
Distributed Security Risks and Opportunities
in the W3C Web of Things

Michael McCool
Intel Corporation

michael.mccool@intel.com

Elena Reshetova
Intel Corporation

elena.reshetova@intel.com

Abstract—The W3C Web of Things (WoT) WG has been de-
veloping an interoperability standard for IoT devices that includes
as its main deliverable a “Thing Description”: a standardized
representation for the metadata of an IoT device, including in
particular a description of its network interface, but also allowing
for multiple levels of semantic annotation. The WoT Thing
Description supports a descriptive (as opposed to prescriptive)
approach to interoperability. The provision of rich descriptive
metadata has at least five major implications for security. First,
the need for local links and, more generally, the intermittently
connected and segmented networks often used in IoT raises
several practical considerations regarding what metadata should
be provided. Second, metadata allows for system-wide vulner-
ability analysis, which can be both a risk and an opportunity.
Third, metadata can enable end-to-end security in multistandards
networks, avoiding exposing unencrypted data within bridges oth-
erwise needed for adapting standards pairwise. Fourth, metadata
supports service and device discovery, which raises the question
of how to limit discovery to authorized agents. Fifth, metadata
can enable distributed security mechanisms for access control
and micropayments. To the extent that metadata access can
be decentralized, decentralized mechanisms for security can be
supported.

I. INTRODUCTION

The economic impact of the IoT will be strongly dependent
on how well devices from different manufacturers can inter-
operate. Very often wide interoperability is taken for granted
when estimating the business benefit of IoT. However, if IoT
devices do not interoperate, a recent study [14] concluded that
40% to 60% of the benefit of IoT will be unattainable, due to
the inability to address use cases that cannot be satisfied by a
single manufacturer.

Full interoperability is hard to achieve. There are currently
many competing IoT standards under development, each of
which is attempting to address interoperability. Most of these
standards are prescriptive. In a prescriptive standard, devices
are validated against specific requirements. Typically the goal
is that devices validated against a particular standard will
interoperate with other devices also validated against that

standard. It is also possible to bridge multiple standards so that
devices validated against one standard can communicate with
devices using another standard by translating communication
protocols and payloads. If one standard comes to dominate
bridging will be unnecessary, but so far such unification seems
to be elusive. Unification is complicated by the divergent
requirements in different but overlapping IoT subdomains. As
an example of divergent requirements, some application areas
require real-time response (bounded low-latency responses)
and others require low power (requiring long sleep times) or
wireless access (in which it is very difficult to acheive real-
time guarantees due to the possibility of interference or colli-
sions). Basic interaction patterns can also vary: some standards
use a web-inspired resource-centric (RESTful) client/server
interaction model, while others use a message-centric publish-
subscribe model.

In addition to the issue of interoperability between modern
prescriptive IoT standards, there are always going to exist
devices that follow older standards or specifications. There are
decades-old devices in particular domains, such as building
and factory automation, that are just now being connected
to the IoT. These devices often represent major investments
and cannot be economically replaced with newer devices
conforming to the latest standard. This is the “brownfield”
problem. Moreover new devices are being deployed today and
for the forseeable future that have not been validated against
any particular IoT standard, even if they use other de jure or
de facto standards such as JSON, HTTP, or MQTT.

As an alternative to the prescriptive approach, the W3C
Web of Things (WoT) Working Group has been developing a
descriptive approach to IoT interoperability. In the descriptive
approach, metadata is provided that describes how to commu-
nicate with each particular device, using a set of interaction
patterns that includes as a subset both resource-centric and
message-centric interaction models. The metadata itself is
standardized but flexible enough to describe a wide variety of
IoT network interfaces. With this approach, devices can but do
not have to be prevalidated against a particular standard before
being deployed. They can be described after the fact, and do
not need any modification to be used as part of a Web of Things
system. This solves the brownfield problem and allows older
devices as well as devices satisfying different IoT standards to
be integrated into a unified system.

This approach has both risks and opportunities from a
security point of view. Most obviously, IoT devices, even
those conforming to a prescriptive IoT standard, may vary
widely in their support for security. Therefore a Web of Things

Workshop on Decentralized IoT Security and Standards (DISS) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-51-7
https://dx.doi.org/10.14722/diss.2018.23008
www.ndss-symposium.org



system needs to manage different levels of trust for different
devices. Devices from different ecosystems or manufacturers
may also take different approaches to security, have different
trust models, have different levels of acceptable risk, and may
use different security mechanisms. This may cause integration
challenges, even if the necessary information is provided in
the metadata.

