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Abstract—ARM TrustZone is one of the most widely deployed
security architecture providing Trusted Execution Environments
(TEEs). Unfortunately, its usage and potential benefits for ap-
plication developers and end users are largely limited due
to restricted deployment policies imposed by device vendors.
Restriction is enforced since every Trusted App (TA) increases
the TEE’s attack surface: any vulnerable or malicious TA can
compromise the system’s security. Hence, deploying a TA requires
mutual trust between device vendor and application developer,
incurring high costs for both. Vendors work around this by
offering interfaces to selected TEE functionalities, however, these
are not sufficient to securely implement advanced mobile services
like banking. Extensive discussion of Intel’s SGX technology
in academia and industry has unveiled the demand for an
unrestricted use of TEEs, yet no comparable security architecture
for mobile devices exists to this day.

We propose SANCTUARY, the first security architecture which
allows unconstrained use of TEEs in the TrustZone ecosystem
without relying on virtualization. SANCTUARY enables execution
of security-sensitive apps within strongly isolated compartments
in TrustZone’s normal world comparable to SGX’s user-space
enclaves. In particular, we leverage TrustZone’s versatile Address-
Space Controller available in current ARM System-on-Chip
reference designs, to enforce two-way hardware-level isolation:
(i) security-sensitive apps are shielded against a compromised
normal-world OS, while (ii) the system is also protected from
potentially malicious apps in isolated compartments. Moreover,
moving security-sensitive apps from the TrustZone’s secure world
to isolated compartments minimizes the TEE’s attack surface.
Thus, mutual trust relationships between device vendors and
developers become obsolete: the full potential of TEEs can be
leveraged.

We demonstrate practicality and real-world benefits of SANC-
TUARY by thoroughly evaluating our prototype on a HiKey 960
development board with microbenchmarks and a use case for
one-time password generation in two-factor authentication.

I. INTRODUCTION

Mobile devices have already changed our daily lives in various
ways. Their success can mainly be attributed to the ecosystem
that evolved around them. The increasing computing and stor-
age capabilities, the vast number and variety of apps available
on app stores and markets, as well as the connectivity to
cloud services make mobile devices convenient replacements

for traditional computing platforms, and the de-facto standard
way of accessing the Internet [40].

Despite all benefits, today’s mobile devices provide a large at-
tack surface imposing many security and privacy challenges on
their system design to be able to protect sensitive applications
such as mobile banking, payments, and eID services.

The TrustZone security architecture was motivated mainly by
the need for secure mobile services [5], when introduced in
2008 as part of an industry effort. TrustZone introduces the
notion of a normal world and a secure world. While the normal
world runs the Legacy OS (LOS) and user-level applications,
security-sensitive applications can be executed (partially or
entirely) within the secure world which represents a Trusted
Execution Environment (TEE) on top of the TrustZone kernel
and hardware.

Problems of TrustZone. Despite TrustZone’s implementa-
tion and wide-spread deployment, TrustZone-based TEEs are
mainly used by the vendors for own purposes, and hence
a flourishing landscape of secure mobile services is largely
missing even more than a decade after TrustZone was initially
released [17]. One root cause for the lack of progress in
TrustZone-based TEEs’ adoption is that each installed Trusted
App (TA) increases the potential for security-critical vulnera-
bilities, allowing attackers to exploit bugs and escalate privi-
leges, exfiltrate private data, or gain complete control over the
entire device. In practice, this means that bugs in TrustZone-
enabled applications expose a large number of devices to real-
world security threats, as continuously demonstrated by secu-
rity researchers across device families and hardware vendors
(e.g. in 2014 [15], [32], in 2015 [19], [47], in 2016 [20], [49],
and in 2017 [52], [44]). Google’s ProjectZero [45] recently
summarized the main flaws of the current design of TrustZone
as follows: it combines (i) weak isolation between TAs in the
TEE, with (ii) Trusted Computing Base (TCB) expansion, and
(iii) highly privileged access to the platform, making TrustZone
a high-value target for attackers. Thus, vendors often aim
to control and restrict access to the TEE. Thorough security
assessments are needed to build a trust relationship between
device vendor and app developer. Furthermore, deploying
TAs to a TEE produces a large management overhead [23].
For smaller developers, the emerging costs pose a significant
investment severely limiting the development of secure mo-
bile services in practice. Device vendors try to circumvent
these problems by offering some TEE functionalities, e.g. key
storage, over interfaces to normal-world apps. However, this
approach does not allow developers to protect own security-
sensitive code and data. Hence, the provided TEE services are
not sufficient to implement feature-rich secure mobile services.
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Existing Security Architectures. A number of ARM-based
security architectures have been proposed previously [28],
[10], [18]. However, they rely on virtual memory for isolation,
using the same isolation mechanism proven insufficient for
isolating TAs within ARM TrustZone’s secure world [45].
Approaches that rely solely on temporal isolation – i.e.,
suspending the entire system to provide protection for TA exe-
cution – are not suitable for today’s multi-core platforms [38],
[51], since they effectively disable multitasking and parallel
execution for the entire platform which imposes severe restric-
tions that directly affect user experience.

Goals and Contributions. Our main goal is to tackle the
aforementioned problems and enable the full potential of TEEs
for third-party application developers without requiring any
hardware changes.

To this end, we present SANCTUARY, a novel security ar-
chitecture for Trusted Execution Environments (TEEs) based
on the latest ARM System-on-Chip (SoC) reference designs.
SANCTUARY inherently de-privileges TrustZone-enabled apps
by moving them from the secure-world TEE to an isolated
normal-world compartment, thereby reducing the code base in
the secure world. We call these security-sensitive apps, which
are comparable to SGX’s user-space enclaves, Sanctuary Apps
(SAs). SANCTUARY achieves SA isolation by dynamically
partitioning and re-allocating system resources: CPU cores
and physical memory are temporarily reserved for the isolated
compartments to execute SAs without suspending the rest of
the system. In particular, we leverage TrustZone’s Address-
Space Controller (TZASC) to ensure a hardware-enforced,
two-way isolation between SAs and all other system compo-
nents. This enables an SGX-like usage of TrustZone without
requiring any hardware modifications.

Building SANCTUARY comes with a number of interesting
challenges: first, the Legacy OS normally assumes full control
over all available CPUs. To support dynamic re-allocation of
cores we have to claim, initialize, and boot individual cores
dynamically at run time. Second, enforcing a strict separation
between normal world, SAs, and secure world necessitates
communication channels between them, e.g., to relay I/O
or shared data. Third, SANCTUARY must provide security
services, such as remote attestation and sealing of SAs (similar
to SGX), and provide secure ways for SAs to access them.
Finally, to offer tangible improvements in real-world scenarios,
SANCTUARY must provide adequate performance, e.g., in au-
thentication for mobile banking applications, without affecting
user experience. Our design of SANCTUARY tackles all of
these challenges to support SGX-like usage of TrustZone-
enabled applications.

To summarize, our main contributions are as follows:

• We present the design of SANCTUARY, a novel se-
curity architecture building on existing TrustZone’s
hardware and software components while enabling
enclave-like usage in the form of de-privileged
normal-world execution environments that are com-
pletely isolated from the rest of the system.

• Our proof-of-concept implementation of SANCTUARY
uses the HiKey 960 development board, and Linaro’s
open-source software OP-TEE on top of TrustZone.

• We analyze and discuss the security properties of
SANCTUARY in a strong adversary setting that in-
cludes malicious SAs.

• We extensively evaluate SANCTUARY with respect to
its setup and communication overhead. Additionally,
we demonstrate real-world benefits of SANCTUARY
in a detailed one-time password and key-generation
use case for two-factor authentication, which is highly
relevant for many security-sensitive applications such
as mobile payment. Our results show that SANC-
TUARY supports low latency and does not affect
user experience, hence, offering practical performance
characteristics.

II. BACKGROUND

The core principle of TEEs is isolation of code and data to
protect their integrity and confidentiality.

TEEs have been developed by both, academic community
and industry. First, we present ARM TrustZone [5] which is
available on most ARM-based systems and which is the basis
for our novel security architecture SANCTUARY. Second, we
explain the TrustZone Address Space Controller (TZASC) that
enforces memory access control in TrustZone and plays a key
role for our hardware-based isolation in SANCTUARY.

We discuss TEE research proposals as well as other related
approaches in detail in Section VIII.

