: symmetric key cryptography
and a Hashed Message Authentication Code (HMAC)-based
Key Derivation Function (HKDF) [2], [6] for confidentiality,
message integrity, authentication and key exchange. It seeks to
minimize the number of messages (and total bytes exchanged)
for authentication and key exchange [3], [7], [9]. It also does
not rely on a central, trusted third party in any way. This
provides a secure, fast as well as energy and space efficient
authentication and key exchange protocol.

The rest of the paper is organized as follows: The next
section describes related work. Section III describes the system
model and assumptions, including the network attack models
considered. Section IV discusses the proposed protocol in
detail and Section V discusses the analysis of the security of
the proposed protocol. We conclude in Section VI.

II. RELATED WORK

There are a number of authentication and key establishment
protocols that have been proposed for use in an IoT environ-
ment. Some use public key cryptography for authentication
and key establishment [5], [10], which is expensive consid-
ering the resource-constraints of IoT devices. Others require
authentication and key establishment using a central trusted

third party [8], such as a Certificate Authority (CA). However,
this is difficult to use in disconnected environments. Another
approach is to depend on the hardware capability for intro-
ducing randomness for authentication and key establishment
using Physically Unclonable Function (PUF) [1]. While the
PUF approach is helpful, it is still not yet widely deployed in
devices, which prompts us to look at alternatives.

One approach examines key establishment separately [12],
utilizing the randomness in wireless channels to update the
session key. This approach depends mainly on the reasonable
assumption that the wireless channel is not perfect (loss free).
The design uses a different session key for each session, a
design philosphy that we leverage as well. A session is defined
by a threshold number of “One Time Frames” (OTFs), where
this number is agreed upon a priori. OTFs are frames trans-
mitted and received exactly once (i.e., without retransmission
of those frames). It assumes that both entities start with a
publicly well-known fixed value as the initial session key. This
key is used to encrypt the session’s frames initially. During a
session, OTFs are stored at both ends, and after a threshold
of OTFs are communicated, the session keys are updated. To
update the session key, the current session key and OTFs are
used together to incrementally generate a new session key. The
design depends on the attacker not having the same channel
conditions as the receiver and therefore will see a different
subset of OTFs. However, an attacker with a perfect channel
(e.g., being very close to the transmitter) makes this scheme
susceptible to both passive (e.g., eavesdropping) and active
attacks (e.g., hijacking). Our protocol therefore removes this
dependency on OTFs and the attacker having an imperfect
wireless channel, and builds on the technique proposed in [12].

III. IOT ENVIRONMENT CONSTRAINTS AND
REQUIREMENTS

IoT environments are associated with a number of con-
straints. Foremost, IoT devices have limited energy as they
are primarily dependent on batteries (e.g., disposable coin cell
batteries that might last for 1-2 years at most with limited
use). Second, IoT devices have limited processing capabilities
and limited memory, with only a few KB of RAM and tens
of KB of EEPROM. IoT devices rarely have fast re-writable
non-volatile data storage.

In addition, the IoT device and gateway may have to
operate in a disconnected environment, limiting access to a
central entity or a trusted third party. Finally, the approach for
managing these devices needs to be scalable as there are likely
to be a very large number of IoT devices, and it is important
to have as little human intervention as possible.

A. Network Model and Assumptions

The generic network topology that we consider is shown in
Figure 1. There are multiple IoT devices and a single Gateway,
and each IoT device communicates with other nodes only
through the Gateway. We assume, in this paper, that MAC
layer protocol on the wireless link delivers packets reliably,
in-sequence.

A new IoT device added to this IoT network will first have
to authenticate with the gateway and vice-versa to establish
communication with the rest of the environment. We assume

2

Gateway/Sink

Fig. 1: Network Topology

that both the IoT device and the gateway have a limited amount
of non-volatile storage in the form of an EEPROM that can
store shared keys. We further assume that a limited amount of
manual configuration is feasible, so that the administrator can
set up shared keys for the gateway and IoT device on a pair-
wise basis. We assume that an attacker does not have physical
access to the devices and thus cannot access the configured
keys that are stored on the devices.