It is vital that new standards are analyzed for security risks
before, not after, deployment. The goal of this paper is to
start the discussion of the risks and opportunities presented by
WoT metadata and, more generally, the descriptive approach to
interoperability. We do not present solutions, but rather a set
of problems. We have identified at least five such problems:

1. Local Links: End-point IoT devices can be deployed in
many ways: starting with deployments in closed, only locally
accessible, networks; extending to systems on local networks
but behind a proxy or a firewall providing access to the
global internet; and ending with deployments on a globally
addressed network. In fact, it may be possible to reach the same
device via multiple paths. As a result the metadata provided
by IoT devices should allow for expression of different ways
(links) to reach each device and a way to securely update
this information when the deployment setup changes. Security
mechanisms with assumptions about global connectivity also
may not operate correctly in disconnected networks. In IoT
deployments, even nominally fully connected systems may
have to deal with frequent loss of full connectivity.

2. Vulnerability Analysis: Providing information about what
devices can do makes it easier to automatically scan for devices
with vulnerabilities. An attacker may also use this information
to plan attacks that take advantage of vulnerabilities in multiple
devices. However, for the system manager, scanning can also
be an opportunity to identify devices whose vulnerabilities
need to be mitigated.

3. Endpoint Adaptation: Metadata enables end-to-end se-
curity in networks of IoT devices using multiple standards.
Pushing payload adaptation to endpoints is an enabler for end-
to-end encryption of payloads via object security or tunnelled
transports (or both). This contrasts with systems that use local
bridging to connect devices from multiple IoT standards. Local
bridges require opening (and usually re-encrypting) data in
potentially-vulnerable gateways.

4. Secure Discovery: Information about how to use a service,
and ideally even its existence, should ideally not be disclosed
to entities without authorization (or more generally, the po-
tential to obtain authorization) to use it. The WoT approach
allows powerful semantic searches to be used for discovery.
How can this capability be made available while still securing
the metadata?

5. Enabling Distributed Security: Metadata may be pro-
vided to enable specific security mechanisms, as well as to
support features with security implications such as payment
or scripting. What specific mechanisms are needed and what
data needs to be provided in order to satisfy the overall goal
of interoperability? Depending on how the metadata is made
available, it may or may not be possible to support decentral-
ized approaches to security. In general, the mechanism used to
provide the metadata is an essential component of the security
architecture.

The next few sections first introduce the W3C Web of
Things draft standard, focusing on the Thing Description
metadata format. Then the high-level WoT Threat model will
be introduced, which includes a model of stakeholders, assets,
attackers, and threats, as well as a typical WoT deployment
scenario. Once this context has been established, we will
discuss in detail the above five issues.

II. WEB OF THINGS

The Web of Things (WoT) [13] aims to provide inter-
operability between IoT devices. It does this by defining a
metadata format, the WoT Thing Description, that can describe
a wide range of IoT network interfaces. A Thing Description
can describe the network interfaces of existing devices or can
be produced and consumed by devices running a WoT runtime
supporting a WoT scripting API that normalizes interactions
with other devices with a common abstraction layer. It also
supports semantic annotations based on linked data [11] sup-
porting powerful search and inferencing capabilities.

A. Architecture

The Web of Things (WoT) architecture [13] defines three
basic entities that can be organized into various configurations
and topologies based on a concrete deployment scenario:

• WoT Thing: A software entity representing a physical or
virtual IoT device that exposes a network-facing API for inter-
action. Each WoT Thing has an associated Thing Description
(TD) [12]. A TD encodes a set of metadata describing relevant
information about a Thing, such as semantic categorization,
available interactions, and communication and security mech-
anisms. Typically a WoT Thing plays the network role of a
server that responds to but does not initiate interactions. For
example: A WoT Thing might be a garage door controller.
Such a controller would provide a number of interactions that
can be performed on a garage door, i.e. open, close, etc. and
would provide network interfaces to invoke each of these.