A. ARM TrustZone

TrustZone represents a set of security enhancements to proces-
sor designs and SoCs that are based on the ARM architecture.
TrustZone enhances the processor, memory (including caches),
and peripherals. A TrustZone-enabled processor can execute
instructions in four different privilege levels (Exception Lev-
els – EL0-EL3) and, additionally, two security modes at any
given time (cf., normal world and secure world in Figure 1).
To facilitate switching between normal and secure world, and
to provide a clean interface, EL3 (also called monitor mode)
runs the ARM Trusted Firmware (TF). On top of the Trusted
Firmware (TF), the secure and normal world both manage their
own address spaces using the remaining privilege levels for
separation: EL2 is optionally used for a hypervisor, EL1 for
the OS kernel, and EL0 (lowest execution privilege) is used
for execution of application code.

The processor can switch from normal to secure world via
an instruction called the secure monitor call (smc). When an
smc instruction is invoked from normal world, the processor-
core performs a context switch to the secure world (via the
monitor mode) and freezes its normal-world execution. All
other CPU cores of a multi-core system can independently
remain in normal-world mode.

TrustZone can separate physical memory into two partitions,
with one partition being exclusively accessible by the secure
world. This isolation is enforced by the memory controller
(TZASC), which is discussed in Section II-B. While the normal
world cannot access memory assigned to the secure world, the
secure world can access normal-world memory.

A device running ARM TrustZone boots up in the secure
world. After the secure world finished its initial setup by
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Figure 1: TrustZone software and hardware components. Soft-
ware can be executed in normal world or in secure world.
Isolation between these two worlds is enforced by the memory
controller (TZASC) that checks for each memory access which
world it originates from.

booting the Trusted OS (TOS), it switches to the normal
world and boots the LOS. Most TrustZone-enabled devices
are configured to use secure boot, i.e., the boot loader cryp-
tographically checks the TOS prior to execution [5]. In fact,
many vendors lock their devices against end-user modification
via secure boot, to ensure integrity of the secure world. This
allows them to make the secure world part of their TCB.

B. TrustZone Address Space Controller

With TrustZone, secure-world memory is isolated from the
untrusted normal-world memory through physical memory
partitioning. This is enforced in hardware by the TrustZone
Address Space Controller (TZASC) which resides between
the system bus and the memory chip (see Figure 1). It
supports multiple memory regions and access-control settings
based on several bus transaction characteristics. Originally,
this only included two types of memory accesses: non-secure
access (NS = 1), or secure access (NS = 0). A CPU core
in secure mode can perform accesses of the type secure
and non-secure, whereas CPU cores in normal mode can
only perform non-secure accesses. The first TZASC reference
implementation from ARM, the TZC-380, was published in
2010 [6]. Its successor, the TZC-400 [8], was introduced 2013
and can utilize additional characteristics of a bus transaction
to separate the protected memory regions – this feature is
called identity-based filtering. Thus, in current ARM reference
designs, every device that can act as a bus master (e.g.,
CPU, GPU, DMA controller) is assigned a bus-master ID in
hardware, which is appended to its memory bus transactions.
This can be used to assign memory regions to specific bus
masters for non-secure accesses. ARM advertises the identity-
based filtering feature in context of their TrustZone Media
Protection Architecture (TZMP) [4], which is used for media
protection by exclusively assigning memory, e.g. the frame
buffer, to the GPU.

III. ADVERSARY MODEL AND REQUIREMENTS

A. Adversary Model

Our threat model adheres to that of TrustZone and makes the
same underlying assumptions [5]. In particular, the attacker can
corrupt all normal-world software, including all privilege levels
up to an optional hypervisor (EL2), via remote or local soft-
ware attacks. Additionally, an adversary can conduct passive
physical attacks. However, the adversary cannot compromise
the secure-world software and the monitor mode.

Invasive physical attacks that tamper with hardware, e.g., to
inject faults at run time are out of scope. Similar to Trust-
Zone, we do not consider Denial-of-Service (DoS) attacks,i.e.,
SANCTUARY does not provide availability guarantees.

Our detailed standard assumptions are derived from the related
work [22], [10], [9], [12], [16], [28]:

• Applications in normal world are considered un-
trusted.

• The Legacy OS (LOS) in the normal world is un-
trusted.

• Isolation between different privilege levels is enforced
by hardware through virtual memory.

• All existing architectural defenses, such as Execute
Never (XN), Unprivileged Execute Never (UXN),
Privileged Execute Never (PXN), and Privileged Ac-
cess Never (PAN) are deployed and active.

• Secure and normal world are isolated by the TrustZone
hardware extensions [5].

• Software in the secure world, including the boot loader
and EL3 firmware (monitor mode), is trusted.

In this setting, SANCTUARY can be used to minimize the
amount of software required in the secure world as it allows
to outsource all Trusted Apps (TAs) to Sanctuary Apps (SAs)
which execute in isolated compartments in the normal world.

B. Requirements Analysis

To enable practical and secure Sanctuary Apps (SAs) on ARM
TrustZone-based platforms, a number of requirements must
be fulfilled. We show that SANCTUARY fulfills these security
requirements in Section VI, and demonstrate that SANCTUARY
meets the functional requirements in Section VII.

1) Code and data integrity. The integrity of the code
and data of an SA must be preserved. This can be
achieved by (i) isolation during SA execution and
(ii) attestation of the SA code when loaded into the
isolated compartment.

2) Data confidentiality. Confidentiality of data pro-
cessed in an SA must be preserved. This can be
achieved by (i) a secure channel for provisioning
the data, (ii) spatial isolation during execution, and
(iii) temporal isolation to prevent that sensitive in-
formation becomes accessible after SA execution has
finished.

3) Secure channel to secure world. An SA needs a
secure channel to utilize security services provided by
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the secure world. This can be realized by an exclusive
shared memory, i.e., accessible only by the SA and
the secure world but not by untrusted normal-world
software.

4) Protection from malicious SAs. To enable unre-
stricted usage models for SAs, malicious SAs must
be tolerated. Protecting the platform from malicious
SAs can be achieved by limiting the access privileges
of SAs to a minimum (i.e., EL0) and preventing them
from accessing normal-world memory.

5) Hardware-enforced resource partitioning. To en-
sure strict isolation spatial and temporal isolation are
needed.

6) Minimal software changes. Leveraging existing in-
terfaces of the secure-world OS and the normal-world
OS prevents extensive modification of the software
stack.

7) Positive user experience. Assigning a single CPU
core for limited time to SA execution leads to low
impact on the overall system performance for most
usage scenarios on todays commonly available multi-
core architectures. Latency can be kept low by min-
imizing the SA run-time environment.

IV. SANCTUARY DESIGN

The goal of the SANCTUARY architecture is to enable secure
and widespread use of Trusted Execution Environments (TEEs)
(e.g., through third-party developers) on ARM based devices.
SANCTUARY allows the creation of multiple parallel isolated
compartments on ARM devices in the normal world which are
strictly isolated from the LOS and Legacy Apps (LAs). The
isolated compartments, which we call SANCTUARY Instances,
run security-sensitive apps called Sanctuary Apps (SAs). Every
SANCTUARY Instance executes only one SA at a time. Since
all SANCTUARY instances are independent and separated from
each other, also the SAs become strongly isolated. Addition-
ally, all SANCTUARY instances are isolated from the existing
TrustZone secure world.

Spatial isolation of a SANCTUARY Instance is achieved by
(i) partitioning the physical memory using the TZC-400 mem-
ory controller, (ii) dedicating a CPU core to the SANCTU-
ARY Instance, and (iii) excluding the SANCTUARY Instance’s
memory from shared caches. Temporal isolation is ensured
by launching the SANCTUARY CPU core from a trustworthy
state (ARM Trusted Firmware (TF)) and erasing all sensitive
information from memory and caches before it exits.

We designed SANCTUARY in such a way that the required
changes to the existing software ecosystem are minimal: in
fact, SANCTUARY can extend existing TEE architectures with-
out affecting the functionality of already deployed software in
both the normal world and the secure world.

Figure 2 shows an abstract view of SANCTUARY’s design.
In the following, we describe SANCTUARY’s isolation mech-
anism, its initialization, and its security services.