B. Attack Scenarios

In this section, we consider the range of possible ways
that an attacker with access to the link may seek to exploit
vulnerabilities in the protocol we design. We then describe
(briefly) how these attacks are prevented by our protocol
described in this paper.

1) An attacker may try to sniff or modify session mes-
sages.

2) An attacker may seek to discover the secret keys
by snooping on the authentication and key exchange
traffic.

3) An attacker may try to modify or spoof authentication
and key exchange messages to cause disruptions.

4) An attacker may try to launch replay attacks to cause
disruptions.

5) An attacker may launch man-in-the-middle attacks
and have unauthorized access to confidential mes-
sages and possibly alter them.

We believe that our protocol is designed to thwart all of
these attacks, and we have performed a security analysis of
the protocol (described briefly in Section V) to verify this.

IV. LIGHTWEIGHT AUTHENTICATION AND KEY
EXCHANGE PROTOCOL

As mentioned earlier, for each Gateway-IoT device pair, we
maintain two shared secret keys: a shared long-term symmetric
master key, called Km; and a second, shared short-term
symmetric session key, called Ks. Initially, the Km and Ks

are manually inserted into both devices, in non-volatile storage
such as EEPROM. The specific initial value of Ks, that is
added manually is denoted by Kiks. Each IoT device and
Gateway pair has a unique pair of Km and Kiks, specific for
their use and both Km as well as Kiks play an important role in

authentication in our protocol. IoT devices and the Gateway
are authenticated using messages encrypted with the shared
Km and hashed with the shared Kiks while both nodes use
the shared Ks to encrypt and hash messages during a session.
The protocol makes use of authenticated encryption, namely
the Counter with CBC-MAC (CCM) block cipher mode [4],
[11], to ensure confidentiality and message authentication in
all phases. With CCM mode, CBC-MAC is used to calculate
a Message Authentication Code (MAC) for the whole frame
(header, nonce and payload) using a symmetric secret key
(either Km or Ks, depending on the phase) and the Counter
mode is used to encrypt the payload as well as the MAC
using a nonce and symmetric secret key (either Kiks or Ks,
depending on the phase) whereas the header needs to be in
plaintext so that the other end can learn some information
about the frame in order to process it, such as the MAC
addresses. A new session begins when the number of session
frames exchanged during the previous session reaches a preset
threshold (agreed upon a priori by both sides).

Ks is updated regularly for each session, and is never ex-
changed explicitly over the network. In addition when updating
Ks, the previous value of Ks is used, so that the value of Ks

is cumulative, meaning the new session key Ks depends on
the previous session’s Ks.

The protocol we propose takes advantage of the random-
ness in regular frames and uses it to generate more random
session keys. Both entities integrate randomness by incorpo-
rating a randomly selected set of future session frames into a
newly generated Ks. This set of future session frames is agreed
on and communicated securely using another secret key, Km,
every time a Ks update takes place. Since the frame threshold
is known by both entities, the range of frame sequence numbers
till the next Ks update can be calculated. Using a random
number generator, the Gateway selects a random set of future
frame sequence numbers within this range so that both entities
keep only those frames in a buffer. For each session, the
larger the number of frame sequence numbers selected, the
more random the new Ks is. This randomness provides better
security for the exchange of Ks. However, we note that IoT
devices have limited memory, which can limit the number of
session frames they can buffer.

Thus, with every new session, it becomes harder for the
attacker to keep up with the Ks updates. To violate confiden-
tiality, the attacker would need to have both the Km and Ks.
Although it is hard to have a perfect channel where all frames
are captured [12], we make no assumption about the ability of
the attacker to have or not have a perfect channel to capture all
the frames sent by the IoT device or the Gateway. When there
is a failure in synchronization of the Ks at either end for any
reason, whether malicious or non-malicious, either device can
always initiate a reset of the Ks to a new random key derived
from Kiks, along with nonces, so they can always have a stable
communication channel.