• WoT Client: An entity that can operate on a WoT Thing.
It is able to consume a TD provided by (or for) another WoT
Thing and invoke interactions on its network interfaces. For
example: A WoT Client might be a browser or an application
on a user’s smartphone that allows the user to invoke one of
the interactions provided by the above garage door controller.

• WoT Servient: An entity that can be viewed as a combi-
nation of a client and server. A servient both provides one
or more WoT Thing interfaces (as a server) and at the same
time is able to operate as a WoT Client to invoke interactions
on other WoT Things. For example: A WoT Servient might
be a service running on a home gateway device that provides
a generalized “lock up” service (including closing the garage
door, but also arming the home alarm, securing door locks,
turning off lights, etc.) with its own network interface.

Internally the typical architecture of a WoT Servient is
shown in Figure 1. A WoT Servient supports one or more
Thing Descriptions (TDs) and associated protocol binding
templates. The binding templates are used to instantiate a TD
for a particular IoT protocol, such as OCF, HTTP, MQTT,
CoAP etc.

2



Fig. 1. WoT Servient architecture

A WoT Servient can also host a WoT Runtime and a
WoT Scripting API. The WoT Scripting API is an optional
component that allows implementing the logic of an appli-
cation Servient in a standardized way using a higher-level
programming language (the current WoT draft focuses on
JavaScript). In this document, however, we focus on the secu-
rity implications of the metadata alone, and do not consider
further the security implications of the Scripting API (which
raises many additional security issues such as application
isolation, prevention of DDoS attacks, and so on).

B. Threat Model

Due to the large diversity of devices, use cases, deployment
scenarios and requirements for WoT Things, it is impossible
to define a single WoT threat model that would fit every use
case. Instead we have created an overall WoT threat model
framework [17] that can be adjusted by OEMs or other WoT
system users or providers based on their concrete security
requirements.

The threat model defines security-relevant WoT assets and
a set of threats on these assets. Threats can be in or out
of scope based on the deployment scenario, security objec-
tives, acceptable risks, and other factors. For example, in a
smart home scenario involving WoT Things that record au-
dio/video information, privacy would be considered important
and therefore this scenario would have high confidentiality
requirements. On the other hand, in an industry automation
scenario involving WoT Things that control some safety-
critical infrastructure, service availability, access control, and
protection of the equipment and environment controlled by the
Thing may be of the most importance, not privacy.

Deploying the WoT in a distributed system brings addi-
tional complexity to the WoT Threat Model and the choice
of relevant security mitigations. In particular we cannot rely
on single standard communication infrastructure and protocol
(like HTTP/TLS) to provide end-to-end security between all
communicating parties. Instead we need to support multiple
security mechanisms (potentially nested or interdependent) that
must be somehow combined into a unified security solution.

C. Typical Deployment Scenario

Figure 2 presents a typical WoT deployment scenario. A
WoT Thing device together with a WoT Servient are located

on a local network and accessed through a forwarding proxy.
A WoT Client (which may in general be located either outside
of the local network, as shown, but in many use cases may
also be inside) wants to perform interactions on the WoT
Thing and WoT Servient. The available interactions are given
in corresponding Thing Descriptions. There are various ways
Thing Descriptions provided by WoT Things could be made
available to WoT Clients. In this case, the Thing Descriptions
are uploaded by the WoT Thing and WoT Servient to a
Thing Directory. A Thing Directory is a service which can
be accessed by Clients to search for WoT Things it can
communicate with. In order to do this the WoT Client first
needs to issue a discovery query to the Thing Directory. Thing
Directories can support semantic search capabilities, allowing
Things to be discovered based on semantic annotations. Access
to the search capabilities of a Thing Directory should only be
provided to authorized clients, as with any web service. Upon
obtaining a Thing Description, the WoT Client needs to make
sure it has all the necessary credentials to authenticate to the
forwarding proxy (assuming secure authentication on the proxy
is enabled), the WoT Servient and in some cases even to the
specific WoT Thing. Information describing how clients need
to authenticate themselves should be provided in the obtained
Thing Descriptions.