A. SANCTUARY Isolation

In addition to the existing security boundary between Trust-
Zone’s secure world and normal world, SANCTUARY enables
isolation within the normal world. A dedicated memory region

TZASC

Legacy OS (LOS) Sanctuary Lib (SL) Trusted OS (TOS)

Trusted App (TA)Sanctuary App (SA)Legacy App (LA)Legacy App (LA)

Normal World Secure World

Normal World RAM Secure World RAM

CPU Core 0 CPU Core 1 CPU Core 2 CPU Core 3

Figure 2: SANCTUARY design overview. Within the normal
world, one core is reserved for SANCTUARY. The TCB,
marked in gray, includes the hardware and the secure-world
software that is involved in the initialization of an SA.

is made exclusively accessible by one CPU core by leveraging
ARM’s new memory access controller TZC-400. Details on
how the controller needs to be configured to achieve this
physical memory partitioning are given in Section V-E. As
a result, all software executing on that CPU core is protected
from untrusted software executing on the remaining CPU cores
of the system. In Figure 2, CPU core 2 running a SANCTUARY
Instance is configured to have exclusive access to the SANCTU-
ARY RAM partition, as depicted by the arrows. The untrusted
normal-world software – executing on CPU cores 0 and 1 – can
only access the normal world memory. Furthermore, the CPU
core assigned to the SANCTUARY Instance is not allowed to
access normal-world memory, achieving a two-way isolation
which allows SANCTUARY to tolerate potentially malicious
SAs. However, SANCTUARY does support shared memory
between normal world and SA for efficient communication
as well as shared memory between secure world and SA to
establish a secure channel. This enables scenarios like secure
UI over TAs. SANCTUARY’s handling of shared memory is
explained in detail in Section V-E.

The secure-world software is trusted and therefore allowed to
access all memory, including normal-world memory, SANC-
TUARY memory, and secure-world memory (black arrows in
Figure 2).

Multi-SA isolation: SANCTUARY instances are either exe-
cuted consecutively on the same CPU core, or execute on sepa-
rate, mutually isolated cores with dedicated memory partitions.
After SA execution finished, the system returns to its original
state (see Section IV-B) and the next SANCTUARY instance
can be launched. This ensures strong isolation between SAs:
all SAs are executed completely independently of each other.

Privilege isolation: SAs are limited to execute in user-mode.
The privileged mode of a CPU core used by SANCTUARY is
occupied by the Sanctuary Library (SL). Important to note is
that the SL is not part of the TCB, but instead is only needed to
provide two main functionalities: (i) initializing an execution
environment for the SA, and (ii) providing service interfaces
to the SA, e.g., for accessing SANCTUARY’s security services.

B. SANCTUARY Initialization

SANCTUARY’s isolation does protect the integrity and confi-
dentiality of an SA while it is executing on the dedicated CPU
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core. However, since the SA code is loaded by the untrusted
LOS, its integrity must be verified. The initialization process of
SANCTUARY provides the necessary verification mechanism.

For better resource utilization, SANCTUARY does not dedicate
one CPU core for executing SAs permanently. If a new
SANCTUARY instance is created, one CPU core is shut down
and removed from the resources available to the LOS executing
in the normal world. All remaining CPU cores stay under
control of the LOS. Hence, the LOS can continue execution
of normal-world tasks preserving the system’s availability, i.e.,
the user does not notice negative effects from the creation of
a SANCTUARY Instance and the execution of an SA.

Next, the code to be executed on the SANCTUARY core, i.e.,
SL and SA, is loaded into a separate memory section. After
the memory isolation has been activated, the loaded code is
validated using digital signatures. The signature for the SL is
provided by the device vendor, whereas the signature for the
SA is provided by the SA developer. The detailed verification
process is described in Section V. After a successful verifica-
tion, the dedicated CPU core is restarted. The SANCTUARY
core starts from a defined initial state, boots the SL and
executes the SA.

After an SA has finished, the dedicated core removes all
information from the memory, invalidates all cached data, and
shuts down. The isolation for the wiped memory is deactivated,
making the memory available to the LOS again. The CPU core
is restarted and reassigned to the LOS.

C. SANCTUARY Security Services

The initial content of an SA is loaded from unprotected
memory, hence, it can be manipulated and cannot contain
confidential data. Therefore, SANCTUARY needs to provide
a mechanism to provision confidential data to an SA over a
secure channel after it has been created. However, to ensure
that secret data is not sent to a malicious (or maliciously
modified) SA, the integrity and authenticity of an SA needs to
be verified before provisioning secret data. To enable secure
provisioning of secret data to an SA and secure storage of
secret data, SANCTUARY provides a set of security services
implemented as TAs supplied by the device vendor (called
vendor TAs throughout the remaining paper). These TAs run
within the secure-world Trusted OS (TOS) (see Figure 2).

Remote attestation allows an SA to establish a secure channel
to an external entity. Through the platform identity feature of
TrustZone, the integrity measurement of SANCTUARY can be
authentically reported to a third party. Linking the authentic
integrity report with the establishment of a secure channel to
the SA creates a secure and authenticated channel through
which confidential data can be provisioned.

Sealing allows SAs to store sensitive data such that only
instances of the originating SA can accesses the data. SANC-
TUARY provides each SA with a unique encryption key that
is derived from the hash value computed over the SA binary.
The key can be used to encrypt data, e.g., before writing it to
persistent storage.

Further security services, like monotonic counters, secure
timers, secure randomness, etc. can be provided by TrustZone’s
secure world, as well. Similar security services are commonly

available in commercial TEE implementations, for instance
Intel SGX [31], [39], [25], [2] and can be implemented
similarly in SANCTUARY. In addition, secure user interfaces
for SAs can easily be provided by TAs, as secure I/O is already
provided by TrustZone.

D. SANCTUARY Software Model

With SANCTUARY, every application developer is able to
utilize TEE functionalities, i.e., every developer can deploy
an SA. Each SA belongs to an untrusted LA. This allows
straightforward deployment through existing app markets: SAs
come as part of LAs using the standard installation routine.

Additionally, by coupling each SA with an LA, the functional-
ities of the SL can be minimized. In particular, the LA acts as
a proxy and allows the SA to make use of all functionalities
provided by the LOS, like file system access. The LA and
SA can efficiently exchange information and interact with
each other via shared memory. When an SA wants to provide
sensitive data to the LA, e.g., for persistent storage, the SA
can use the sealing service (see Section IV-C) to encrypt the
data before sending it to the LA.

How to partition an application into security-critical and un-
critical parts is an orthogonal problem.

V. IMPLEMENTATION

System Setup. We implemented SANCTUARY on a HiKey
960 development board, as it provides a recent ARMv8 SoC
design that is commonly used on modern mobile devices.
Moreover, the HiKey 960 is one of the few development
boards which gives developers the possibility to deploy own
software in the secure world. The HiKey 960 is based on an
octa-core ARM big.LITTLE processor architecture with four
ARM Cortex-A73 and four Cortex-A53 cores.

SANCTUARY Software Components. An overview of our
SANCTUARY implementation is shown in Figure 3. For
the secure-world Trusted OS (TOS) we use OP-TEE [1]
which currently is the most developed open-source TOS. The
SANCTUARY design is not limited to a particular TOS and
can also be implemented using a TOS which provides a less
rich feature set. OP-TEE comes bundled with a recent Linux
distribution which we use as the normal-world Legacy OS
(LOS). We implement a custom kernel module (KM) as part of
the LOS which manages the SANCTUARY Instances from the
normal world. In OP-TEE, we implement two vendor Trusted
Apps (TAs), the Proxy TA and the Sealing TA. They provide
the basic security services for SANCTUARY, namely remote
attestation and sealing. A SANCTUARY Instance consists
of the Sanctuary Library (SL) and a SA. In our prototype
implementation, we use the Zircon micro kernel [24] as the
basis for our SL. Besides adding two vendor TAs, we only
make small one-time changes to the Trusted Computing Base
(TCB), i.e. OP-TEE and the ARM TF. The custom Static
Trusted App (STA) which we add to OP-TEE manages the
SANCTUARY Instances from the secure world. The Lines of
Code (LOC) added to the TCB add up to 1313. The two
vendor TAs make up more than half of the added lines. In
total however, the TCB gets reduced because all TAs from
third-party developers are removed from the secure world.
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Figure 3: Implementation overview of SANCTUARY.

Since no source code of third-party TAs used on current
devices is publicly available, we refer to Huang et al. [29] for
average TA sizes. They implemented a mobile payment and
chat TA consisting of 900 LOC and 200 LOC, respectively,
which can be seen as a lower limit for implementing a useful
TA. This shows that removing all third-party TAs from the
secure world outweighs additions made to OP-TEE and the
Trusted Firmware (TF) by an order of magnitude in terms
of LOC. The number of added or modified LOC for all
components are shown in Table I.

SANCTUARY Hardware Components. In SANCTUARY, we
utilize the fact that unique master IDs can be assigned to every
CPU core and therefore also to every memory transaction
performed by a core. These transaction IDs can then be used
to filter memory accesses on a hardware level. As such,
memory regions can be made core-exclusive. The filtering
and permission enforcement is performed by the TZC-400
memory controller. The TZC-400 allows or denies access to
memory regions depending on two properties: (i) the type of
the access transaction performed by the core running the code
(secure or non-secure), and (ii) the bus master ID of the core
which executes the SANCTUARY Instance. Enforced access
permissions are shown in Figure 3 in the Memory Permissions
table, and are described in detail in Section V-E.