A. Initial Setup Phase for a New IoT Device

When an IoT device first joins the network, the initial
setup needed for both the IoT device and the gateway is to
authenticate each other and negotiate a Ks. This is done using
the shared Km and the Kiks that have been installed manually

3

Acronym Definition
Km Shared long-term symmetric master key
Ks Shared short-term symmetric session key
Kiks Initial Ks

IDI IoT device ID
IDG Gateway ID

Nonce1 Randomly generated value used once
Nonce2 Randomly generated value used once

RandFrmSeqsi Random set of sequence numbers of session (i − 1) frames to be used in session i’s session key update
RandFrmSeqsi+1 Random set of sequence numbers of session i frames to be used in session (i + 1)’s session key update

RandFrmi Random frames from last session (session (i − 1)) based on RandFrmSeqsi

KeyLength Desired length of the derived key

TABLE I: Glossary

into both the gateway and new IoT device. Figure 2 shows the
protocol interaction.

IoT Device Gateway

IoT device
authenticates
Gateway.

IDI, ‘initialization’,	𝐸#$(Nonce1),
	𝐸#$(𝑀𝐴𝐶#()*(Message 1))
IDG, 𝐸#$

(Nonce2,
RandFrmSeqsi+1, Nonce1),
	𝐸#$(𝑀𝐴𝐶#()*(Message 2))

IDI, 𝐸#$
(h(Nonce2 ||

RandFrmSeqsi+1)),
	𝐸#$(𝑀𝐴𝐶#()*(Message 3))

Message 1

Message 2

Message 3

IDG, 𝐸#$
(‘Ack’) ,

	𝐸#$(𝑀𝐴𝐶#()*(Message 4))
Message 4

Gateway
authenticates IoT
device.

𝐾*=	HKDF𝐾()* (Nonce1
|| Nonce2,
KeyLength).
Session message
exchanges start

𝐾*=	HKDF𝐾()* (Nonce1 ||
Nonce2, KeyLength).

Session message
exchanges start

Fig. 2: Initial Setup Phase

a) Message 1: The IoT device sends its IDI , an ‘ini-
tialization’, a Nonce1 and MACKiks

(Message 1), encrypted
with the Km to the gateway. In order to prove its identity, the
authenticator, which is the IoT device at this point, provides
a new challenge, Nonce1, that will be used by the supplicant,
Gateway. Additionally, using Kiks to calculate the MAC for
the whole message, including the nonce verifies both the data
integrity and the authenticity of the message, thus helping to
prevent disruptions that may be caused by an attacker who has
determined the Km somehow.

b) Message 2: Upon receipt of the first message from
the IoT device, the Gateway first selects a random set of
sequence numbers of future frames, RandFrmSeqsi+1, to
be considered when updating the Ks next time. This is
communicated, along with a Nonce2 (a new challenge picked
by the Gateway) and Nonce1, to the IoT device, as part of
Message 2. The Nonce2, RandFrmSeqsi+1 and Nonce1 are
encrypted with the master key, so that it is confidentially
exchanged with the IoT device. Thus, when this session starts,
the IoT device will retain a copy of frames with those sequence
numbers to be used in the next Ks update.

In order for the IoT device to authenticate the Gate-
way and also confirm that it received the right set of

RandFrmSeqsi+1, the Gateway also calculates the MAC of
the whole message, including Nonce1 and RandFrmSeqsi+1

using the Kiks as a key and sends it to the IoT device. The
IoT device can thus verify that the Gateway has the correct
Kiks and has received Nonce1 correctly, when it calculates
the corresponding MAC using Kiks. All the parameters sent
by the Gateway, IDG, the encrypted Nonce2, along with the
RandFrmSeqsi+1, and the Nonce1 are encrypted using Km

and hashed using Kiks.

c) Message 3: When the IoT device receives Message
2, it verifies that the hash value of the MAC, that it just
received matches what it calculates based on the decrypted
message using Km. The IoT device marks the Gateway as
authenticated and confirms that the IoT device has received
the right set of RandFrmSeqsi+1. Moreover, the IoT device
verifies that the Gateway has the correct Kiks and has received
Nonce1 correctly from Message 1, thus authenticating the
Gateway.