III. RELATED WORK

The WoT approach applies to a wide diversity of IoT
devices and use cases. The final WoT standard has to be able to
support best practices in IoT security which are however still
rapidly evolving, and expected to keep on evolving. Recently
some attempts have been made to define best practices for
IoT security. The IETF Thing-to-Thing Research group has
a RFP under development, State-of-the-Art and Challenges
for the Internet of Things Security [10], which includes a
threat model similar to what we have defined for the WoT.
However, this threat model does not consider the importance
of protecting access to descriptive metadata. The Industrial
Internet of Things has published a comprehensive Security
Framework [18]. This is useful, but focuses on industrial use
cases. The IoT Security Foundation has published a Best Prac-
tices Guidelines [6] document as well. All three documents
consider various additional factors we do not have space to go
into here, such as trust management over the lifecycle of the
device.

There are several survey papers [5], [21], [9] that attempt
to describe the current IoT security challenges and provide
suggestions for future work in the area.

IV. RISKS AND OPPORTUNITIES

A. Local Links

Many issues arise when trying to access IoT devices that
are located on a “local” network, for example behind a NAT
in a Smart Home (consumer) use case, or on a firewalled
operational network in a Smart Factory (industrial) use case.
In addition, devices may be accessible over multiple routes
and protocols, raising the problem of unique identification.

When one hears the term “Web of Things” the assumption
is that HTTP will be used to access IoT devices. While
leveraging web standards was one of the original goals of

3



Fig. 2. Typical WoT deployment scenario

the Web of Things concept [16], the current WoT draft
supports other choices as well, such as CoAP and MQTT.
However, use of HTTP conveniently allows Things acting as
web servers to be accessed directly from web browsers to
provide human user interfaces via HTML. To provide better
security, one would naturally want to use HTTPS rather than
HTTP. Unfortunately the way HTTPS is supported in web
browsers has been designed for globally accessible web sites,
not devices behind NATs that may or may not have a globally
accessible address and may not even be continously connected
to the internet. In particular, certificate revocation checks as
currently implemented in web browsers will not work if the
network both devices are on is not connected to the internet
(for example, if an ad hoc network is used, with the device
acting as an access point) and certificates will not generally be
able to tie the identity of a device to a particular unique URL.

Both of these problems can be avoided by using a cloud
proxy or mirror (digital twin) for the device. In that case
a server in the cloud is used as an intermediary. Unfortu-
nately, this requires an active internet connection even to use
local devices, has relatively high latency, and is bandwidth-
inefficient. Various mechanisms have been explored to deal
with this issue [2] but no generally accepted solution has been
adopted. Therefore a metadata standard needs to be able to
deal with a variety of approaches.

The issues noted above are not directly relevant if humans
do not need to communicate directly with a Thing using a
web browser. In machine-to-machine (M2M) use cases we
have more flexibility in how we establish trust and validate
connections.

Even for M2M use cases there is another issue: the URLs
used to access the same device can vary depending on whether
the device is accessible on the local network or should be
accessed via a global URL (either via NAT port forwarding,
a proxy, or a digital twin). A Thing Description can include
multiple links for each interaction, so in theory both local and
global links can be included in a single Thing Description.
However, a user of a Thing has no easy way to tell if it is on
the same local network as another target Thing, and if not, the
“local” links won’t work. Another approach would be for a
trusted and authenticated Thing Directory to return a modified
Thing Description with local links to clients that it (somehow)

knows are on the same local network.

A related issue is that of unique identity. The linked data
approach used to support semantics in the WoT is based on
the use of unique URIs to identify entities. However, if a
Thing can be accessed using multiple URLs then these cannot
be used to uniquely identify a Thing—or at least, not all of
them. Currently under discussion are ways in which unique
identifiers can be added to Thing Descriptions, separate from
the links used for interactions. These unique identifiers could
be based on URI schemes such as UUIDs and DOIs. Use
of unique identifiers also raises (or perhaps only highlights)
privacy considerations. Potential privacy mitigations include
limiting access to the unique identifiers in Thing Descriptions
to authorized users and allowing unique identifiers to be reset
as needed, for example upon ownership transfer.

B. Vulnerability Scanning

Thing Descriptions are meant to enable easier discovery
and use of devices. The flip side of this is that it may also
become easier for attackers to discover vulnerable devices, or
to infer private information simply from the type of devices
available.