SANCTUARY Usage. The high-level SANCTUARY life cycle
works as follows: when a LA wants to execute sensitive code
in form of an SA inside a SANCTUARY Instance, the LA
requests execution of its bundled SA from the KM 1 . The KM
initiates the setup of the SANCTUARY Instance by loading the
SANCTUARY binaries (SL and SA). Next, the KM removes one
CPU core from the LOS and hands over control to the STA 2
to perform all security-related steps, such as the verification of
the SA 3 . After successfully setting up of the SANCTUARY

Component World Added LOC Modified LOC

Kernel Module normal 713 -

Zircon Micro Kernel normal 166 45

OP-TEE secure 56 2

Static Trusted App secure 472 -

ARM Trusted Firmware secure 92 -

Proxy TA secure 287 -

Sealing TA secure 406 -

Table I: Modifications for Sanctuary Components.

Instance, the KM triggers the SANCTUARY boot 4 . When the
boot process is finished the SA can execute the sensitive code,
and communicate with its LA as well as with the TAs in the
secure world 5 .

In the following, we explain each component of SANCTUARY
and its life cycle in detail.

A. Legacy OS

With SANCTUARY, the resource management remains in the
LOS. We implement the required functionalities in a custom
loadable kernel module (KM). The KM manages all resources
needed for a SANCTUARY Instance. It is able to remove a
core from the LOS and also to hand the core back to the LOS
after a SANCTUARY Instance finished execution. Since we use
Linux as the LOS in our prototype, we utilize the Linux CPU
hotplug mechanism [11] for that purpose. Furthermore, the
KM dynamically allocates memory for SANCTUARY Instances
and their associated communication channels from SA to LA
and from SA to TAs. Before a SANCTUARY Instance can be
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started, the KM has to load the SANCTUARY binaries (SL
and SA) into RAM which will be exclusively assigned to the
SANCTUARY core afterwards. The OP-TEE driver facilitates
the communication between LOS and OP-TEE.

B. Security Services

We keep the traditional structure of the secure world: Trusted
Apps run on SEL0 (secure-world user space), while OP-TEE
runs on SEL1 (secure-world kernel space). The TAs offer rele-
vant security services. In our proof-of-concept implementation,
we implemented a Proxy TA and a Sealing TA. The Proxy TA
is used to establish a secure communication channel from an
SA to remote servers. All data sent through the Proxy TA is
authenticated with the platform key and bound to the identity
of sender SA, i.e., the Proxy TA provides remote attestation.
The Sealing TA provides sealing functionality which allows to
bind data to a specific SA and to store it permanently on the
device. For each SA an individual key is used.
A Static Trusted App (STA) represents a kernel module in OP-
TEE. In our prototype, the STA verifies the SL using a pre-
configured signature, sets up the SANCTUARY Instances, and
tears them down. Moreover, the STA provides functionalities to
TAs which can be used to, e.g., find out which SA is currently
running in a SANCTUARY Instance, or to compute a hash over
an SA binary.
All aforementioned security services rely on the Trusted
Firmware (TF) as a trust anchor which is responsible for con-
text switches between normal and secure world and low-level
platform services. In our prototype, the TF was extended to
verify several security-relevant steps during the SANCTUARY
life cycle which is explained in detail in Section V-E.

C. Sanctuary

We implemented isolated code execution in SANCTUARY
by running SANCTUARY Instances in the normal world on
dedicated CPU cores. This isolates SANCTUARY Instances
from untrusted LOS and TAs running on the remaining cores.
A SANCTUARY Instance consists of two parts: the SL and an
SA. The SL provides basic process and memory management
functionalities for running an SA. In our implementation, we
chose the Zircon micro kernel [24] as SL due to its small
size (approx. 1MB) and versatility. After Zircon boots, it
prepares the environment for the SA by configuring the CPU
core, setting up the memory mappings and a basic execution
environment. Then, the SA is started as a normal-world user
process by the Zircon micro kernel. During execution, an SA
can communicate with its corresponding LA and also with TAs
in the secure world to utilize their provided security services
(e.g., sealing or remote attestation). To achieve this, we extend
the Zircon micro kernel with new system calls.
As required by SANCTUARY, the STA prevents simultaneous
execution of SAs in one SANCTUARY Instance because this
could lead to sensitive information leakage between SAs.

D. Memory Isolation Unit

In addition to isolating SANCTUARY execution through ded-
icated CPU cores, we protect SANCTUARY memory against
normal-world accesses from other cores by leveraging the
ARM TrustZone Address Space Controller (TZASC). As de-
scribed in Section II, its recent implementation, the ARM

TZC-400, allows setting memory-access permissions based
on bus master IDs. Traditionally on ARMv8 architectures,
all cores already have uniquely-assigned multi-processor-IDs
(MPID register [3]). For all transactions sent to the system bus,
multi-processor IDs are then translated to bus master IDs by a
dedicated labeling component. Currently, as on the HiKey960
development board, transactions from all cores are labeled with
the same bus master ID. For Sanctuary, only the mapping
policy needs to be changed such that the bus transactions of
cores are labeled with unique bus master IDs. No hardware
modifications have to be made to the processor-core. We
implemented the modified labeling ID-mapping policy using
the ARM Fast Models virtualization tools. From software,
we can now configure the TZC-400 such that memory re-
gions can be exclusively assigned to single cores by filtering
the bus transactions for the buster master ID labels. Details
on how the TZC-400 needs to be configured are given in
Section V-E.The performance overhead for configuring the
TZC-400 is negligible compared to the rest of the Sanctuary
startup, it only consists of a few register writes. It is important
to mention that the assignment of bus master ID labels to
transactions is already performed on all transactions by default.
We only enforce the labeling of unique IDs. This means on
the hardware level, SANCTUARY produces zero performance
overhead. Therefore, evaluation on a Hikey 960 board gives
realistic performance measurements.

If not enough unused bus master IDs are available to
distinguish all core transactions, only a subset of the cores
can run Sanctuary instances. This does not limit the general
applicability of Sanctuary as long as at least two free bus
master IDs are present.
On systems with the TZC-400, no additional hardware com-
ponents are needed to implement SANCTUARY. Some device
vendors already license the TZASC IP from ARM since it pro-
vides an industry-ready solution (e.g. Samsung on the Exynos
chips [13]). Unfortunately, public information regarding the
deployment of the TZC-400 on current platforms is limited.

E. Execution Life Cycle

In our prototype, a typical SANCTUARY life cycle consists
of four phases: (a) Sanctuary Setup, (b) Sanctuary Boot, (c)
SA Execution, and (d) Sanctuary Teardown, which we will
explain in the following. In our prototype, we assume that a
signature of the SL binary is already stored in the secure world.
However, integrity and authenticity of the SL can generally
also be established through certificates. Remote attestation of
the SA can be achieved by leveraging the Proxy TA. However,
alternative schemes, like Intel EPID, could be implemented as
well. The implementation details of such a scheme are out
of scope for this paper, thus, we refer the reader to Intel’s
documentation for a possible outline [36].

Sanctuary Setup. The SANCTUARY setup phase is performed
by the KM in the normal world and the STA in the secure
world. The KM manages system resources, whereas the STA
performs all security relevant steps. The setup of a SANCTU-
ARY Instance is triggered by the LA that requests execution of
its sensitive code in the corresponding SA. Subsequently, the
SL and SA binaries are loaded from the file system and handed
over to the KM using procfs. The SL binary can also be loaded
only once during system boot and remain in memory until
the system is shut down. We implemented the binary loading
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Figure 4: Memory layout after setting up a SANCTUARY. As
before, Core 0 is responsible for initializing and managing the
Sanctuary App, which runs on Core 1 (omitted for clarity).

in the normal world since OP-TEE cannot directly access
the file system. The KM reserves additional memory for the
SANCTUARY Instance which is used for memory allocations
during SA run time. We call this memory area Sanctuary Data.
Additional memory is reserved for the SANCTUARY Instance’s
communication channels. The communication between the LA
and its SA is performed over non-secure (i.e. accessible by
untrusted software) shared memory. In contrast, secure shared
memory is used for communication between SA and TAs. The
final memory layout after the setup is depicted in Figure 4.