The IoT device calculates the hash of Nonce2 and
RandFrmSeqsi+1. h(Nonce2||RandFrmSeqsi+1) and
MACKiks

(Message 3) are communicated to the Gateway for
it to authenticate the IoT device and for it to confirm that
the RandFrmSeqsi+1 was received correctly by the IoT
device. The IoT device sends IDI , and the encryption of
h(Nonce2||RandFrmSeqsi+1) and MACKiks

(Message 3)
using Km.

d) Message 4: When the Gateway receives Message
3, it verifies the MAC. If valid, the Gateway marks the
IoT device as authenticated, and it knows the IoT device has
received the right set of RandFrmSeqsi+1. This also lets the
Gateway know that the IoT device has the correct Kiks and
has received Nonce2 correctly from Message 2. The Gateway
sends IDG, the encryption of an ack and MACKiks

(Message
4) using Km to the IoT device for it to confirm that Message
3 was received correctly by the Gateway. The Gateway now
sets Ks to a random key derived from Nonce1 and Nonce2,
used as a salt input (a random value), using Kiks as a HKDF
key.

When the IoT device receives Message 4, it verifies the
MAC. If valid, the IoT device knows Message 3 was received
correctly. The IoT device sets Ks to the random key derived
from Nonce1 and Nonce2 using Kiks as a HKDF key.

4

B. Normal Communication between Gateway and IoT Device

During normal communication between the IoT device
and Gateway, both devices have agreed upon a Ks, and they
exchange messages securely using Ks. During this phase,
both devices keep the frames corresponding to the current
RandFrmSeqsi+1 to be used for the next Ks update until
the threshold of frames exchanged is reached. Not only is
the RandFrmSeqsi+1 not known to the adversary, it is also
possible that not all of the frames of the session received by
the adversary. IoT link layer protocols such as IEEE 802.15.4
are also capable of protecting the confidentiality and integrity
of data. Therefore, our protocol provides the link layer with
the Ks for this purpose. An approximate session interaction
is shown in Figure 3. Normal session frames are encrypted
and hashed with the Ks and sent to the other end. An ack,
encrypted and hashed with the Ks, is sent by the receiver to
acknowledge correct receipt of a frame. When the threshold
of frames exchanged is reached, we go to the next phase for
update of Ks.

Gateway sends
acknowledgments

IoT Device Gateway

...

	𝐸#$ (Ack), 	𝐸#$ (𝑀𝐴𝐶#$
(Ack i))

	𝐸#$ (Data), 	𝐸#$ (𝑀𝐴𝐶#$ (Message i))

	𝐸#$ (Data), 	𝐸#$ (𝑀𝐴𝐶#$ (Message n))

	𝐸#$ (Ack), 	𝐸#$ (𝑀𝐴𝐶#$
(Ack n))

IoT device sends
session data

Message i

Ack i

Message n

Ack n

Fig. 3: Normal Communication between Gateway and IoT
Device

C. Session Key Update

The update of Ks is shown in Figure 4.

IoT Device Gateway
𝐾"= HKDF𝐾"(𝐾#,
RandFrmi,
KeyLength)

IoT device
authenticates
Gateway

Message 1

Message 2

Message 3

IDI, ’update key’,
𝐸%#

(Nonce1),	𝐸%#(𝑀𝐴𝐶%" (Message1))

IDG, 𝐸%#
(Nonce2, RandFrmSeqsi+1,

Nonce1),	𝐸%#(𝑀𝐴𝐶%" (Message 2))

IDI, 𝐸%#
(h(Nonce2 ||

RandFrmSeqsi+1)),	𝐸%#
(

𝑀𝐴𝐶%"
(Message 3))

Session message
exchanges start

Session message
exchanges start

Gateway
authenticates IoT
device

𝐾"= HKDF𝐾"(𝐾#,
RandFrmi,
KeyLength)

Fig. 4: Session Key Update

a) Message 1: The IoT device calculates Ks for the
next session, which will be the HKDF of random frames based
on RandFrmSeqsi, used as an information input (context and
application specific information), that it received in the last

session, and Km, used as a salt input, using the current Ks.
Then, the IoT device sends IDI , the command to ‘update key’
and Nonce1, along with MACKs (Message 1) encrypted with
the Km to the Gateway.

b) Message 2: When the Gateway receives the update
key message, it verifies the threshold has been reached as well
as the MAC. It then calculates Ks for the new session, as the
HKDF of the random frames based on RandFrmSeqsi, used
as an information input, and Km, used as a salt input, using the
current Ks. It calculates the MAC using Ks as a key which
is communicated to the IoT device in this step. The Gateway
sends IDG and the encryption of Nonce2, RandFrmSeqsi+1,
Nonce1 and MACKs