The first line of defense is to protect access to discovery
services such as Thing Directories. If Thing Directories can
only be accessed by authorized users, a number of types of
attacks become more difficult. Since a Thing Directory is sim-
ply a web service, it can be protected with normal web service
authorization and security mechanisms. However, a given WoT
implementation may provide other means of discovery, such
as broadcast responses or extended DNS entries. These may
not be as easy to protect. In order to support a protected
Thing Directory a protected onboarding process is needed to
associate devices with a given Thing Directory. A mechanism
is also needed to provide authorized entities with appropriate
credentials to access the Thing Directory.

Assuming an attacker can access Thing Descriptions, how-
ever, they may be able to exploit them in various ways.
First, they could try to analyze the available interactions
themselves for known vulnerabilities. While the Thing De-
scriptions intentionally omit information about the software
stack providing the service, an attacker may be able to use

4



fingerprinting to associate a particular Thing Description with a
particular device or software stack with known vulnerabilities.
The vulnerabilities may not even be over the network; for
example, an attacker may scan for “smart locks” that can be
defeated with known physical attacks. The flip side of this,
however, is that a System Maintainer can apply the same tools
to scan for devices with vulnerabilities, in order to identify
devices at risk so that mitigations can be put in place (such as
scheduling updates to a device’s firmware, or enhancing the
physical protection of a device). Unlike a malicious attacker,
the System Maintainer also has the advantage that they can
legitimately access all Thing Descriptions in a system.

Even if an attacker cannot determine vulnerabilities, they
may still be able to determine personal information about a
user by the kinds of devices they have installed. For example,
knowing that someone has a baby monitor lets you infer that
they probably have a young child. Semantic tags make this
information explicit but even without tagging, fingerprinting
may be able to associate a set of interactions with a specific
class of devices. The mitigation of this kind of attack is to
protect the Thing Descriptions themselves and make them
available only to authorized users.

C. Endpoint Adaptation

In a typical multistandard IoT system, bridges may be
needed to connect devices conforming to different standards.
For example, to connect to an AllJoyn device from a controller
designed to connect to OCF devices, an OCF-to-AllJoyn bridge
may be needed to translate both the protocol and the payload.
In general, multiple bridges could be involved: the apparent
AllJoyn device could in fact be a oneM2M device being made
available over yet another bridge.

Unfortunately bridges introduce a potential security vul-
nerability. If a bridge is compromised, an attacker would have
full access to the data being carried to and from the bridge
and can stage a variety of attacks: modifying or deleting data,
injecting false data and events, or privacy invasion.

The descriptive approach to interoperability enables a
way around this problem using endpoint end-to-end payload
adaption. This is complementary to but distinct from object
security [15].

Rather than adapting payloads in a point-to-point fashion,
adaptation should take place at one of the endpoints, ideally the
one with greater capability. The endpoint doing the adaptation
should look at the metadata for the target endpoint, adapt its
payload for that target, and then use end-to-end encrypted
communication: either end-to-end (tunnelled) transport secu-
rity, object security, or both.

If multiple transport protocols are used, such as a combina-
tion of HTTP/TLS and CoAP/DTLS, bridging those protocols
may create another compromise possibility. A mechanism
supporting object security such as JOSE [1] should then be
used in combination with endpoint adaptation, but for this
to work the target (typically constrained) endpoint needs to
support it. Object security also supports secure state caching in
the cloud or gateways, an important consideration for devices
that may need a digital twin to handle transactions for them
while they are in standby, conserving battery, or otherwise
offline.

One disadvantage of end-to-end security approaches is that
advanced firewalls will not have access to the contents of
messages in order to do anomaly detection. One approach
to support this if it is necessary (and it might be in various
circumstances) would be to treat the firewall as another trusted
entity and explicitly providing it with appropriate read-only
access.

D. Secure Discovery

One of the benefits provided by the WoT approach is to
enable the use of powerful semantic searches during discovery.
However, this introduces several issues related to security.

First of all, semantic searches can be abused to create DoS
attacks. If arbitrary SPARQL endpoints are provided by Thing
Directory services, semantic searches can be specified that
can consume large amounts of resources, rendering the Thing
Directories unavailable to other users. This can be mitigated by
either limiting the power of searches that can be specified, or
by limiting the processing power that can be used in a specific
search.