After loading the binaries, the KM selects a CPU core to run
the SANCTUARY Instance. The KM always selects the CPU
core with the least load. Next, the Linux hotplug mechanism
is used to shut down the selected core. If successful, the
KM calls the STA and provides the ID of the selected core
as an argument. This call traps into monitor mode where
the TF checks that the selected core is indeed shut down
before performing a world switch and handing over control
to the STA. The STA then locks the SANCTUARY memory by
configuring the TZC-400.

We assume that unique IDs 0-7 are assigned in hardware to
8 CPU cores, and that the selected SANCTUARY core has the
ID 7. Moreover, for the sake of simplicity, we assume that
no other bus master than the CPU needs access to memory.
Then, one of the up to 9 memory regions the TZC-400
can separate is configured to exactly cover the contiguous
memory area in which the SL and SA binaries, the Sanctuary
Data and the secure shared memory resides. We assume
that region 1 is used for that purpose. The lowest address
covered by region 1 is set using the REGION_BASE_LOW_1
and REGION_BASE_HIGH_1 registers. The highest address
covered is set using the REGION_TOP_LOW_1 and RE-
GION_TOP_HIGH_1 registers. Subsequently, the configured
memory region 1 is solely assigned to the SANCTUARY core
using the REGION_ID_ACCESS_1 register. The bit assign-
ments of the region ID access register is shown in Figure 5.
The upper 16 bits of the register define the non-secure write
access permissions (nsaid_wr_en), the lower 16 bits the non-

31 16 15 0

nsaid_wr_en nsaid_rd_en

Bit 16 assoc. with ID = 0
…

Bit 31 assoc. with ID = 15

Bit 0 assoc. with ID = 0
…

Bit 15 assoc. with ID = 15

Figure 5: Region ID Access Register.

secure read access permissions (nsaid_rd_en). Every bit is
associated with one bus master ID. This means, if e.g. bit
0 and bit 16 of REGION_ID_ACCESS_1 are set to 1 and
all other bits to 0, only the bus master with the associated
ID 0 is allowed to perform write or read access on region
1. In our scenario, the SANCTUARY memory is assigned
to the SANCTUARY core by setting REGION_ID_ACCESS_1
to the value 0x800080. Then, non-secure access is only
allowed for the core with ID 7, which is the SANCTUARY
core in our example. For the memory regions that cover all
of the normal-world memory except the non-secure shared
memory, the bits are set to 0x7F007F in the corresponding
REGION_ID_ACCESS registers. Thus, permission to access
the normal-world memory is granted to all cores except the
SANCTUARY core. This is crucial for implementing two-way
isolation. The region covering the non-secure shared memory
is configured with the value 0xFF00FF since the cores
running the normal world and also the SANCTUARY core need
access to it. As a last step, the regions covering the secure-
world memory are configured with the bit value 0x0 such that
no core can perform a non-secure access on the memory.

The resulting memory permissions are listed in Figure 3 for
the different memory regions, core IDs, and execution modes.
In the following verification step, the STA verifies the SL
binary using the stored digital signature. For this purpose, the
STA uses the RSASSA-PKCS1-v1_5 scheme together with
SHA-256 which are provided by OP-TEE. After successful
verification, the ARM TF is informed that the SANCTUARY is
locked, verified, and ready to be booted.

Sanctuary Boot. After successful SANCTUARY setup, the KM
calls the TF to boot the SANCTUARY core. Before starting
the core, the TF checks that the SANCTUARY Instance was
correctly locked and verified. After receiving the boot signal,
the SANCTUARY core first executes the TF in EL3. During
initialization of the TF, exception handlers needed for calling
the TF from the SL are set up. The TF needs to be callable from
the SL to shut the SANCTUARY core down in the teardown
phase. After TF initialization, the core switches to EL1 and
jumps to the entry point of the SL. We slightly modified the
Zircon boot sequence to prevent information leakage from the
SANCTUARY Instance We slightly modified the Zircon boot
sequence to prevent information leakage from the SANCTU-
ARY Instance by excluding all SANCTUARY memory from
being cached in the shared L2 cache. Moreover, the external
interrupts are configured using the core’s CPU interface of the
General Interrupt Controller (GIC) which cannot be accessed
by other cores. This blocks external interrupts triggered by
other cores, while allowing to receive interrupts requested by
the SANCTUARY core, e.g. timer interrupts.

SA execution. While executing sensitive code, the SA may
establish communication channels. The SA is able to commu-
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nicate with its corresponding LA over the non-secure shared
memory and with vendor TAs over the secure shared memory
through OP-TEE. All data sent over the non-secure shared
memory is accessible to the normal world, and hence, it is not
part of the SANCTUARY memory partition. Communication
is facilitated by the KM of the LOS in the normal world
and by custom Zircon system calls on the SANCTUARY side.
When the SA requires security services from vendor TAs, it
communicates with the TA over the secure shared memory
channel. On the secure-world side, this communication is
facilitated by the STA. Since all data shared between the SA
and a TA is sensitive, this data is solely exchanged over secure
shared memory which is part of the protected SANCTUARY
memory region assigned to the SANCTUARY core.

SANCTUARY allows two different implementation variants for
SA to TA communication: (i) the OP-TEE driver is included in
Zircon and the world switch to the secure world is performed
by the SANCTUARY core itself, and (ii) the connection to
the secure world is triggered by the SA’s corresponding LA.
This means an SA first has to communicate with the normal
world before it can communicate with a TA. However, the
data exchanged between TA and SA remains unaccessible to
the LA. We implement the second variant in our prototype
since it requires less modifications to the Zircon kernel.

Sanctuary Teardown. The three-step teardown of the SANC-
TUARY is triggered by the LA. The first step is to shut down
the SANCTUARY core when the LA signals to the SA that
its services are not needed anymore. Subsequently, the SA
saves its state (if needed) using e.g. the sealing services. Next,
internal clean up actions bring the Zircon kernel back in its
original state and invalidate the L1 cache to prevent data
leakage. Then, the SL signals the STA that it successfully
performed the clean up action. Subsequently, the TF is used
to shut down the core. The second step is to unlock the
SANCTUARY memory. Analogously to the locking in the setup
phase this is performed by the STA. Again, the modified TF
checks that the SANCTUARY core is indeed shut down before
performing the world switch and handing control over to the
STA. The STA checks if the SA was able to perform its clean
up action. Then, the secure shared memory and Sanctuary Data
memory are zeroed to prevent leakage of SA data. Finally,
the configuration of the TZC-400 is reverted such that the
SANCTUARY memory region and the SANCTUARY core are
freed. In the third step of the teardown process, the KM uses
the Linux hotplug mechanism to reclaim the available core.

VI. SECURITY ANALYSIS

The goal of SANCTUARY is to protect against a strong attacker,
as described by our adversary model (see Section III-A). We
also derived the requirements for our design of SANCTUARY
in Section III-B. For a systematic analysis of SANCTUARY,
we will now look at all possible attack vectors that are
available to an adversary in our threat model. In particular,
we can see from Figure 2 that attacks can originate from three
different locations on the platform: (i) the normal-world user
space, (ii) the normal-world OS, and (iii) a malicious SA.
In all three cases, the goal of the attacker is to compromise
the integrity or data confidentiality of a victim SA or gain
control over the LOS. This can happen at any point in time
during the life-cycle of an SA (i.e., setup, boot, execution,

or tear-down), and hence, we will discuss each case in the
following. In particular, malicious code in the normal world
can aim at either manipulating the SL and SA binaries before
they are loaded (Section VI-A), overcome the isolation of
SANCTUARY (Section VI-B), manipulate persistently stored
data of an SA (Section VI-C), or extract information from
an SA via the cache (Section VI-D). We discuss the case of
malicious SAs in Section VI-E. As we will show, an adversary
cannot compromise the security of SANCTUARY in any of
those cases, and does not gain any advantage from executing
code inside an SA over regular normal-world execution.

A. Binary Integrity

SL’s and SAs’s binaries are saved unencrypted in normal-
world memory. Nevertheless, SANCTUARY ensures integrity
of these binaries by using local attestation and by providing
functionalities for remote attestation, respectively. SANCTU-
ARY stores a signature of the SL in the secure-world memory.
Before a SANCTUARY Instance is started, the STA performs a
local attestation by measuring the SL binary and by verifying
it against the stored signature. If verification fails, SANC-
TUARY’s setup is aborted and the modified code therefore
never executed. Developers can verify an SA’s integrity using
remote attestation. Whenever an SA connects to a server, TEE
functionalities are used to establish a secure connection to the
server. Moreover, the STA creates a signature of the SA which
is also send to the server. Thus, the server can check if the SA
is in a valid state before provisioning sensitive data to it.
These properties, together with the properties in Section VI-B,
fulfill security requirement 1: Code and data integrity.