(Message 2) using the Km to the IoT
device.

c) Message 3: When the IoT device receives Mes-
sage 2, it marks the Gateway as authenticated by verify-
ing the MAC as in Sec IV-A. It calculates the hash of
Nonce2 and RandFrmSeqsi+1 to match the action at the
Gateway. The IoT device sends IDI and the encryption
of h(Nonce2||RandFrmSeqsi+1) and MACKs

(Message 3)
using Km. When the Gateway receives Message 3, it marks
the IoT device as authenticated once the MAC is verified,
and this completes the update phase.

D. Mutual Re-Authentication and Re-Establishment of Session
Keys

When there is a failure in synchronization of Ks at either
end for any reason, whether malicious or otherwise, both
devices can renegotiate Ks securely. Recall that both Km

and the Kiks are maintained in both devices in non-volatile
memory throughout. Thus, both devices use Km and Kiks

to re-authenticate and re-establish a newly generated random
Ks derived from Nonce1, Nonce2 and Kiks, which makes
Ks to be different with high probability, each time a reset
of Ks is performed. For example, the IoT device or Gateway
may reboot for any reason, resulting in both ends having to
reset their Ks to a new random Ks and re-authenticate and
re-establish the session key securely, as shown in Figure 5.

IoT Device Gateway

IoT device
authenticates
Gateway.

IDI, ‘reset’,	𝐸#$(Nonce1),
	𝐸#$(𝑀𝐴𝐶#()*(Message 1))
IDG, 𝐸#$

(Nonce2,
RandFrmSeqsi+1, Nonce1),
	𝐸#$(𝑀𝐴𝐶#()*(Message 2))

IDI, 𝐸#$
(h(Nonce2 ||

RandFrmSeqsi+1)),
	𝐸#$(𝑀𝐴𝐶#()*(Message 3))

Message 1

Message 2

Message 3

IDG, 𝐸#$
(‘Ack’) ,

	𝐸#$(𝑀𝐴𝐶#()*(Message 4))
Message 4

Gateway
authenticates IoT
device.

𝐾*=	HKDF𝐾()* (Nonce1
|| Nonce2,
KeyLength).
Session message
exchanges start

𝐾*=	HKDF𝐾()* (Nonce1 ||
Nonce2, KeyLength).

Session message
exchanges start

Fig. 5: Mutual Re-Authentication and Re-Establishment of
Session Keys

This process is very similar to the initial authentication
and key establishment discussed in Section IV-A, except for

5

the command to ’reset’ instead of ’initialization’. The main
distinction is that all outstanding frames are flushed from the
memory at both devices so that both devices have same frames
for the next update of Ks.

V. SECURITY ANALYSIS

We have done a careful security analysis of the proposed
protocol for a range of possible attacks that was described
in Section III-B. We believe that having both the keys, Km

and Ks provide better security as it makes it more difficult
for the attacker to derive both keys. Our analysis showed that
knowing just one of the two keys is not sufficient to violate
the confidentiality and message integrity of our protocol. We
also were able to show that the proposed protocol satisfies the
important perfect forward secrecy (PFS) property. We highlight
a few key points here:

1) The length of Km and Ks makes it difficult to use
brute force tactics to find them.

2) Knowing Km alone is not sufficient to decrypt ses-
sion messages since they are encrypted using another
key.

3) The session keys are never explicitly exchanged in
the messages; knowing Km is not enough to know
Ks.

4) Even if an attacker knows Km, has a perfect channel,
and has recorded all messages exchanged from the
very beginning, they still cannot obtain a Ks because
the keys are never exchanged explicitly over the
network. In addition, the attacker cannot calculate
current Ks because it depends on the previous Ks.

5) If an attacker knows Ks and even if he has a perfect
channel, he cannot know the agreed upon random
frames that will be used to construct the next session’s
key.

6) If only Km is known and the IoT device is rebooted
or the channel is jammed by the attacker who also
records all the messages exchanged, the protocol
remains robust against man-in-the-middle attacks and
session hijacking.