In the first approach, rather than providing a full SPARQL
endpoint, a directory service may provide a more specialized
search interface that only allows searches for a conjunction of
terms and does not allow, for instance, use of arbitrary infer-
ence rules or use of other SPARQL endpoints in a federated
search. Unfortunately, by limiting the power of the searches
that may be specified, we are also limiting the potential benefit.
Federated searches, for example, may be needed to support
domain-specific vocabulary supported by external ontologies.

The second approach to mitigate DoS attacks is to use an
architecture for the search engine that can enforce resource
quotas on individual queries. For example, each search could
be spawned in a new process and Linux process limits could
be used to enforce processing quotas. In addition, the number
of searches that can be processed at the same time would have
to be limited to avoid creating too many processes. If either
limit is exceeded the server would return an appropriate error
code. If the query processing quota is exceeded, the client
would have to reformulate their query. If the server is too busy,
the client would have to retry the query later. Creating a new
process for each search would be expensive however, and this
itself creates a DoS vulnerability. Therefore, ideally the search
engine itself would support light-weight mechanisms to track
resource consumption and enforce quotas.

There is another class of risks with semantic searches:
inferencing. By their nature, semantic searches can infer in-
formation that is not explicitly present in the database. It is
possible that an attacker could use this capability to invade
someone’s privacy. For example, they could infer personal
information (e.g. relationship status) from the ownership of
certain combinations of devices (e.g. multiple toothbrushes).
While it is difficult to prevent inference attacks in general, we
should at least design semantic search engines to not use data
for inference that would not be directly available to the entity
posing the query in the first place [19], [20]. As with the other
class of risks we mentioned, mitigation requires restricting the
distribution of Thing Description data to authorized users only.

5



E. Enabling Distributed Security

Many things must be taken into account when choosing
what metadata to include in a TD: deployment scenarios
and configurations, underlying networking protocols and their
security mechanisms, overall scalability, system security pri-
orities, and so on. Security metadata should support security
mechanisms in current use by both web services [8] and IoT
systems [3], [7]. The TD should be extensible enough to
support emerging capabilities related to security, for example
for micropayments [4] or smart contracts.

A data packet in a IoT system can go over many interme-
diate entities, including gateways and proxies. Some of these
entities might need to perform authentication and authorization
of the requester. Security metadata in a TD can indicate what
types of authentication are required by each entity and how
to obtain authorizations. The metadata can also specify roles
and security policies, and perhaps different ones for different
interactions.

Consider the deployment scenario in Figure 2. Suppose
the forwarding proxy requires authentication of any request
before passing it to the local network. Additionally assume
that the WoT gateway performs its own authentication. Both
of these authentication methods and associated information can
be specified in the TD that the WoT Client receives from the
Thing Directory. Users of a WoT Thing may also have different
roles with different access rights, and may want to delegate
some rights to others on a permanent or temporary basis.

The WoT gateway can perform the authentication and
access control to WoT Clients in a number of ways depending
on what standards the target devices support. For example, the
OCF Security Specification [7], which is one possible system
whose devices can be described by WoT TDs, supports a
number of ways IoT devices can perform authentication based
on either symmetrical or asymmetrical credentials (including
certificates), and also supports access control lists. In general,
we want to support fine-grained role-based access control so
that access rights can be granted (and revoked) without having
to directly update the state of devices. Token-based authen-
tication mechanisms such as Bearer or Proof-of-Possession
tokens [3] can be used for this. Token-based authentication
allows a client to dynamically request a token from a remotely
located authorization server and present it for authentication as
needed. This method has its own risks and limitations; bearer
tokens, for example, need to be protected from interception.

Generalizing the above example, there might be N sets
of fully independent security metadata necessary in a Thing
Description. Moreover, when a Thing Description is composed,
these sets can be provided by separate entities: a gateway might
only specify the security metadata for accessing interactions
defined in a TD, while the forwarding proxy adds the metadata
required for successful authentication of incoming requests.
This means that there has to be a way to limit what security
metadata is allowed to be provided by what entity. Also, it must
be possible for the WoT client to verify the overall integrity
of the resulting TD.

V. CONCLUSION

We have given a summary of the W3C Web of Things draft
standard, with a focus on the Thing Description. The Thing

Description provides a descriptive approach to interoperability,
which contrasts with the prescriptive approach of most other
standards. While a prescriptive approach is useful, for exam-
ple to enforce minimum security requirements, a descriptive
approach can support brownfield devices and can also make it
easier to integrate devices that conform to different prescriptive
standards.