B. Code and Data Isolation

The SANCTUARY design provides strong hardware-enforced
isolation of code and data. The SANCTUARY memory isolation
is enforced by TrustZone before the integrity of the SL is
verified. Once the SANCTUARY memory is locked, no core
except the selected SANCTUARY core can perform non-secure
reads or writes on the SANCTUARY memory region. The
selected SANCTUARY core always boots in the TF and then
jumps to an address in the SL which is set as a constant in the
TF. During the boot process of the SANCTUARY Instance, the
SL ensures that all interrupts from the system-wide interrupt
controller, triggered from other cores than the SANCTUARY
core, are disabled. Only a core itself can configure its interface
to the GIC. Therefore, the execution of a SANCTUARY Instance
cannot be interrupted by another core. Moreover, only the
SANCTUARY core can shut itself down. During runtime, the
SANCTUARY design makes sure that sensitive data is only
passed to and received from a locked SANCTUARY Instance.
When performing a world switch to the secure world, the TF
verifies that the call was issued from the SANCTUARY core.
Access from all other cores to the trusted functionalities in
the TEE will be blocked. If the call was issued from the
SANCTUARY core, the vendor TAs in the TEE use the STA
to check if the SANCTUARY Instance is in correct state before
reading or writing any data to the memory shared between
secure world and SA. SANCTUARY also prevents the injection
of data into the free SANCTUARY memory space before a
SANCTUARY Instance is locked and the extraction of data
after a SANCTUARY Instance is unlocked. The secure-world
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STA overwrites SANCTUARY memory not reserved for either
SL or SA with a fixed value after a SANCTUARY Instance is
locked and before it is unlocked, including the secure shared
memory. Besides, the SL is reset to its original state during
shutdown, hence, it will not contain last executed SA’s data.
These properties fulfill security requirement 1: Code and
data integrity in combination with the properties in Sec-
tion VI-A. Additionally, in combination with the properties
in Section VI-C, security requirement 2: Data confidentiality
is fulfilled. Moreover, SANCTUARY’s temporal and spatial
hardware-enforced isolation fulfills security requirement 5:
Hardware-enforced resource partitioning (in combination with
the properties in Section VI-D). Finally, the exclusive shared
memory between a SANCTUARY Instance and the secure world
fulfills security requirement 3: Secure channel to secure world.

C. Secure Storage

SANCTUARY allows the secure and persistent storage of SA
data using the STA and security services from the secure
world. SANCTUARY ensures that the data is sealed to a SA
entity using keys that are derived from a hash value computed
over the SA binary. As a result, only an unmodified SA can
successfully decrypt its own data. For the persistent storage of
the sealed data, a SANCTUARY Instance uses the functionalities
provided by the TEE. Depending on the TEE implementation,
this might also allow the SA to bind its data to the device or to
save it in roll-back protected memory. These properties fulfill
security requirement 2: Data confidentiality (in combination
with the properties from Section VI-B).

D. Cache Attack Resilience

As shown by recent Spectre [33] attacks, cache-based attacks
can be very powerful. An attacker could, for instance, try to
mount a software side-channel attack to extract data from
cache lines used by a SANCTUARY Instance. Thus, these
attacks are considered in SANCTUARY’s design and implemen-
tation. As usual on ARMv8 platforms, we assume presence of
first-level cache (L1) and second level cache (L2). On these
platforms, first-level caches (L1) are core-exclusive, while
the L2 cache is shared. This configuration allows two attack
scenarios: direct attacks, and side-channel attacks.

Direct Attacks. A privileged attacker in the normal world
could map the SANCTUARY memory region into an attacker-
controlled memory space. This could potentially give an at-
tacker direct access to the cached data of a SANCTUARY
Instance, even without the permission to read the main memory
for this physical address. For the L1 cache, we prevent this
by running a SANCTUARY Instance on its own core and by
invalidating the L1 cache before a SANCTUARY Instance is
shutdown and unlocked. For the L2 cache, there are two
ways to prevent direct attacks. One way is to configure the
SANCTUARY memory region as outer non-cacheable,
whereas the outer domain is represented by all caches outside
of a particular CPU core. As a result, the SANCTUARY memory
is never cached in the shared L2 cache. In Section VII, we
show that this still gives practical performance. Alternatively,
changes to the caches could be made on the hardware level to
extend the enforcement of identity-based filtering to the L2.
This prevents an attacker from directly accessing cache lines
uses by a SANCTUARY Instance. In both cases, an attacker

could also not inject own malicious data into the L2 cache. On
ARMv8, data caches are normally either Physically Indexed,
Physically Tagged (PIPT) or Virtually Indexed, Physically
Tagged (VIPT) [3]. This means cache lines are tagged using
physical addresses in both configurations. Since the attacker
cannot write to or read from the physical addresses of the
SANCTUARY memory, the attacker can also not fill the cache
for those addresses.

Side-Channel Attacks. An unprivileged attacker could
mount side-channel attacks like Prime+Probe [43] or
Flush+Reload [53] to leak data from L1 or L2 caches. For
the L1 cache, this is prevented by running a SANCTUARY
Instance on its own core, i.e. the attacker cannot measure
accesses to the SANCTUARY core’s L1 cache while it is run-
ning. To prevent measurements after shutdown, a SANCTUARY
Instance invalidates its L1 cache before it is shut down and
unlocked. For the L2 cache, implementing the identity-based
filtering does not solve the cache-side channel issue. Thus,
cache partitioning (or a similar approach) is needed to prevent
leakage. We prevent side-channel attacks on the L2 cache
by excluding SANCTUARY memory from L2, which yields
practical performance (cf. Section VII).

E. Malicious Sanctuary App

One strength of SANCTUARY is that third-party developers
can easily create and deploy own SAs. This, however, also
allows attackers to create malicious SAs. If an user is tricked
into installing such an SA, it will be executed as a valid SA
in a SANCTUARY Instance. The attacker could then try to
attack the normal world or secure world from such a malicious
SA, hence, SANCTUARY must protect against malicious SAs.
With a malicious SA, an attacker might attack the LOS and
LAs running in the normal world. Yet, an SA only has user
privileges (EL0), EL1 is controlled by the device vendor pro-
viding the SL. If the attacker is able to successfully perform a
privilege-escalation attack and compromise the SL, the secure-
world memory is still not accessible for the attacker since
the SA runs in normal world. In particular, since only the
SANCTUARY memory is assigned to the SANCTUARY core,
remaining normal-world memory could still not be accessed.
Only the non-secure shared memory to the LA (developed by
the attacker anyway) would be affected. An attacker could try
to use a malicious SA to leak data from either other SAs or
from TAs. However, since the SANCTUARY design dedicates
CPU cores to SAs one at a time, unintended information flow
between SAs is prevented. These properties fulfill security
requirement 4: Protection from malicious SAs.

VII. EVALUATION

We evaluate SANCTUARY by implementing a real-world use-
case in our prototype and by thoroughly measuring the per-
formance of all SANCTUARY components. As mentioned in
Section V, the overall implementation minimizes TCB changes
by adding less than 1400 LOC. Thus, SANCTUARY fulfills
functional requirement 6: Minimal software changes from
Section III-B. The evaluation was performed on the HiKey
960 development board. The HiKey 960 provides an ARMv8
SoC design with an ARM big.LITTLE processor architecture
equipped with four ARM Cortex-A73 and four Cortex-A53
cores. Every Cortex-A73 core has 64KB L1 instruction caches
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Measurement with L2 (us) without L2 (us)

LA to STA 98 [88]

LA to TA 123 [120]

LA to SA 150 249

SA to TA 310 353

Table II: Performance Sanctuary Communication, square
brackets indicate that deactivating L2 for the SANCTUARY
Instance had no effect.

and 64KB L1 data caches. Moreover, all Cortex-A73 cores
share a unified L2 with a size of 2MB. The energy-efficient
Cortex-A53 cores share a unified L2 cache of 512KB. Besides,
every Cortex-A53 core has exclusively access to 32KB L1I and
32KB L1D caches.