7) If the attacker only knows Km at the initial setup
phase, man-in-the-middle or session hijack attacks
still cannot succeed because the attacker has to have
the other key, Kiks, to prove it is the legitimate entity
to the other end.

We do not include the details of our security analysis due
to space limitations.

VI. CONCLUSIONS

We propose a lightweight authentication and key exchange
protocol to help secure communication in IoT environments
that typically communicate over wireless channels. The pro-
posed protocol aims to provide secure, lightweight, energy and
space efficient authentication and key exchange for resource-
constrained devices without depending on a central trusted
third party. The protocol’s main strengths include having secret
keys that are not explicitly exchanged over the air. The protocol
frequently updates the symmetric session key used for encrypt-
ing and hashing the data exchanged based on a random (but
previously agreed upon) number of frames of a session. We

also introduce two obstacles that have to be compromised to
break the protocol, namely a symmetric long-term key (Km),
a symmetric short-term key (Ks). In the proposed protocol,
therefore, there is no single component that can be exploited by
an attacker to compromise the authentication and key exchange
protocol or the confidentiality and integrity of the information
exchanged. For future work, we will enhance our protocol to
require only one pre-shared key and still achieve PFS, but it
would need to rely on a commit protocol. We are currently
working on accommodating lossy links.

ACKNOWLEDGMENT

This work was supported in part by NSF grant CNS-
1619441 and a gift from Futurewei Technologies.

REFERENCES

[1] M. N. Aman, K. C. Chua, and B. Sikdar, “Secure data provenance for
the internet of things,” in Proceedings of the 3rd International Workshop
on IoT Privacy, Trust, and Security, ser. IoTPTS ’17. ACM, 2017, pp.
11–14.

[2] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” in Crypto, vol. 96. Springer, 1996, pp. 1–15.

[3] L. Casado and P. Tsigas, “Contikisec: A secure network layer for
wireless sensor networks under the contiki operating system,” Identity
and Privacy in the Internet Age, pp. 133–147, 2009.

[4] P.-A. Fouque, G. Martinet, F. Valette, and S. Zimmer, “On the security
of the ccm encryption mode and of a slight variant,” in Applied
Cryptography and Network Security. Springer, 2008, pp. 411–428.

[5] H. R. Hussen, G. A. Tizazu, M. Ting, T. Lee, Y. Choi, and K.-H. Kim,
“Sakes: Secure authentication and key establishment scheme for m2m
communication in the ip-based wireless sensor network (6l0wpan),” in
Proceedings of Fifth International Conference on Ubiquitous and Future
Networks (ICUFN), July 2013, pp. 246–251.

[6] H. Krawczyk, “Cryptographic extraction and key derivation: The hkdf
scheme.” in CRYPTO, vol. 6223. Springer, 2010, pp. 631–648.

[7] P. Mahajan and A. Sachdeva, “A study of encryption algorithms aes,
des and rsa for security,” Global Journal of Computer Science and
Technology, 2013.

[8] P. Porambage, C. Schmitt, P. Kumar, A. Gurtov, and M. Ylianttila,
“Pauthkey: A pervasive authentication protocol and key establishment
scheme for wireless sensor networks in distributed iot applications,”
International Journal of Distributed Sensor Networks, vol. 10, no. 7, p.
357430, 2014.

[9] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “Analyzing
the energy consumption of security protocols,” in Proceedings of
International Symposium on Low Power Electronics and Design, ser.
ISLPED ’03. ACM, 2003, pp. 30–35.

[10] Y. Qiu and M. Ma, “A mutual authentication and key establishment
scheme for m2m communication in 6lowpan networks,” IEEE Trans-
actions on Industrial Informatics, vol. 12, no. 6, pp. 2074–2085, Dec
2016.

[11] D. Whiting, R. Housley, and N. Ferguson, “Counter with cbc-
mac (ccm),” Internet Requests for Comments, RFC Editor,
RFC 3610, September 2003. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3610.txt

[12] S. Xiao, W. Gong, and D. Towsley, “Secure wireless communication
with dynamic secrets,” in Proceedings of IEEE INFOCOM 2010, March
2010, pp. 1–9.

6