Beyond the basic issue of integrating devices with different
levels and mechanisms for security, which will arise with
any multistandard IoT system, the use of descriptive metadata
raises several new security risks and opportunities.

With the goal of starting discussion, we have presented five
such problems: security over local and multiple links, mul-
tidevice vulnerability analysis, end-to-end security enabling,
secure discovery for semantic interoperability, and (potentially
decentralized) security mechanism enabling.

ACKNOWLEDGMENT

The security and threat model presented here was de-
veloped in the W3C Web of Thing WG as part of the
Web of Things (WoT) Security and Privacy Considerations
document [17]. Please see the associated github site for a list
of additional contributors. Barry Leiba provided feedback on
an early draft.

REFERENCES

[1] “JOSE: JSON Object Signing and Encryption,” 2014. [Online].
Available: https://datatracker.ietf.org/wg/jose/charter/

[2] “HTTPS in Local Network,” W3C, Community Group, 2017. [Online].
Available: https://www.w3.org/community/httpslocal/

[3] “IETF Authentication and Authorization for Constrained Environments
(ACE),” Nov. 2017. [Online]. Available: https://tools.ietf.org/pdf/
draft-ietf-ace-oauth-authz-09.pdf

[4] “Interledger Protocol (ILP),” Nov. 2017. [Online]. Available: https:
//interledger.org/rfcs/0003-interledger-protocol/

[5] “IoT 2020: Smart and Secure IoT Platform,” 2017. [Online]. Available:
http://www.iec.ch/whitepaper/pdf/iecWP-loT2020-LR.pdf

[6] “IoT Security Foundation Best Practice Guidelines,” IoT Security
Foundation, Tech. Rep., May 2017. [Online]. Available: https:
//iotsecurityfoundation.org/best-practice-guidelines/

[7] “The OCF Security Specification,” Jun. 2017. [Online]. Available: https:
//openconnectivity.org/specs/OCF Security Specification v1.0.0.pdf

[8] “The OpenAPI Specification,” Apr. 2018. [Online]. Available:
https://github.com/OAI/OpenAPI-Specification

[9] E. Fernandes, A. Rahmati, K. Eykholt, and A. Prakash, “Internet of
Things Security Research: A Rehash of Old Ideas or New Intellectual
Challenges?” IEEE Security and Privacy, vol. 15, no. 4, pp. 79–84,
2017.

[10] O. Garcia-Morchon, S. Kumar, and M. Sethi, “State-of-the-Art and
Challenges for the Internet of Things Security,” IETF Secretariat,
Internet-Draft, Oct. 2017. [Online]. Available: http://www.ietf.org/
internet-drafts/draft-irtf-t2trg-iot-seccons-08.txt

[11] T. Heath and C. Bizer, Linked Data: Evolving the Web into a
Global Data Space, 1st ed., ser. Synthesis Lectures on the Semantic
Web: Theory and Technology. Morgan & Claypool, 2011, vol. 1:1.
[Online]. Available: http://linkeddatabook.com/editions/1.0/

[12] S. Käbisch and T. Kamiya, “Web of Things (WoT) Thing Description,”
W3C, W3C Working Draft, Sep. 2017. [Online]. Available: https:
//www.w3.org/TR/2017/WD-wot-thing-description-20170914/

[13] K. Kajimoto, U. Davuluru, and M. Kovatsch, “Web of Things (WoT)
Architecture,” W3C, W3C Working Draft, Sep. 2017. [Online]. Avail-
able: https://www.w3.org/TR/2017/WD-wot-architecture-20170914/