A. Microbenchmarks

We evaluated the performance of SANCTUARY by measuring
the run time of the individual components and operations of
our prototype. We performed the evaluation for the SANCTU-
ARY configurations with both, active and deactivated L2 cache
for the SANCTUARY core (other cores are unaffected by this).
For an active L2 cache, we consider a weaker attacker model,
that is similar to the one of Intel SGX, i.e., side-channel attacks
are out of scope; orthogonal approaches like cache partitioning
are needed. Furthermore, we assume that the identity-based
filtering is also implemented in shared L2.
When not caching the SANCTUARY memory in L2, we can
consider a stronger adversary that leverages software side-
channel attacks. Square brackets in the results for the con-
figuration without L2 highlight that these measurements are
not influenced by the SANCTUARY L2 cache configuration.
The shown deviations can be attributed to the complexity of
modern processors which causes timing differences between
consecutive runs. We used the generic timer available on
ARM-based architectures to perform all our measurements.
Moreover, we computed the relative standard deviation of our
measurements to assess SANCTUARY’s stability. The presented
results are averaged over 100 runs per configuration. Based
on these numbers, we conclude that latency introduced by
SANCTUARY is practical in real-world applications.

1) Sanctuary Communication: Table II contains measurements
for the different communication channels that exist in the
SANCTUARY design. The first two measurements, LA to STA
and LA to TA show how long it takes to perform a call from
an LA to a TA or a STA. These measurements are completely
independent from a SANCTUARY Instance but can be used
to assess the performance of SANCTUARY’s communication
channels. The time required to perform a call from an LA
to its SA with L2 cache is comparable to regular TrustZone
communication. Hence, SANCTUARY does not introduce a
large communication latency. The higher overhead for the
communication between SA and TA is caused by the fact
that the context switch is not performed by the SANCTUARY
core but is triggered by the corresponding LA. This means
the SA first has to communicate with the normal world before
it can communicate with the secure world. As mentioned in

Measurement with L2 (ms) without L2 (ms)

Load Sanctuary binaries 7 [7]

Shut down core 113 [109]

Lock & Verify 13 [12]

Start Sanctuary: 59 311

Early core initialization 37 36

Set up kernel space env. 18 130

Set up user space env. 4 145

Table III: Performance Sanctuary Setup.

Section V, the OP-TEE driver could also be included into the
SL. Then, the SANCTUARY core could switch directly to the
secure world. In this case performance similar to that of a
call from LA to TA can be expected. When the L2 cache is
deactivated for SANCTUARY memory, the duration of a call
from LA to SA increases by a factor of 1.66, however the
overall performance is still practical. The relative standard
deviation of the communication measurements is low with
28%-34% for the configuration with L2 activated and 20%-
32% for the configuration with L2 deactivated.

2) Sanctuary Setup: The primary difference in running SANC-
TUARY Instance compared to TAs lies in the setup time needed
to isolate a CPU core. The bare execution speed of SAs
and TAs is the same as they run on the same hardware.
Table III breaks down the single steps performed starting the
LA, requesting a SANCTUARY Instance initialization, up to
execution of the SA. In the Load Sanctuary binaries step, both
the SL and SA binaries are loaded in 7ms. In the next step,
the Linux hotplug mechanism is used to shut down the core.
With L2 cache enabled for this core, this represents the most
expensive step of the SANCTUARY setup process with 113ms.
Next, the SANCTUARY is locked and verified (cf. Section V).
Subsequently, the Zircon kernel is booted (Start Sanctuary
step). We measured the boot process in three phases. The
first phase covers early initialization of the core. In the second
phase, the platform components are initialized and the kernel
environment is set up. In the last phase, the user space
environment is set up, it ends with the execution of the SA. The
results show that the boot overhead is higher if the L2 cache is
not active. In the second boot step, the boot time increases by
a factor of 7, in the third step even by a factor of 36. However,
even without using the L2 cache for the SANCTUARY core, the
complete SANCTUARY setup can still be performed in around
450ms. If the identity-based filtering feature is implemented
in the cache, a setup time around 200ms can be achieved.
Further optimizations could be achieved by reducing the SL.
The relative standard deviation of the measurements with L2
activated range from 27% to 38%. With deactivated L2 the
relative standard deviation values range from 26% to 44%.

3) Sanctuary Teardown: Table IV shows the performance
evaluation of the Sanctuary teardown. In the Sanctuary shut-
down step, the L1 cache is invalidated and the Zircon kernel
brought into its original state. In the Unlock Sanctuary step,
the SANCTUARY memory is zeroed which takes up most of
the time. The complete teardown of the SANCTUARY can be
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Figure 6: GenOTP app protocols for secret key provisioning and OTP generation. A lock symbol indicates TrustZone-protected
communication channels.

Measurement with L2 (ms) without L2 (ms)

Sanctuary shutdown 1 [1]

Unlock Sanctuary 45 58

Restart core 53 [54]

Table IV: Performance Sanctuary Teardown.

performed very fast in around 100ms with and without L2
cache. For the former case, the relative standard deviation
ranges from 15% to 40% and for the later from 14% to 25%.
The measurements further emphasize the practicability of
SANCTUARY, as setup and teardown induce a total run time
overhead of approximately 340ms with L2, respectively ap-
proximately 600ms without L2.

B. Use-Case: OTP Generation for Two-Factor Authentication

To illustrate the practicability of SANCTUARY in real-world
applications, we implemented a One-time Password (OTP)
generator app on top of our prototype, which we call GenOTP.
The GenOTP app, which we will now describe in more detail,
consists of an LA and an SA. It can be used to seal a secret
key to the SA and restore it at a later point in time to generate
a fresh OTP. With SANCTUARY, every service provider can
develop a custom app that protects the secret key without the
need of an own TA in the TEE.

1) Scenario Description: Two-factor authentication schemes
are often used for authenticating users on websites. The first
factor, the knowledge factor, is usually represented by an user-
name and a password. The second factor, the possession factor,
is represented by a hardware token or a mobile device that
creates fresh OTPs. The OTPs are created from a secret key
shared between the user’s device and the verification server.
In a Time-based One-time Password Algorithm (TOTP) [30],
the secret key is then used together with a fresh timestamp to
generate an OTP. The secret key must be securely stored on
the device and the TOTP code protected during execution.

In our scenario, an online retailer wants to offer two-factor
authentication for its online shop. We assume that a customer’s
mobile device contains a TEE and supports SANCTUARY. The
online retailer implemented the GenOTP app consisting of non-
sensitive code in an LA and security-sensitive code in an SA.
We further assume that the GenOTP app is already installed
on the user’s device and that the TEE contains an unique
asymmetric key pair (SKdevice, PKdevice), brought onto the
device during production. During the installation of GenOTP,
PKdevice was sent to the retailer’s back end. We assume that
Proxy TA and Sealing TA are present on the device.

2) Provision Secret Key: For generating OTPs on the mobile
device, a secret key KTOTP needs to be provisioned to it. The
process for receiving the key from the retailer’s back end is
shown in Figure 6. The customer selects the option to provision
a key in the GenOTP LA. A SANCTUARY Instance is started
and executes the GenOTP SA. The SA then hands over the
IP address of the server it wants to communicate with and the
message it wants to send to the Proxy TA. In this case, the
message only contains the information provision_key. The
Proxy TA now calls the STA to get the hash value of the
SA binary running in the SANCTUARY Instance and creates
a signature SigSA over the hash value and message using the
device unique private key SKdevice.
After the Proxy TA created the signature SigSA, it sends
it to the retailer’s back end, together with the hash HSA

calculated over the SA binary and the message provision_key.
In particular, the signed and thus protected message and HSA

is passed to the network stack in the normal world to be
forwarded to the server. The involvement of the normal world
is omitted in Figure 6 for lucidity as it is only providing
non-secure functionalities. The retailer’s back end, which has
PKdevice, can now verify if the SA was correctly loaded in
a SANCTUARY Instance, since only then a valid signature is
created by the Proxy TA. If verification succeeds, a secret key
KTOTP is created and returned via the Proxy TA to the SA.
The SA now needs to store the received key s.t. fresh OTPs can
be generated anytime, even without Internet connection. For
this, the Sealing TA is used. The SA collects all data it wants
to seal in a state object SSA and forwards it to the Sealing TA.
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In our scenario, SSA only contains the secret key KTOTP . In
general, any data that needs to be stored persistently can be
incorporated into SSA. When the Sealing TA receives SSA,
it calls the STA to get the SA binary hash. From the hash a
symmetric key KSA unique to the SA is derived. KSA is then
used to seal SSA to the specific SA, producing the cipher
SSA_S . Finally, the data is sealed to the Sealing TA using
functionality provided by OP-TEE.

3) Generate OTP: When the customer later wants to generate
a fresh OTP for login into the retailer’s online shop, he selects
the OTP generation option from the LA. After a SANCTUARY
Instance is started, the SA uses get_state of the Sealing TA to
retrieve its saved data. The Sealing TA first restores the sealed
SA state SSA_S using the functionality provided by OP-TEE.
Next, a hash computed over the SA binary is received from
the STA and used to derive the SA unique key KSA. The key
is then used to decrypt SSA_S which results in the state object
SSA. SSA, which contains the secret key KTOTP , is then
returned to the GenOTP SA. Finally, the SA runs the TOTP
algorithm to compute a fresh OTPt from the key KTOTP and
the current timestamp t. The generated OTP is returned to the
LA which displays it to the user. The customer can now use
the OTP to perform a two-factor authentication.

4) GenOTP Performance: Besides performing microbench-
marks We also measured performance of the implemented
GenOTP app. Averaging over 100 runs, we measured the
time it takes to perform the Provison key and the Generate
OTP processes shown in Figure 6. The results are listed in
Table V. Provisioning a key onto the device takes around 1s,
whereas the provisioning time increases by factor 1.3 without
L2 cache. Measurements include all steps from SANCTUARY
Instance setup, SA signature computation, encrypting and
storing the secret key, up to the point where the SANCTUARY
Instance is completely teared down. Only the communication
and processing delays introduced by the back end are not
included. We again split the measurement into multiple phases:
(1) SANCTUARY Instance is started and the call to the back end
is issued, (2) the secret key is received and processed by the
SA, and (3) the secret key is stored, the SANCTUARY Instance
teared down and all resources reclaimed by the normal world.
The measurement of generate OTP is divided into two phases:
(1) setup and retrieval of the secret key from the Sealing TA,
and (2) generation of a fresh OTP and SANCTUARY Instance
teardown. Generating a fresh OTP using SANCTUARY takes
around half a second. When the L2 cache is deactivated, the
process time increases by a factor of 1.6. The relative standard
deviation values for the GenOTP measurements range from
11% to 21% for the configuration with L2 activated and from
11% to 22% for the configuration with L2 deactivated.
The results show that the SANCTUARY design is indeed
practical in real-world scenarios, even without the L2 cache.
The setup of the SANCTUARY Instance and the communication
with other normal-world and secure-world components is fast
enough such that the user experience is not influenced. More-
over, since the SANCTUARY Instance runs on an isolated core,
the LOS does not have to be suspended and can run in parallel
with the SANCTUARY Instance. This means the delays intro-
duced by the SANCTUARY setup and teardown never result in a
frozen UI since the LOS is always fully responsive. Therefore,
SANCTUARY fulfills functional requirement 7: Positive user
experience from Section III-B.

Measurement with L2 (ms) without L2 (ms)

Provision key: 884 1174

Setup & Server call 780 1067

Process server result 10 10

Save state & Teardown 94 97

Generate OTP: 365 630

Setup & Retrieve state 266 514

Generate OTP & Teardown 99 116

Table V: GenOTP App Performance.

VIII. RELATED WORK

In this section we compare SANCTUARY against existing TEE
implementations in hardware and software.

A. Secure Hardware Architectures

Hardware-based security architectures have been developed
by both, academia and industry. Industry solutions like Intel
Software Guard Extensions (SGX) [31] and ARM Trust-
Zone [5] are available in commercial off-the-shelf products.
Intel SGX [31] provides hardware-enforced code and data
isolation, while the TCB consists of the CPU and its microcode
only. So-called enclaves run security-sensitive code that can be
can be verified via local and remote attestation. However, SGX
is tailored to Intel x86 desktop/server chips, and thus not found
in embedded (or mobile) devices. For mobile devices, ARM
offers a TEE implementation with TrustZone [5]. TrustZone
isolates critical code by dividing physical hardware in virtual
normal-world and secure-world realms. The secure world runs
its own TOS and TAs, but vendors are very strict about
which applications may run in the secure world. SANCTUARY
overcomes this restriction by only having a minimal and fixed
set of functionality in the secure world, while the remaining
sensitive code runs in isolated normal-world enclaves.

Sanctum [14] provides protected enclave execution similar to
Intel’s SGX. Unlike SGX, it extends the open-source RISC-
V platform, and provides additional protection mechanisms
against side-channel attacks by applying cache partitioning
to the last level cache (LLC), while flushing the per-core
L1 cache upon enclave exit. SPM [50] and follow-up works
like Sancus [41], [42] propose an isolation architecture for
low-end embedded systems with a hardware-only TCB. They
extend the openMSP430 CPU architecture with additional
CPU instructions for secure provisioning and protected storage,
as well as an extended memory access logic with isolation
enforcement. TrustLite [34] uses the generalized concept of
an Execution-Aware Memory Protection Unit (EAMPU) to
enforce program counter based memory access policies stored
in tables directly in the SoC and a trusted loader to enable
isolated trusted applications on a low-end embedded processor
architectures. All these approaches are based on CPU archi-
tectures not commonly available in end-user devices, while
SANCTUARY is based on the widely used ARM architecture.
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B. Secure Software Architectures

Komodo aims to strengthen software isolation between the
TrustZone applications in the secure world by using a
hardened, formally verified microkernel as the secure-world
OS [18]. Komodo replaces deployed microkernels by solutions
like MobiCore [7] and hence does not support legacy systems.

Hypervisor-based approaches like vTZ [28], AppSec [46],
Terra [21], InkTag [26], TrustVisor [37] or MiniBox [35]
provide isolation using virtualization. This has four main
disadvantages: (i) their TCB contains a relatively large hyper-
visor, (ii) they block usage of virtualization for non-security
purposes, (iii) they require additional hardware to protect
against Direct Memory Access (DMA) attacks, and (iv) they
negatively influence the performance of the OS. SANCTUARY
does not rely on virtualization and can even be used in com-
bination with a hypervisor. Cho et al. [13] try to mitigate the
influence on the OS by activating the hypervisor on-demand.
Therefore, the OS is only influenced when sensitive code is
executed. In SANCTUARY, the performance of the OS is not
influenced when sensitive code is executed in parallel since no
hypervisor is running underneath the normal-world OS.

Other approaches try to minimize the normal-world TCB
by protecting the non-secure kernel. TZ-RKP [10] and
SPROBES [22] both protect the LOS kernel by instrumenting
critical functionality to trap into the secure world, where the
call is filtered. As demonstrated by the Towelroot exploit [27],
such mechanisms can be circumvented. KENALI [48] instead
uses data-flow integrity to enforce policies of the LOS ker-
nel’s access control system, while SKEE [9] aims to detect
attacks against the kernel by providing an isolated execution
environment at the kernel’s privilege level running a kernel
monitor. SANCTUARY does not require the kernel to be trusted
to guarantee isolated execution, moreover, SANCTUARY also
protects the LOS kernel from potentially malicious SAs.

Flicker [38] and TrustICE [51] provide temporal isolation only,
i.e., they cannot provide isolation for systems where TEEs
execute in parallel with untrusted software. Hence, on todays
commonly used multi-core systems the applicability of these
approaches is very limited. With temporal isolation, the entire
system has to be suspended, i.e., hibernation of the LOS and
all applications. Afterwards, the TEE can execute exclusively
on the system and only after the TEE has terminated, the
normal system can be restored and continue execution. Flicker
uses Intel’s Trusted Execution Technology (TXT) to reset the
system at runtime to a trusted execution state. TrustICE is con-
ceptually similar to Flicker: it uses the secure world, rather than
TXT, to reset the normal world to a trusted state. In TrustICE,
TA binaries are stored in TrustZone memory. When a TEE is
started, the LOS is suspended and the binaries are copied to
normal-world memory for execution. After the TEE finished
execution, the LOS has to be restored by the secure world.
During execution, TrustICE provides only one-way isolation
and executes in kernel-mode, this means that malicious TAs
can manipulate normal-world software, e.g., compromise the
LOS. SANCTUARY, in contrast, does provide spacial isolation,
which enables the parallel execution of untrusted code with
one or multiple TEE instances. Furthermore, SANCTUARY
offers hardware-enforced two-way isolation and restricts SAs
to user-mode execution. Hence, SANCTUARY protects systems

from malicious SAs, which is highly relevant for practical
deployment.

IX. CONCLUSION

We presented SANCTUARY, our novel security architecture for
extending the TrustZone software ecosystem with user-space
enclaves. SANCTUARY provides hardware-enforced two-way
isolation obviating the need to trust or vet the code of SAs, as
malicious SAs cannot have more power than normal user-space
applications.

SANCTUARY is based on the bus master identity filtering
introduced with ARM’s latest memory controller design and
allows the parallel isolation of individual CPU cores for
executing security-sensitive code, i.e., SANCTUARY does not
affect the user experience negatively. Furthermore, our per-
formance evaluations for our proof-of-concept implementation
shows low latencies for typical use cases, all of which makes
SANCTUARY highly practical.
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