6

https://datatracker.ietf.org/wg/jose/charter/
https://www.w3.org/community/httpslocal/
https://tools.ietf.org/pdf/draft-ietf-ace-oauth-authz-09.pdf
https://tools.ietf.org/pdf/draft-ietf-ace-oauth-authz-09.pdf
https://interledger.org/rfcs/0003-interledger-protocol/
https://interledger.org/rfcs/0003-interledger-protocol/
http://www.iec.ch/whitepaper/pdf/iecWP-loT2020-LR.pdf
https://iotsecurityfoundation.org/best-practice-guidelines/
https://iotsecurityfoundation.org/best-practice-guidelines/
https://openconnectivity.org/specs/OCF_Security_Specification_v1.0.0.pdf
https://openconnectivity.org/specs/OCF_Security_Specification_v1.0.0.pdf
https://github.com/OAI/OpenAPI-Specification
http://www.ietf.org/internet-drafts/draft-irtf-t2trg-iot-seccons-08.txt
http://www.ietf.org/internet-drafts/draft-irtf-t2trg-iot-seccons-08.txt
http://linkeddatabook.com/editions/1.0/
https://www.w3.org/TR/2017/WD-wot-thing-description-20170914/
https://www.w3.org/TR/2017/WD-wot-thing-description-20170914/
https://www.w3.org/TR/2017/WD-wot-architecture-20170914/


[14] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs,
J. Bughin, and D. Aharon, “The Internet of Things:
Mapping the Value Beyond the Hype,” McKinsey Global
Institute, Tech. Rep., Jun. 2015. [Online]. Available: https:
//www.mckinsey.com/business-functions/digital-mckinsey/our-insights/
the-internet-of-things-the-value-of-digitizing-the-physical-world

[15] J. Mattsson, G. Selander, and G. A. Eriksson, “Object Security in
Web of Things,” in W3C Workshop on the Web of Things: Enablers
and services for an open Web of Devices. W3C, Jun. 2014. [Online].
Available: https://www.w3.org/2014/02/wot/papers/mattsson.pdf

[16] B. Ostermaier, F. Schlup, and M. Kovatsch, “Leveraging the Web of
Things for Rapid Prototyping of UbiComp Applications,” in UbiComp
2010: Ubiquitous Computing, 12th International Conference, Nov.
2010, pp. 375–376. [Online]. Available: http://doi.acm.org/10.1145/
1864431.1864443

[17] E. Reshetova and M. McCool, “Web of Things (WoT) Security
and Privacy Considerations,” W3C, W3C Note, Sep. 2017. [Online].
Available: https://www.w3.org/TR/2017/WD-wot-security-20171116/

[18] S. Schrecker, H. Soroush, J. Molina, M. Buchheit, J. LeBlanc,
R. Martin, F. Hirsch, A. Ginter, H. Banavara, S. Eswarahally,
K. Raman, A. King, Q. Zhang, P. MacKay, and B. Witten,
“The Industrial Internet of Things Security Framework,” Industrial
Internet Consortium, Tech. Rep., Sep. 2016. [Online]. Available:
http://www.iiconsortium.org/IISF.htm

[19] B. Thuraisingham, “Security Standards for the Semantic Web,”
Computer Standards and Interfaces, vol. 27, no. 3, pp. 257 –
268, 2005. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0920548904000686

[20] Z. Xia, Y. Zhu, X. Sun, and L. Chen, “Secure Semantic Expansion
Based Search over Encrypted Cloud Data Supporting Similarity
Ranking,” Journal of Cloud Computing, vol. 3, no. 1, p. 8, Jul 2014.
[Online]. Available: https://doi.org/10.1186/s13677-014-0008-2

[21] T. Xu, J. B. Wendt, and M. Potkonjak, “Security of IoT Systems:
Design Challenges and Opportunities,” in Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design, ser.
ICCAD ’14. IEEE Press, 2014, pp. 417–423. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2691365.2691450

7

https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.w3.org/2014/02/wot/papers/mattsson.pdf
http://doi.acm.org/10.1145/1864431.1864443
http://doi.acm.org/10.1145/1864431.1864443
https://www.w3.org/TR/2017/WD-wot-security-20171116/
http://www.iiconsortium.org/IISF.htm
http://www.sciencedirect.com/science/article/pii/S0920548904000686
http://www.sciencedirect.com/science/article/pii/S0920548904000686
https://doi.org/10.1186/s13677-014-0008-2
http://dl.acm.org/citation.cfm?id=2691365.2691450

	Introduction
	Web of Things
	Architecture
	Threat Model
	Typical Deployment Scenario

	Related Work
	Risks and Opportunities
	Local Links
	Vulnerability Scanning
	Endpoint Adaptation
	Secure Discovery
	Enabling Distributed Security

	Conclusion
	References

